Compilers: Principles, Techniques, and Tools
Chapter 3 Lexical Analysis

Dongjie He
University of New South Wales
https://dongjiehe.github.io/teaching/compiler/

29 Jun 2023

THE UNIVERSITY OF
NEW SOUTH WALES

({E

UNSW, Sydney Compilers 29 Jun 2023 1/47

https://dongjiehe.github.io/teaching/compiler/

Role of Lexical Analyzer

Lexical Analyzer

@ A lexical analyzer groups multicharacter constructs as tokens

e scanning: scan inputs, delete comments, compact whitespaces,...

e lexical analysis: produce tokens from the output of scanner

position = initial + rate * 60

f

\ Lexical Analyzer |

(id,1) (=) {id,2) (+) (id, 3) (x) (60)

@ Interactions between the lexical analyzer and the parser

token
source Lexical to semantic
—] Parser —— .
program Analyzer analysis
getNextToken
Symbol
Table

UNSW, Sydney Compilers 29 Jun 2023

2/47

Role of Lexical Analyzer

Lexical Analyzer

@ Distinct Terms

o token: (token name, optional attribute)
e lexeme: a token instance formed by a sequence of characters
e pattern: the common form that the lexemes of a token may take

@ Some common tokens in programming languages

TOKEN

INFORMAL DESCRIPTION

SAMPLE LEXEMES

if

else
comparison
id

number

literal

characters i, f

characters e, 1, s, e
<or>or<=or>or==or!=
letter followed by letters and digits
any numeric constant

anything but ", surrounded by "’s

if

else

<=, I=

pi, score, D2
3.14159, 0, 6.02e23

"core dumped"

@ Attributes for Tokens

e Information about the lexeme, e.g., lexeme, type, location, ...
e a pointer to the symbole table entry

UNSW, Sydney Compilers

29 Jun 2023

3/47

Specication of Tokens

Review: Strings and Languages

@ Tokens <= lexeme patterns <= regular expression

@ alphabet: any finite set of symbols, e.g., {0, 1}, ASCII, Unicode
@ string: a finite sequence of symbols in alphabet
e synonyms: sentence, word
string length: |s|
empty string: €
prefix /suffix/substring /subsequence
@ language: any countable set of strings over some fixed alphabet
o empty language: 0 = {e}
o well-formed C programs, English sentences, ...

@ Operations on Languages

OPERATION DEFINITION AND NOTATION
Union of L and M LUM={s|sisin Lorsisin M}
Concatenation of L and M | LM = {st|sisin L and ¢ is in M}
Kleene closure of L L* =U, L
Positive closure of L Lt =y, L

UNSW, Sydney Compilers 29 Jun 2023 4/47

Specication of Tokens

Review:

Regular Expression (RE)

@ Inductive definition:

BASIS 1: eis a RE, L(¢) = {¢}

BASIS 2: ac X is a RE, L(a) = {a}

inductive hypothesis: r (s) is a RE denoting L(r) (L(s))
Induction 1: (r)|(s) is a RE denoting L(r) U L(s)
Induction 2: (r)(s) is a RE denoting L(r)L(s)
Induction 3: (r)* is a RE denoting (L(r))*
Induction 4: (r) is a RE denoting L(r)

@ avoid unnecessary parentheses by adopting conventions:

unary operator *, concatenation and | are all left associative
precedence: unary operator * > concatenation > |

e.g., (a)|((b)"(c)) = ab"c

e An example: ¥ = {a, b}

a|b: {a, b}

a*: {e,a, a3, aaa, ...}

(alb)* = (a*b*)*: {¢, a, b, aa, ab, ba, bb, aaa, ... }
ala*b: {a, b, ab, aab, aaab, ...}

UNSW, Sydney Compilers 29 Jun 2023

5/47

Review: Regular Expression (RE)

@ rand s are equivalent, r = s, if they denote the same language
e e.g., (alb) = (bla)
@ Algebraic laws for RE

Law DESCRIPTION
r|s = s|r | is commutative
r|(s|t) = (r]s)|t | is associative
r(st) = (rs)t Concatenation is associative
r(s|t) = rs|rt; (s|t)r = sr|tr | Concatenation distributes over |
€er=re=r € is the identity for concatenation
r* = (rle)* € is guaranteed in a closure
e = p* * is idempotent

UNSW, Sydney Compilers 29 Jun 2023 6 /47

Specication of Tokens

Review: Regular Definitions

@ reason: notational convenience
a sequence of definitions of the form: dy — ry, ..., d, — r,

o di¢XU{d,...,di_1} is a fresh symbol

o riisa RE over XU {d1,da,...,di—1} (avoid recursive definitions)
o Example 1: C identifiers

letter_ — A|B|---|Z]a|b|---]z]|_
digit—0]1|---]9
id — letter_(letter_ | digit)*

@ Example 2: Unsigned numbers
o digit—0]1|---]9
digits — digit digit*
optFraction — . digits | €
optExponent — (E (+ | — | €) digits) | €
number — digits optFraction optExponent

UNSW, Sydney Compilers 29 Jun 2023 7/47

Specication of Tokens

Review: Extensions of Regular Expressions (Lex)

EXPRESSION MATCHES EXAMPLE

c the one non-operator character ¢ a

\e character c literally *

st string s literally Tk

any character but newline a.*b

- beginning of a line ~abc

$ end of a line abc$

[s] any one of the characters in string s | [abc]

["s] any one character not in string s [~abc]

¥ zero or more strings matching r ax

r+ one or more strings matching r at+

r? Zero or one r a?

r{m,n} between m and n occurrences of r a{1,5}

179 an 71 followed by an 79 ab

Ty | 7o an 71 or an ry alb

(r) same as r (alb)

r1/T2 r1 when followed by 72 abc/123
Compilers 29 Jun 2023

8,47

Specication of Tokens

Review: Extensions of Regular Expressions (others)

o Filename expressions used by the shell command sh

EXPRESSION | MATCHES EXAMPLE
's! string s literally 7\’

\e character ¢ literally | \’

* any string *.0

? any character sortl.?

[s] any character in s sortl. [cso]

@ Shorthands: [a; — ag]
ela—z=alb| -]z
o [0—9]=1]2]---]9
@ Examples: identifiers and numbers
» id — letter_ (letter_ | digit)*
= digit — [0 — 9]
» letter_ — [A—Za—z_]
= digits — digit™
= number — digits (. digits)? (E[+—]? digits)?

UNSW, Sydney Compilers 29 Jun 2023

9/47

Lexical Analysis

Lexical Analysis

@ A brain route map

— source program — lexemes — tokens

— regular expressions — transition diagrams

= A source program consists of a sequence of lexemes

= A lexeme is an instance any token

= A token follows any regular expression pattern

= identify the words of a regular expression by its transition diagram

UNSW, Sydney Compilers 29 Jun 2023

10/ 47

Lexical Analysis

Lexical Analysis: a running example

e Grammar

stmt — if expr then stmt| €
| if expr then stmt else stmt
expr — termrelop term | term

term — id | number

@ Tokens (Terminals): if, then, else, relop, id, and number
e Patterns: ws — (blank | tab | newline)™

digit — [0 — 9] | digits — digit™ | letter — [A — Za —]

number — digits (. digits)? (E[+—]? digits)?

id — letter (letter | digit)*

if — if ‘ then — then ‘ else — else

relop < | > | <=|>=|=| <>

UNSW, Sydney Compilers 29 Jun 2023

11/47

Lexical Analysis

Lexical Analysis: a running example

@ Transition Diagrams: relop

start < =
‘@ ‘@ return(relop, LE)

return(relop, NE)

4

*

= other
@ return(relop, LT)

@ return(relop, GE)
%
other return(relop, GT)

= start (initial) state, accepting (final) state, * retract character pointer

UNSW, Sydney Compilers 29 Jun 2023

12 /47

Lexical Analysis

Lexical Analysis: a running example

@ Transition diagram for identifiers and keywords

letter or digit

start letter m other *
e @ return (getToken(), installlD ())

@ Transition diagram for unsigned numbers
digit digit digit

start . o P . .
digit m . digit m E +o0r — digit O other *

digit
other * other

UNSW, Sydney Compilers 29 Jun 2023 13 /47

Lexical Analysis

Lexical Analysis: a running example

@ Transition diagram for whitespace
delim

start B O 3
Yo delim TN other
@) @)

@ Simulates the transition diagrams and identifies tokens
= try one each time or try all in parallel
= combine all into one, and simulate the one

|5
T

)l —

(a9 dopa
(@1 dopa

UNSW, Sydney Compilers 29 Jun 2023 14 /47

. . start
Lexical Analysis

Lexical Analysis: a running example

@ Transition diagram Simulation
= nextChar(), fail(), and retract()

TOKEN retToken

rclllrn (relop, LE)

return(relop NE)

other
return(relop LT)
@ return(relop, EQ)

return(relop GE)

_ new(RELOP) ; N retllrn(relop, GT)

while(1) { /* repeat character processing until a return

or failure occurs */

switch(state) {

case O:

case 1:

case 8:

}
}

c = nextChar();

if (¢ == ’<’) state = 1;
else if (¢ == ’=’) state = 5;
else if (¢ == ’>’) state = 6;

else fail(); /* lexeme is not a relop */
break;

retract();
retToken.attribute = GT;
return(retToken) ;

UNSW, Sydney Compilers 29 Jun 2023

15 /47

Lexical Analysis

Scanning

@ How to implement nextChar()?

= |oad one character each time?
= efficient? retract()?

o Buffer Pairs

T forward
lexemeBegin

= |oad one buffer each time

= two buffers are alternately reloaded

= lexemeBegin: mark the beginning of the current lexeme

= forward: point to a position storing the next scanning character

= eof: sentinel character marking the end of a buffer or the entire input

UNSW, Sydney Compilers 29 Jun 2023 16 /47

Lexical Analysis

Implementation of the running example

@ An implementation of the Transition-Diagram-Based Lexical Analyzer
https://github.com/DongjieHe/cptt/tree/main/assigns/a3/TDBLexer

Play a Demo!

UNSW, Sydney Compilers 29 Jun 2023 17 /47

https://github.com/DongjieHe/cptt/tree/main/assigns/a3/TDBLexer

Lexical Analysis

A problem remain unsolved

@ How to transform regular expression into transition diagram?

start

return (relop, LE)

relop — <
| return(relop, NE)
>
relurn(relop, LT)
| <= How?
| >— return(relop, EQ)

return(relop, GE)

*

| <> other return(relop, GT)

UNSW, Sydney Compilers 29 Jun 2023 18 /47

Lexical Analysis

An overview of the solution

@ How to transform regular expression into transition diagram?

5
. Q NFA-based Token
St it KA Identification

. @ DFA-based Token
Syl IR Identification

@ We first review Finite Automata: recognizer, say “yes" or “no
= Nondeterministic Finite Automata (NFA):

@ may have ¢ edges
@ no restrictions on edge labels

= Deterministic Finite Automata (DFA):

@ no € edge
@ no two edges out of any state share the same label

UNSW, Sydney Compilers 29 Jun 2023

19 /47

Lexical Analysis

Review: Nondeterministic Finite Automata

o NFA = (5XU{e},0d,s0, F)
= S finite states; Sy: start state; F: accepting states
= X input alphabet; d: transition functions

@ An example: (alb)*abb

= transition graph

a

start @ a @ b @ b @

b
= Transition Table
STATE a b €
0 {0,1} {0} [}
1 0 {2} 0
2 0 {3} 0
3 0 0 0

UNSW, Sydney Compilers 29 Jun 2023

20 /47

Lexical Analysis

Review: Deterministic Finite Automata

e DFA = (S5,%,0, s, F) is a special NFA
= Nno moves on €
= for each s€ S and a € 3, only one edge labeled a out of s

@ An example: (a|b)*abb
= transition graph for DFA

@ L(A): the language accepted by automaton A.

UNSW, Sydney Compilers 29 Jun 2023 21 /47

Step 1: Regular expression r to NFA N(r)

@ McNaughton-Yamada-Thompson algorithm

o Base
= NFA accepting ¢ = NFA accepting a€ ¥

@ Induction: N(s) and N(t) are NFA's for s and t

= Unionr=s|t = Concatenation r = st

D v GO o @D

start = Closure r=s*

= r={(s), N(s) and N(r) are same

UNSW, Sydney Compilers 29 Jun 2023 22 /47

Step 1: Regular expression r to NFA N(r)

@ An example: (a|b)*abb

Wl \

start \; : (‘D ’ 5 D)

" (a‘b) @T@ 4”\!\/\\\, . | i
- abb W - (alb)* —

=

start
Ny SN /)_./)_.(_.F.p

N

@ Properties of the construced NFA N(r)
= at most twice as many states as operators and operands in r
= one start state with no incoming transition
= one accepting state with no outgoing transition
= one outgoing on a € X or two outgoing on € for other states

UNSW, Sydney Compilers 29 Jun 2023

23 /47

Step 1: Regular expression r to NFA N(r)

A syntax-directed implementation in O(|r])
@ Grammar for Regular Expression

re —urur | ur
ur —cr-cr| cr
cr—ssr | sr

sr—(re)|op
op—al|b|---

A link to the implementation
https://github.com/DongjieHe/cptt/tree/main/assigns/a3/RE2NFA

@ An example: aa*|bb*

UNSW, Sydney Compilers 29 Jun 2023

24 /47

https://github.com/DongjieHe/cptt/tree/main/assigns/a3/RE2NFA

Step 2: NFA N to DFA D

@ Subset Construction Algorithm
initially, e-closure(sp) is the only state in Dstates, and it is unmarked;
while (there is an unmarked state 7" in Dstates) {
mark T';
for (each input symbol a) {
U = e-closure(move(T, a));
if (U is not in Dstates)
add U as an unmarked state to Dstates;
Dtran[T,a] = U;

OPERATION DESCRIPTION
e-closure(s) Set of NFA states reachable from NFA state s

on e-transitions alone.

e-closure(T) | Set of NFA states reachable from some NFA state s
in set T on e-transitions alone; = Uy i, 1 €-closure(s).
move(T, a) Set of NFA states to which there is a transition on

input symbol a from some state s in 7'.

UNSW, Sydney Compilers 29 Jun 2023 25 /47

Step 2: NFA N to DFA D

e An Example: (a|b)*abb

Transition Table

NFA STATE DFA STATE | a | b
{0,1,2,4,7} A B|C
{1,2,3,4,6,7,8} B B | D
{1,2,4,5,6,7} C B|C
{1,2,4,5,6,7,9} D B | E
{1,2,4,5,6,7,10} E B|C

see an implementation: https://github.com/DongjieHe/cptt/tree/main/assigns/a3/NFA2DFA

UNSW, Sydney Compilers 29 Jun 2023 26 /47

https://github.com/DongjieHe/cptt/tree/main/assigns/a3/NFA2DFA

Step 3: NFA Simulation

@ Pseudo Code

1) : oldStates = e-closure(sp)
= replace 4) with following code:

1) S = e-closure(sy);
2) c = nethhar(), 1(3‘) for (s on oldStates) {
3) while (¢!=eof) { 18; for ti(f)rz ?ZZZZ[Z?]),ZUU
4) S = G—CIOS’U,’I’E(TTZO'UC(S, C))) ;g; pop s from ol({ll(é"iifgzﬁ(t)
5) ¢ = nextChar(); 21) '
6) 22) for (s on newStates) {
7 if(SNF!=0)return "yes"; 23) pop s from newStates;
" ". 24) push s onto oldStates;
8) else return "no N 25) alreadyOn[s] = FALSE;
26) '}
@ An Efficient Implementation 9) addState(s) {
. 10) push s onto newStates;
e runin O(k- (n+ m)), n states, 11) alreadyOnls] = TRUE;
.. . 12) for (t on move[s, €])
m transitions, k input chars 13) if (lalreadyOn[t])
. . . 14) addState(t);
@ Link to An implementation: 15) }
https://github.com/DongjieHe/cptt/tree/main/ n replace 5 in 7) Wlth Oldstates

assigns/a3/NFASimulator

UNSW, Sydney Compilers 29 Jun 2023 27 /47

https://github.com/DongjieHe/cptt/tree/main/assigns/a3/NFASimulator
https://github.com/DongjieHe/cptt/tree/main/assigns/a3/NFASimulator

Step 4: DFA Simulation

@ Pseudo Code
S = S0,
¢ = nextChar();
while (¢ != eof) {
s = move(s, ¢);
¢ = nextChar();

e An Example: (a|b)*abb

if (sisin F') return "yes";
else return "no"; e test 1: "ababb”

e run in O(k), k input chars © test 2: "abaabb”

Link to An implementation:

https://github.com/DongjieHe/cptt/tree/main/assigns/a3/DFASimulator

UNSW, Sydney Compilers 29 Jun 2023 28 /47

https://github.com/DongjieHe/cptt/tree/main/assigns/a3/DFASimulator

Step 5: NFA-based Lexical Analyzer

@ Combine all patterns’ NFA into one

@ move the pointer forward ahead from lexemeBegin until no next states
@ look backwards until find a set including one or more accepting states

@ pick up one associated with the earliest pattern p;, perfom action A;

UNSW, Sydney Compilers 29 Jun 2023 29 /47

Step 5: NFA-based Lexical Analyzer

@ An example: pi: a; po: abb; p3: a*b"

-

@ combined NFA

@ Simulation: process input and compute the set of states

b a*b+a

|

@ aab, the longest prefix, is dentified to be an instance of p3

UNSW, Sydney Compilers 29 Jun 2023 30/ 47

Step 6: DFA-based Lexical Analyzer

@ convert the combined NFA for all patterns into a DFA

o for each DFA state that has one or more accepting NFA states,
choose the first pattern

= An Example: p;: a; ps: abb; p3: a*b™

start

y 0137 ‘

@ simulate DFA until no next state, look backwards until an accepting
state, perform the associated action

o An Example: input abba return abb as a lexeme

UNSW, Sydney Compilers 29 Jun 2023 31/47

Step 7: directly from Regular Expression to DFA

important state: has a non-¢ out-transition

During the subset construction, S; and Sy being identified if they

= Have the same important states

= Eijther both have accepting states or neither does <= Why need this?
The accepting state in NFA is not an important state
@ Augmented regular expression (r)# = NFA = DFA

= any state of DFA with a transition on # is an accepting state
= DFA states could only be represented by important states

Think about (r)# = DFA ?
= What are important states?
= Initial state of DFA?
= Given 51 and a € ¥, compute Sy st. Dtran[S;,a] = S

UNSW, Sydney Compilers 29 Jun 2023 32 /47

Review Step 1: Regular expression r to NFA N(r)
@ McNaughton-Yamada-Thompson algorithm

o Base
= NFA accepting € = NFA accepting a € ¥

start £ start a
—O0—© —O0—-©
@ Induction: N(s) and N(t) are NFA's for s and t

= Unionr=s|t = Concatenation r=s

O DD

= Closure r=s*

start A o
"o 4D

= r=(s), N(s) and N(r) are same
only initial states in Base for a particular symbol position are important

UNSW, Sydney Compilers 29 Jun 2023 33 /47

Lexical Analysis

Important states from the syntax tree perspective

@ Grammar for Regular Expression

#
6

re —urlur | ur

/ AN
ur —cr-cr| cr / \
\ 5

cr —sr' | sr

/
\ 4

sr—(re)|op /
op—alb|---
@ Syntax tree for (a|b)*abb# / \

= Leaves: operands, position

. 1
= Interior nodes: *, |, -

@ Each node represents a subexpression

UNSW, Sydney Compilers 29 Jun 2023 34 /47

Step 7: directly from Regular Expression to DFA

e Algorithm from (r)# to DFA

initialize Dstates to contain only the unmarked state firstpos(ng),
where ng is the root of syntax tree T" for (r)#;
while (there is an unmarked state S in Dstates) {
mark S;
for (each input symbol a) {
let U be the union of followpos(p) for all p
in S that correspond to a;
if (U is not in Dstates)
add U as an unmarked state to Dstates;
Dtran[S,a] = U;

}

e firstpos(n): positions correspond to the first symbol of any s € L(n)
o firstpos(ng) is the start state

e followpos(p): the positions follow the position p

UNSW, Sydney Compilers 29 Jun 2023 35 /47

Step 7: directly from Regular Expression to DFA

@ How to compute followpos and firstpos?
e followpos depends on firstpos and lastpos, which depend on nullable

o nullable(n): true iff € € L(n)
@ lastpos(n): positions correspond to the last symbol of any s € L(n)

@ Rules for computing nullable, firstpos,

and /astpos

Node n nullable(n) firstpos(n) lastpos(n)
A leaf with position i | false {i} {i}
B nullable(cy) or | firstpos(c1) U | lastpos(ci) U
An or-node n=c | c nullable(cz) firstpos(cz) lastpos(ca)
if(nullable(cy)) if (nullable(cz))

A cat-node n=c1 - ¢

nullable(c1) and

firstpos(c1) U

lastpos(c1) U

nullable(cz) firstpos(cz) else | lastpos(cz) else
firstpos(c1) lastpos(c2)
A start-node n = ¢ true firstpos(ci) lastpos(ci)
@ Rules for computing followpos
= n=cy-c: i€ lastpos(c1) = firstpos(ca) C followpos(i)
= n=cj: i€ lastpost(n) = firstpos(n) C followpos(i)
Compilers 29 Jun 2023

UNSW, Sydney

36 /47

Step 7: directly from Regular Expression to DFA

e An Example: (a|b)*abb#

{1,2,3} o {6}
POSITION n | followpos(n)
1 {1,2,3}
1,2,3 5 6} # {6 27
{1,2,3} o {5} {6} # {6} 9 {1.2.3}
3 {4}
{1,2,3} o {4} {5} b {5} 4 {5}
The only nullable node 5 {6}
\ {1,2,3} 5 {3} {4} b {4} 6]
(2] * 2y B a3y
‘ firstpos lastpos b
12y | (.2 b a
/\ start m a /W\ b
{1} a {1} {2V b {2} 123
@ Rules for computing followpos a ¢

= n=cy-c: i€ lastpos(c1) = firstpos(ca) C followpos(i)
= n=cj: i€ lastpost(n) = firstpos(n) C followpos(i)

UNSW, Sydney Compilers 29 Jun 2023 37 /47

Complexity Analysis: NFA-based or DFA-based Simulation?

@ NFA Simulate NFA © NFA-based Token
Identification
Regular
®
DFA Simulate DFA @ DFA-ba§?d Token
Identification

@ Given the regular expression r and the input string x

Complexity Complexity
Step 1 Oo(|r]) Step3and 5| O(r - |x])
Step2and7 | O(|r]*-s) | Step 4 and 6 O(|x])
@ Scale of DFA states s = O(r) in typical case, s = O(2I") in worst case

e An Example: L, = (a | b)*

start . a . a, b . ab

)

b

a(a|b)"!
a b . a, b @

o Lexical Analyser chooses to simulate DFA while grep simulates NFA

UNSW, Sydney 38 /47

Compilers 29 Jun 2023

Lexical Analysis

Optimization 1: minimize the number of states of a DFA

e Many DFAs recognize the same language, e.g., L((a | b)*abb)

@ DFA; and DFA; are the same up to state names
= if one can be transformed into the other by just renaming

o x distinguishes state s and state t

= if exactly one reached from s and t by following x is an accepting state.
= ¢ distinguishes any accepting state from anynonaccepting state.

o s is distinguishable from t if there is some string distinguishes them
o ldea: partitioning DFA states into groups that cannot be distinguished

UNSW, Sydney Compilers 29 Jun 2023 39 /47

Lexical Analysis

Optimization 1: minimize the number of states of a DFA

e Partitioning Algorithm: D = (5,3, 0, so, F)
= (1) I =I[FS—F
= (2) construct ITey
initially, let IIhew = II;
for (each group G of IT') {
partition G into subgroups such that two states s and ¢
are in the same subgroup if and only if for all
input symbols a, states s and ¢ have transitions on a
to states in the same group of II;

/* at worst, a state will be in a subgroup by itself */
replace G in Ihew by the set of all subgroups formed;

}
= (3) if ey = II then Hf,,a, = 1II, goto (4) else II = II,.,, goto (2)
= (4) D =(9,%,6,s, F), I, is the i-th group, Rep(Il%)
o s = Rep(Il;,,), where s, € IT;
o F = {Rep(Il fna/) | Hfma/m F# 0}, § = {Rep(Il fmal)}

UNSW, Sydney Compilers 29 Jun 2023 40 /47

Lexical Analysis

Optimization 1: minimize the number of states of a DFA

@ An Example b

- [{A’ B) C7 D}7 {EH - [{A’ B: C}’ {D}7 {E}] - [{A7 C}: {B}’ {D}7 {E}} = 1_[ﬁnal
@ State Minimization in Lexical Analyzers
= Accepting states are initially partitioned into groups by tokens

a

[{0137, 7}, {8, 58}, {247}, {68}]

start

o !
@) b [{0137}, {7}, {8, 58}, {247}, {68}]
, \I%
[{0137}, {7}, {8}, {58}, {247}, {68}]

UNSW, Sydney Compilers 29 Jun 2023 41 /47

Lexical Analysis

Optimization 2: trade time for space in DFA Simulation

@ A typical lexical analyzer uses < 1M memory/storage
= two-dimensional table/array: (state id, input char)
@ Compilers appearing in very small devices

= state — [(symbol, next state), - -], less efficient but save space
= A more subtle data structure, both time and memory efficient

default base next check

taking advantage of the

similarities among states
s q a

int nextState(s,a) {
if (check[base[s] + a] == s) return nezt[base[s] + a;
else return nestState(default[s], a);

UNSW, Sydney Compilers 29 Jun 2023

4247

Lexical Analysis

Automation: Lex/Flex

o Workflow of Lex/Flex (https://github.com/westes/flex)

| lexeme |
Lex source program L lexemeBegin orward
lex.1 co:;iler lex.yy.c 8! \ gf
lex.yy.c c a.out Automaton
compiler simulator
Input stream a.out] of tokens
Lex Lex Transition
program compiler table declarations
N
translation rules
@ Structure of Lex Programs %h
@ A translation rule: Pattern { Action } auxiliary functions

@ declarations, actions, and auxiliary functions should in certain
language, e.g., C/C++
Compilers 29 Jun 2023 43 /47

https://github.com/westes/flex

Lexical Analysis

Automation: Lex/Flex

e An Example (see right figure)

o prefer a longer prefix
o prefer the pattern listed first

@ An Implementation nttps://github.

com/DongjieHe/cptt/tree/main/assigns/a3/flex

UNSW, Sydney

Compilers

ttdefine LT O

delim [\t\n]

ws {delim}+

letter [A-Za-z]

digit [0-9]

id {letter}({letter}|{digit})*

number {digit}+(\.{digit}+)?(E[+-]?{digit}+)?
%%

{ws} { }

if {return(IF);}

then {return(THEN);}

else {return(ELSE);}

{id} {yylval = (int) installlD(); return(ID);}
{number} {yylval = (int) installNum(); return(NUMBER);}
"<" {yylval = LT; return(RELOP);}
"<="{yylval = LE; return(RELOP);}
"="{yylval = EQ; return(RELOP);}

"<>" {yylval = NE; return(RELOP);}

">" {yylval = GT; return(RELOP);}
">="{yylval = GE; return(RELOP);}

%%

intinstalliD() { ... }

int installNum() { ... }

29 Jun 2023 44 /47

https://github.com/DongjieHe/cptt/tree/main/assigns/a3/flex
https://github.com/DongjieHe/cptt/tree/main/assigns/a3/flex

Summary

@ Review regular expression, DFA, NFA
@ Implement a transition-diagram-based lexical analyzer

@ Learn how to transform patterns into Automata

. @ NFA-based Token
St it R Identification

. @ DFA-based Token
Sz Pl Identification

@ Two optimization techniques

@ Learn how to use Lex/Flex

UNSW, Sydney Compilers 29 Jun 2023

45 /47

End-of-Chapter

Compilers: Principles, Techniques, and Tools
Chapter 3 Lexical Analysis

Dongjie He
University of New South Wales
https://dongjiehe.github.io/teaching/compiler/

29 Jun 2023

THE UNIVERSITY OF
NEW SOUTH WALES

({E

UNSW, Sydney Compilers 29 Jun 2023 46 /47

https://dongjiehe.github.io/teaching/compiler/

Lab 3: Get Familiar with the Principle behind Lex

@ Read the following implementations.

@ IMP 1: https://github.com/DongjieHe/cptt/tree/main/assigns/a3/TDBLexer
IMP 2: https://github.com/DongjieHe/cptt/tree/main/assigns/a3/RE2NFA

IMP 3: https://github.com/DongjieHe/cptt/tree/main/assigns/a3/NFA2DFA

IMP 4: https://github.com/DongjieHe/cptt/tree/main/assigns/a3/NFASimulator

IMP 5: https://github.com/DongjieHe/cptt/tree/main/assigns/a3/DFASimulator

IMP 6: https://github.com/DongjieHe/cptt/tree/main/assigns/a3/flex

o Modify IMP 6 by

= adding keyword while,
= changing operators to be the C operators of that kind,
= allowing underscore (_) as an additional letter

e Implement Step 7, i.e., transform regular expression to DFA (Hint,
refer to IMP 2)

@ Implement Optimization 1, i.e., minimize DFA (Optional)
o refer to https://dl.acm.org/doi/10.5555/891883

UNSW, Sydney Compilers 29 Jun 2023 47 /47

https://github.com/DongjieHe/cptt/tree/main/assigns/a3/TDBLexer
https://github.com/DongjieHe/cptt/tree/main/assigns/a3/RE2NFA
https://github.com/DongjieHe/cptt/tree/main/assigns/a3/NFA2DFA
https://github.com/DongjieHe/cptt/tree/main/assigns/a3/NFASimulator
https://github.com/DongjieHe/cptt/tree/main/assigns/a3/DFASimulator
https://github.com/DongjieHe/cptt/tree/main/assigns/a3/flex
https://dl.acm.org/doi/10.5555/891883

	Role of Lexical Analyzer
	Specication of Tokens
	Lexical Analysis
	Summary
	End-of-Chapter

