
Compilers: Principles, Techniques, and Tools
Chapter 3 Lexical Analysis

Dongjie He
University of New South Wales

https://dongjiehe.github.io/teaching/compiler/

29 Jun 2023

UNSW, Sydney Compilers 29 Jun 2023 1 / 47

https://dongjiehe.github.io/teaching/compiler/

Role of Lexical Analyzer

Lexical Analyzer
A lexical analyzer groups multicharacter constructs as tokens

scanning: scan inputs, delete comments, compact whitespaces,...
lexical analysis: produce tokens from the output of scanner

Interactions between the lexical analyzer and the parser

UNSW, Sydney Compilers 29 Jun 2023 2 / 47

Role of Lexical Analyzer

Lexical Analyzer

Distinct Terms
token: 〈token name, optional attribute〉
lexeme: a token instance formed by a sequence of characters
pattern: the common form that the lexemes of a token may take

Some common tokens in programming languages

Attributes for Tokens
Information about the lexeme, e.g., lexeme, type, location, ...
a pointer to the symbole table entry

UNSW, Sydney Compilers 29 Jun 2023 3 / 47

Specication of Tokens

Review: Strings and Languages
Tokens ⇐ lexeme patterns ⇐ regular expression
alphabet: any finite set of symbols, e.g., {0, 1}, ASCII, Unicode
string: a finite sequence of symbols in alphabet

synonyms: sentence, word
string length: |s|
empty string: ϵ
prefix/suffix/substring/subsequence

language: any countable set of strings over some fixed alphabet
empty language: ∅ = {ϵ}
well-formed C programs, English sentences, ...

Operations on Languages

UNSW, Sydney Compilers 29 Jun 2023 4 / 47

Specication of Tokens

Review: Regular Expression (RE)
Inductive definition:

BASIS 1: ϵ is a RE, L(ϵ) = {ϵ}
BASIS 2: a ∈ Σ is a RE, L(a) = {a}
inductive hypothesis: r (s) is a RE denoting L(r) (L(s))
Induction 1: (r)|(s) is a RE denoting L(r) ∪ L(s)
Induction 2: (r)(s) is a RE denoting L(r)L(s)
Induction 3: (r)∗ is a RE denoting (L(r))∗
Induction 4: (r) is a RE denoting L(r)

avoid unnecessary parentheses by adopting conventions:
unary operator *, concatenation and | are all left associative
precedence: unary operator * > concatenation > |
e.g., (a)|((b)∗(c)) = a|b∗c

An example: Σ = {a, b}
a|b: {a, b}
a∗: {ϵ, a, aa, aaa, . . . }
(a|b)∗ = (a∗b∗)∗: {ϵ, a, b, aa, ab, ba, bb, aaa, . . . }
a|a∗b: {a, b, ab, aab, aaab, . . . }

UNSW, Sydney Compilers 29 Jun 2023 5 / 47

Specication of Tokens

Review: Regular Expression (RE)
r and s are equivalent, r = s, if they denote the same language

e.g., (a|b) = (b|a)
Algebraic laws for RE

UNSW, Sydney Compilers 29 Jun 2023 6 / 47

Specication of Tokens

Review: Regular Definitions
reason: notational convenience
a sequence of definitions of the form: d1 → r1, . . . , dn → rn

di /∈ Σ ∪ {d1, . . . , di−1} is a fresh symbol
ri is a RE over Σ ∪ {d1, d2, . . . , di−1} (avoid recursive definitions)

Example 1: C identifiers
letter_ → A | B | · · · | Z | a | b | · · · | z | _

digit → 0 | 1 | · · · | 9
id → letter_(letter_ | digit)∗

Example 2: Unsigned numbers
digit → 0 | 1 | · · · | 9
digits → digit digit∗
optFraction → . digits | ϵ
optExponent → (E (+ | − | ϵ) digits) | ϵ
number → digits optFraction optExponent

UNSW, Sydney Compilers 29 Jun 2023 7 / 47

Specication of Tokens

Review: Extensions of Regular Expressions (Lex)

UNSW, Sydney Compilers 29 Jun 2023 8 / 47

Specication of Tokens

Review: Extensions of Regular Expressions (others)

Filename expressions used by the shell command sh

Shorthands: [a1 − a2]
[a − z] = a | b | · · · | z
[0− 9] = 1 | 2 | · · · | 9

Examples: identifiers and numbers
• id → letter_ (letter_ | digit)∗
• digit → [0− 9]
• letter_ → [A − Za − z_]
• digits → digit+
• number → digits (. digits)? (E[+−]? digits)?
UNSW, Sydney Compilers 29 Jun 2023 9 / 47

Lexical Analysis

Lexical Analysis

A brain route map

−→ source program −→ lexemes −→ tokens

−→ regular expressions −→ transition diagrams

• A source program consists of a sequence of lexemes
• A lexeme is an instance any token
• A token follows any regular expression pattern
• identify the words of a regular expression by its transition diagram

UNSW, Sydney Compilers 29 Jun 2023 10 / 47

Lexical Analysis

Lexical Analysis: a running example

Grammar
stmt → if expr then stmt | ϵ

| if expr then stmt else stmt
expr → term relop term | term
term → id | number

Tokens (Terminals): if, then, else, relop, id, and number
Patterns: ws → (blank | tab | newline)+

digit → [0− 9] digits → digit+ letter → [A − Za − z]
number → digits (. digits)? (E[+−]? digits)?

id → letter (letter | digit)∗
if → if then → then else → else

relop →< | > | <= | >= | =| <>

UNSW, Sydney Compilers 29 Jun 2023 11 / 47

Lexical Analysis

Lexical Analysis: a running example

Transition Diagrams: relop

• start (initial) state, accepting (final) state, * retract character pointer

UNSW, Sydney Compilers 29 Jun 2023 12 / 47

Lexical Analysis

Lexical Analysis: a running example

Transition diagram for identifiers and keywords

Transition diagram for unsigned numbers

UNSW, Sydney Compilers 29 Jun 2023 13 / 47

Lexical Analysis

Lexical Analysis: a running example
Transition diagram for whitespace

Simulates the transition diagrams and identifies tokens
• try one each time or try all in parallel
• combine all into one, and simulate the one

UNSW, Sydney Compilers 29 Jun 2023 14 / 47

Lexical Analysis

Lexical Analysis: a running example
Transition diagram Simulation

• nextChar(), fail(), and retract()

UNSW, Sydney Compilers 29 Jun 2023 15 / 47

Lexical Analysis

Scanning

How to implement nextChar()?
• load one character each time?
• efficient? retract()?

Buffer Pairs

• load one buffer each time
• two buffers are alternately reloaded
• lexemeBegin: mark the beginning of the current lexeme
• forward: point to a position storing the next scanning character
• eof: sentinel character marking the end of a buffer or the entire input

UNSW, Sydney Compilers 29 Jun 2023 16 / 47

Lexical Analysis

Implementation of the running example

An implementation of the Transition-Diagram-Based Lexical Analyzer
https://github.com/DongjieHe/cptt/tree/main/assigns/a3/TDBLexer

Play a Demo!

UNSW, Sydney Compilers 29 Jun 2023 17 / 47

https://github.com/DongjieHe/cptt/tree/main/assigns/a3/TDBLexer

Lexical Analysis

A problem remain unsolved

How to transform regular expression into transition diagram?

relop → <

| >
| <=

| >=

| =
| <>

How?−−−→

UNSW, Sydney Compilers 29 Jun 2023 18 / 47

Lexical Analysis

An overview of the solution

How to transform regular expression into transition diagram?

Regular
Expression

NFA

DFA

Simulate NFA

Simulate DFA

NFA-based Token
Identification

DFA-based Token
Identification

1

2

3

4

5

6

7

We first review Finite Automata: recognizer, say “yes” or “no”
• Nondeterministic Finite Automata (NFA):

may have ϵ edges
no restrictions on edge labels

• Deterministic Finite Automata (DFA):
no ϵ edge
no two edges out of any state share the same label

UNSW, Sydney Compilers 29 Jun 2023 19 / 47

Lexical Analysis

Review: Nondeterministic Finite Automata

NFA = 〈S,Σ ∪ {ϵ}, δ, s0,F〉
• S : finite states; s0: start state; F: accepting states
• Σ: input alphabet; δ: transition functions

An example: (a|b)∗abb
• transition graph

• Transition Table

UNSW, Sydney Compilers 29 Jun 2023 20 / 47

Lexical Analysis

Review: Deterministic Finite Automata

DFA = 〈S,Σ, δ, s0,F〉 is a special NFA
• no moves on ϵ
• for each s ∈ S and a ∈ Σ, only one edge labeled a out of s

An example: (a|b)∗abb
• transition graph for DFA

L(A): the language accepted by automaton A.

UNSW, Sydney Compilers 29 Jun 2023 21 / 47

Lexical Analysis

Step 1: Regular expression r to NFA N(r)

McNaughton-Yamada-Thompson algorithm
Base
• NFA accepting ϵ • NFA accepting a ∈ Σ

Induction: N(s) and N(t) are NFA’s for s and t
• Union r = s | t

• r = (s), N(s) and N(r) are same

• Concatenation r = st

• Closure r = s∗

UNSW, Sydney Compilers 29 Jun 2023 22 / 47

Lexical Analysis

Step 1: Regular expression r to NFA N(r)

An example: (a|b)∗abb

• (a|b)

• abb • (a|b)∗

Properties of the construced NFA N(r)
• at most twice as many states as operators and operands in r
• one start state with no incoming transition
• one accepting state with no outgoing transition
• one outgoing on a ∈ Σ or two outgoing on ϵ for other states
UNSW, Sydney Compilers 29 Jun 2023 23 / 47

Lexical Analysis

Step 1: Regular expression r to NFA N(r)
A syntax-directed implementation in O(|r|)
Grammar for Regular Expression

re →ur|ur | ur
ur →cr · cr | cr
cr →sr∗ | sr
sr →(re) | op

op →a | b | · · ·

A link to the implementation
https://github.com/DongjieHe/cptt/tree/main/assigns/a3/RE2NFA

An example: aa∗|bb∗

UNSW, Sydney Compilers 29 Jun 2023 24 / 47

https://github.com/DongjieHe/cptt/tree/main/assigns/a3/RE2NFA

Lexical Analysis

Step 2: NFA N to DFA D
Subset Construction Algorithm

UNSW, Sydney Compilers 29 Jun 2023 25 / 47

Lexical Analysis

Step 2: NFA N to DFA D

An Example: (a|b)∗abb

see an implementation: https://github.com/DongjieHe/cptt/tree/main/assigns/a3/NFA2DFA

UNSW, Sydney Compilers 29 Jun 2023 26 / 47

DFA

NFA

Transition Table

https://github.com/DongjieHe/cptt/tree/main/assigns/a3/NFA2DFA

Lexical Analysis

Step 3: NFA Simulation
Pseudo Code

An Efficient Implementation
run in O(k · (n + m)), n states,
m transitions, k input chars
Link to An implementation:
https://github.com/DongjieHe/cptt/tree/main/

assigns/a3/NFASimulator

• 1) : oldStates = ϵ-closure(s0)
• replace 4) with following code:

• replace S in 7) with oldStates

UNSW, Sydney Compilers 29 Jun 2023 27 / 47

https://github.com/DongjieHe/cptt/tree/main/assigns/a3/NFASimulator
https://github.com/DongjieHe/cptt/tree/main/assigns/a3/NFASimulator

Lexical Analysis

Step 4: DFA Simulation

Pseudo Code

run in O(k), k input chars

An Example: (a|b)∗abb

test 1: ”ababb”
test 2: ”abaabb”

Link to An implementation:
https://github.com/DongjieHe/cptt/tree/main/assigns/a3/DFASimulator

UNSW, Sydney Compilers 29 Jun 2023 28 / 47

https://github.com/DongjieHe/cptt/tree/main/assigns/a3/DFASimulator

Lexical Analysis

Step 5: NFA-based Lexical Analyzer

Combine all patterns’ NFA into one

move the pointer forward ahead from lexemeBegin until no next states
look backwards until find a set including one or more accepting states
pick up one associated with the earliest pattern pi, perfom action Ai

UNSW, Sydney Compilers 29 Jun 2023 29 / 47

Lexical Analysis

Step 5: NFA-based Lexical Analyzer
An example: p1: a; p2: abb; p3: a∗b+
combined NFA

Simulation: process input and compute the set of states

aab, the longest prefix, is dentified to be an instance of p3
UNSW, Sydney Compilers 29 Jun 2023 30 / 47

Lexical Analysis

Step 6: DFA-based Lexical Analyzer

convert the combined NFA for all patterns into a DFA
for each DFA state that has one or more accepting NFA states,
choose the first pattern

• An Example: p1: a; p2: abb; p3: a∗b+

=⇒

simulate DFA until no next state, look backwards until an accepting
state, perform the associated action

An Example: input abba return abb as a lexeme
UNSW, Sydney Compilers 29 Jun 2023 31 / 47

Lexical Analysis

Step 7: directly from Regular Expression to DFA

important state: has a non-ϵ out-transition
During the subset construction, S1 and S2 being identified if they

• Have the same important states
• Either both have accepting states or neither does ⇐ Why need this?

The accepting state in NFA is not an important state

Augmented regular expression (r)# ⇒ NFA ⇒ DFA
• any state of DFA with a transition on # is an accepting state
• DFA states could only be represented by important states

Think about (r)# =⇒ DFA ?
• What are important states?
• Initial state of DFA?
• Given S1 and a ∈ Σ, compute S2 st. Dtran[S1, a] = S2

UNSW, Sydney Compilers 29 Jun 2023 32 / 47

Lexical Analysis

Review Step 1: Regular expression r to NFA N(r)
McNaughton-Yamada-Thompson algorithm
Base
• NFA accepting ϵ • NFA accepting a ∈ Σ

Induction: N(s) and N(t) are NFA’s for s and t
• Union r = s | t

• r = (s), N(s) and N(r) are same

• Concatenation r = st

• Closure r = s∗

only initial states in Base for a particular symbol position are important
UNSW, Sydney Compilers 29 Jun 2023 33 / 47

Lexical Analysis

Important states from the syntax tree perspective

Grammar for Regular Expression

re →ur|ur | ur
ur →cr · cr | cr
cr →sr∗ | sr
sr →(re) | op

op →a | b | · · ·

Syntax tree for (a|b)∗abb#
• Leaves: operands, position
• Interior nodes: *, |, ·

Each node represents a subexpression

UNSW, Sydney Compilers 29 Jun 2023 34 / 47

Lexical Analysis

Step 7: directly from Regular Expression to DFA

Algorithm from (r)# to DFA

firstpos(n): positions correspond to the first symbol of any s ∈ L(n)
firstpos(n0) is the start state

followpos(p): the positions follow the position p
UNSW, Sydney Compilers 29 Jun 2023 35 / 47

Lexical Analysis

Step 7: directly from Regular Expression to DFA

How to compute followpos and firstpos?
followpos depends on firstpos and lastpos, which depend on nullable

nullable(n): true iff ϵ ∈ L(n)
lastpos(n): positions correspond to the last symbol of any s ∈ L(n)
Rules for computing nullable, firstpos, and lastpos

Node n nullable(n) firstpos(n) lastpos(n)
A leaf with position i false {i} {i}

An or-node n = c1 | c2 nullable(c1) or
nullable(c2)

firstpos(c1) ∪
firstpos(c2)

lastpos(c1) ∪
lastpos(c2)

A cat-node n = c1 · c2 nullable(c1) and
nullable(c2)

if(nullable(c1))
firstpos(c1) ∪
firstpos(c2) else
firstpos(c1)

if (nullable(c2))
lastpos(c1) ∪
lastpos(c2) else
lastpos(c2)

A start-node n = c∗1 true firstpos(c1) lastpos(c1)

Rules for computing followpos
• n = c1 · c2: i ∈ lastpos(c1) =⇒ firstpos(c2) ⊆ followpos(i)
• n = c∗1: i ∈ lastpost(n) =⇒ firstpos(n) ⊆ followpos(i)

UNSW, Sydney Compilers 29 Jun 2023 36 / 47

Lexical Analysis

Step 7: directly from Regular Expression to DFA

An Example: (a|b)∗abb#

Rules for computing followpos
• n = c1 · c2: i ∈ lastpos(c1) =⇒ firstpos(c2) ⊆ followpos(i)
• n = c∗1: i ∈ lastpost(n) =⇒ firstpos(n) ⊆ followpos(i)

UNSW, Sydney Compilers 29 Jun 2023 37 / 47

Lexical Analysis

Complexity Analysis: NFA-based or DFA-based Simulation?

Regular
Expression

NFA

DFA

Simulate NFA

Simulate DFA

NFA-based Token
Identification

DFA-based Token
Identification

1

2

3

4

5

6

7

Given the regular expression r and the input string x
Complexity Complexity

Step 1 O(|r|) Step 3 and 5 O(|r| · |x|)
Step 2 and 7 O(|r|2 · s) Step 4 and 6 O(|x|)

Scale of DFA states s = O(r) in typical case, s = O(2|r|) in worst case
An Example: Ln = (a | b)∗a(a | b)n−1

Lexical Analyser chooses to simulate DFA while grep simulates NFA
UNSW, Sydney Compilers 29 Jun 2023 38 / 47

Lexical Analysis

Optimization 1: minimize the number of states of a DFA

Many DFAs recognize the same language, e.g., L((a | b)∗abb)

DFA1 and DFA2 are the same up to state names
• if one can be transformed into the other by just renaming

x distinguishes state s and state t
• if exactly one reached from s and t by following x is an accepting state.
• ϵ distinguishes any accepting state from anynonaccepting state.

s is distinguishable from t if there is some string distinguishes them
Idea: partitioning DFA states into groups that cannot be distinguished

UNSW, Sydney Compilers 29 Jun 2023 39 / 47

Lexical Analysis

Optimization 1: minimize the number of states of a DFA

Partitioning Algorithm: D = 〈S,Σ, δ, s0,F〉
• (1) Π = [F, S − F]
• (2) construct Πnew

• (3) if Πnew = Π then Πfinal = Π, goto (4) else Π = Πnew, goto (2)
• (4) D′ = 〈S′,Σ, δ, s′0,F′〉, Πi

final is the i-th group, Rep(Πi
final)

◦ s′0 = Rep(Πi
final), where s0 ∈ Πi

final
◦ F′ = {Rep(Πi

final) | Πi
final ∩ F 6= ∅}, S′ = {Rep(Πi

final)}

UNSW, Sydney Compilers 29 Jun 2023 40 / 47

Lexical Analysis

Optimization 1: minimize the number of states of a DFA

An Example

• [{A,B,C,D}, {E}] =⇒ [{A,B,C}, {D}, {E}] =⇒ [{A,C}, {B}, {D}, {E}] = Πfinal

State Minimization in Lexical Analyzers
• Accepting states are initially partitioned into groups by tokens

UNSW, Sydney Compilers 29 Jun 2023 41 / 47

[{0137, 7}, {8, 58}, {247}, {68}]
⇓

[{0137}, {7}, {8, 58}, {247}, {68}]
⇓

[{0137}, {7}, {8}, {58}, {247}, {68}]

Lexical Analysis

Optimization 2: trade time for space in DFA Simulation

A typical lexical analyzer uses < 1M memory/storage
• two-dimensional table/array: 〈state id, input char〉

Compilers appearing in very small devices
• state 7→ [〈symbol, next state〉, · · ·], less efficient but save space
• A more subtle data structure, both time and memory efficient

UNSW, Sydney Compilers 29 Jun 2023 42 / 47

taking advantage of the
similarities among states

Lexical Analysis

Automation: Lex/Flex
Workflow of Lex/Flex (https://github.com/westes/flex)

Structure of Lex Programs
A translation rule: Pattern { Action }
declarations, actions, and auxiliary functions should in certain
language, e.g., C/C++

UNSW, Sydney Compilers 29 Jun 2023 43 / 47

https://github.com/westes/flex

Lexical Analysis

Automation: Lex/Flex

An Example (see right figure)
prefer a longer prefix
prefer the pattern listed first

An Implementation https://github.

com/DongjieHe/cptt/tree/main/assigns/a3/flex

/* definitions of manifest constants LT, LE, EQ, NE, GT, GE,
IF, THEN, ELSE, ID, NUMBER, RELOP */
#define LT 0
...
/* regular definitions */
delim [\t\n]
ws {delim}+
letter [A-Za-z]
digit [0-9]
id {letter}({letter}|{digit})*
number {digit}+(\.{digit}+)?(E[+-]?{digit}+)?
%%
{ws} {/* no action and no return */}
if {return(IF);}
then {return(THEN);}
else {return(ELSE);}
{id} {yylval = (int) installID(); return(ID);}
{number} {yylval = (int) installNum(); return(NUMBER);}
"<" {yylval = LT; return(RELOP);}
"<=" {yylval = LE; return(RELOP);}
"=" {yylval = EQ; return(RELOP);}
"<>" {yylval = NE; return(RELOP);}
">" {yylval = GT; return(RELOP);}
">=" {yylval = GE; return(RELOP);}
%%
int installID() { ... }
int installNum() { ... }

UNSW, Sydney Compilers 29 Jun 2023 44 / 47

https://github.com/DongjieHe/cptt/tree/main/assigns/a3/flex
https://github.com/DongjieHe/cptt/tree/main/assigns/a3/flex

Summary

Summary

Review regular expression, DFA, NFA
Implement a transition-diagram-based lexical analyzer
Learn how to transform patterns into Automata

Regular
Expression

NFA

DFA

Simulate NFA

Simulate DFA

NFA-based Token
Identification

DFA-based Token
Identification

1

2

3

4

5

6

7

Two optimization techniques
Learn how to use Lex/Flex

UNSW, Sydney Compilers 29 Jun 2023 45 / 47

End-of-Chapter

Compilers: Principles, Techniques, and Tools
Chapter 3 Lexical Analysis

Dongjie He
University of New South Wales

https://dongjiehe.github.io/teaching/compiler/

29 Jun 2023

UNSW, Sydney Compilers 29 Jun 2023 46 / 47

https://dongjiehe.github.io/teaching/compiler/

End-of-Chapter

Lab 3: Get Familiar with the Principle behind Lex

Read the following implementations.
IMP 1: https://github.com/DongjieHe/cptt/tree/main/assigns/a3/TDBLexer

IMP 2: https://github.com/DongjieHe/cptt/tree/main/assigns/a3/RE2NFA

IMP 3: https://github.com/DongjieHe/cptt/tree/main/assigns/a3/NFA2DFA

IMP 4: https://github.com/DongjieHe/cptt/tree/main/assigns/a3/NFASimulator

IMP 5: https://github.com/DongjieHe/cptt/tree/main/assigns/a3/DFASimulator

IMP 6: https://github.com/DongjieHe/cptt/tree/main/assigns/a3/flex

Modify IMP 6 by
• adding keyword while,
• changing operators to be the C operators of that kind,
• allowing underscore (_) as an additional letter

Implement Step 7, i.e., transform regular expression to DFA (Hint,
refer to IMP 2)
Implement Optimization 1, i.e., minimize DFA (Optional)

refer to https://dl.acm.org/doi/10.5555/891883

UNSW, Sydney Compilers 29 Jun 2023 47 / 47

https://github.com/DongjieHe/cptt/tree/main/assigns/a3/TDBLexer
https://github.com/DongjieHe/cptt/tree/main/assigns/a3/RE2NFA
https://github.com/DongjieHe/cptt/tree/main/assigns/a3/NFA2DFA
https://github.com/DongjieHe/cptt/tree/main/assigns/a3/NFASimulator
https://github.com/DongjieHe/cptt/tree/main/assigns/a3/DFASimulator
https://github.com/DongjieHe/cptt/tree/main/assigns/a3/flex
https://dl.acm.org/doi/10.5555/891883

	Role of Lexical Analyzer
	Specication of Tokens
	Lexical Analysis
	Summary
	End-of-Chapter

