Compilers: Principles, Techniques, and Tools
Chapter 1 Introduction

Dongjie He
University of New South Wales
https://dongjiehe.github.io/teaching/compiler/

29 Jun 2023

UNSW, Sydney Compilers 29 Jun 2023 1/21


https://dongjiehe.github.io/teaching/compiler/

@ Programming Languages
@ Evolution
@ Basics

© Language Processors
@ Compilers, Interpreters, and Other Language Processors
@ A Language-Processing System

© Compiler Structure
@ Lexical Analysis
@ Syntax Analysis
@ Semantic Analysis
@ Intermediate Code Generation and Optimization
@ Code Generation
@ Symbol-Table Management

@ Applications of Compiler Technology

UNSW, Sydney Compilers 29 Jun 2023 2/21



Programming Languages Evolution

Evolution of Programming Languages

@ Machine Languages: 1940's, sequences of 0's and 1's

e programming was slow, tedious, and error-prone.
e programs were hard to understand and modify.

o Assembly Languages: early 1950's

e mnemonics of machine instructions
e macros: parameterized shorthands for frequently used instructions

o High-Level Languages: 1955 to present

e programming is easier, more natural, and more robust.
General Purpose Languages: Fortran, Cobol, Lisp, C, C++, Java, ...
Domain-Specific Languages: NOMAD, SQL, Postscript, ...
Logic- and constraint-based Languages: Prolog, OPS5, ...
Other Classification: 0
o Imperative languages: C, C++, Java, Rust, ...
o Functional languages: ML, Haskell, OCaml, ...
o Constraint logic languages: Prolog, Datalog, ...

o Von Neumann language/Object-oriented language/Scripting language

UNSW, Sydney Compilers 29 Jun 2023 3/21



Programming Languages Basics

Programming Language Basics |

@ A language policy allows the compiler to decide an issue.

e Static policy: the issue is decided at compile time.
e Dynamic policy: the issue is decided at run time.

e e.g., “static int x;", “static” in Java enables the compiler to

determine the location of ‘x’ in memory.
@ The scope of a declaration of x is the region in which uses of x refer

to this declaration.

o Static scope: can be determined by looking only at the program.

o Dynamic scope: determined by the program runs.

inti defvarx 1
void f defun foo () (message "The value of 'x' in foo: %s" x
inti defun bar
i=3 let ((x 2
foo
x=i+1 bar
A C/Java Program An Emacs-Lisp Program
Compilers 29 Jun 2023

4/21



Programming Languages Basics

Programming Language Basics |l

@ A block is a grouping of declarations and statements.
o C family languages use braces { and } to delimit a block.
o Algol and Pascal use begin and end.

@ Syntax of blocks in C

stmt := block | ---  block := declarations stmts

@ Block structure: blocks nested inside each other
@ Static-scope of a declaration D (which belongs to block B) of name x
e B is the most closely nested block containing D
o the scope of D is all of B, except for any blocks B’ nested to any depth
within B, in which x is redeclared.

main() {

int a = 1; ,,‘*
int b = 1;
C N DECLARATION | SCOPE
int b = 2; B, -
U N int a = 1; B — B3
=3 By .
, {cout << a << b; J int b = 1; By - By
< i = 2. y
T T }nt b 2; By — By
) cout << a << b; int a = 3; B3
; {cout << a << b; ) int b = 4, B4
(cout << a << b;

}

UNSW, Sydney Compilers 29 Jun 2023 5/21



Programming Languages Basics

Programming Language Basics IlI

@ Member Scope in Classes/Structures

o the scope of a member declaration x in a class C extends to any
subclass C, except if C' has a local declaration of the same name x

@ Explicit Access Control
o public/protected/private
@ Parameter Passing Mechanisms
o Actual Parameters/Formal Parameters
o eg., “A id(A p) {return p;} r = id(a); "

#include <stdio.h> #include <stdio.h> procedure swap(a,b Algol-60
void incrementByValue(int num void incrementByReference(int™ num integera, b
num = num + 1 num num) + 1 begin
printf("Inside function: %d\n", num printf("Inside function: %d\n", “num integer tmp
tmp:=a;a:=b;b:=tmp
int main int main end
intx=5 intx=5 integeri, x.
printf("Before function call: %d\n", x printf("Before function call: %d\n", x integer array arr[0:9
incrementByValue(x incrementByReference(&:x X =2
printf("After function call: %d\n", x printf("After function call: %d\n", x fori:=0step 1 until 9 doarrli] :=10-i
return O, return O, swap(x, arr(x
print(x); printArray(arr,

(a) Call by Value (b) Call by Reference (c) Call by Name

UNSW, Sydney Compilers 29 Jun 2023 6/21



Programming Languages Basics

Programming Language Basics IlI

@ Environments and States
e environment: a mapping from names to locations
o state: a mapping from locations to their values

environment state

P N

names locations values
(variables)

e eg, “x = y + 1" changes the value in the location denoted by name x
o Aliasing

e x and y are aliases of each other if they can refer to the same location

#include <stdio.h>
int main() {
intx[3] ={1, 2, 3};
int*y =x;
yl1]=4;
printf("%d", x[1]);
return O;

}
UNSW, Sydney Compilers 29 Jun 2023 7/21




Language Processors Compilers, Interpreters, and Other Language Processors

Compilers and Interpreters

o Compilers

source program

Compiler

o Interpreters

source program
e —

input —

o Hybrid Compilers

—

Translator

intermediate program

input ——

Interpreter

target program

— output

source program

Virtual Machine

—> output

UNSW, Sydney Compilers

29 Jun 2023

8/21



Language Processors Compilers, Interpreters, and Other Language Processors

Other Language Processors

e Preprocessors: C Preprocessor, “/usr/bin/cpp”
e modify source code before compilation
o allow to write code in a more convenient and expressive manner
e macro expansion, conditional compilation, file inclusion, constant or
variable substitution
o Assemblers
e translate assembly language code into relocatable machine code
e specific to the target architecture or processor

Linkers: GNU Linker, “/usr/bin/Id"

e combine object files to create an executable program or a library
e static linking/dynamic linking

Loaders: put all executable object files into memory for execution

Debuggers: GNU Debugger, “/usr/bin/gdb"”

o Breakpoints, Stepping, Variable or Memory inspection, Call stack
analysis, ...

UNSW, Sydney Compilers 29 Jun 2023

9/21



(IENT-ATEV-CMPIE A Language-Processing System

A Language-Processing System

source program

Preprocessor

modified source program

Compiler

target assembly program

Assembler

relocatable machine code

Linker/Loader

target machine code

UNSW, Sydney Compilers

library files
relocatable object files

29 Jun 2023

10/21



Compiler Structure

Phases of a Compiler

character stream

‘ Lexical Analyzer

intermediate representation

l

T
token stream

)

Machine-Independent
Code Optimizer

‘ Syntax Analyzer

T
intermediate representation

L

T
syntax tree
')

Code Generator ‘

‘ Semantic Analyzer

T
syntax tree
v

target-machine code

‘ Intermediate Code Generator ‘

Machine-Dependent
Code Optimizer
I

l

target-machine code

!

Symbol Table

UNSW, Sydney

Compilers

29 Jun 2023

11/21



Compiler Structure Lexical Analysis

Lexical Analysis

e lexical analysis/scanning
e grouping characters into meaningful lexemes sequences
o lexeme = (token-name, attribute-value)
e token-name: abstract symbol used during syntax analysis
e attribute-value: stored in symbol-table and used in semantic analysis
and code generation

@ An example

position = initial + rate * 60

|

l Lexical Analyzer ‘

(id,1) (=) (id,2) (+} (id,3) (x) (60)

UNSW, Sydney Compilers 29 Jun 2023 12/21



Syntax Analysi
Syntax Analysis

@ syntax: describes the proper form of programs
e syntax analysis/parsing

e transform tokens into an Intermediate Representation, e.g., syntax tree

o IR depicts the grammatical structure of the token stream

@ An example
(id,1) (=) (id,2) (+) (id.3) () (60}

‘ Syntax Analyzer |

-1
T~
(id, 1y +
G2y e
(id, 37 60

UNSW, Sydney Compilers 29 Jun 2023

13 /21



[@INTEES T Semantic Analysis

Semantic Analysis

@ semantics: define what programs mean

o semantic analysis
e check semantic consistency with the language definition
e gather and save type information in syntax tree or symbol table
o type checking and type conversions (coercions)

@ An example

Gd, 1y o+ -
1 | position| --- (id, 2 o
2 [ initial S (id, 3} 60
3 [ rate e ¥
‘ Semantic Analyzer
- 1
- T ““-\_
SYMBOL TABLE {id, 1} i 2)/+ —
id, *
(id,3y"  inttofloat
|
60

UNSW, Sydney Compilers 29 Jun 2023 14 /21



Compiler Structure Intermediate Code Generation and Optimization

Intermediate Code Generation

o generate low-level /machine-like intermediate representation
@ a program for an abstract machine
@ easy to produce and easy to translate into target machine
@ An example: three-address code
Gd,1y” T
Gd2y” e
(id. 3} inttofloat
|
60
l Intermediate Code Generator
tl = inttofloat(60)
£2 = id3 * 1
£3 = id2 + 2
idl = €3

UNSW, Sydney Compilers 29 Jun 2023 15/21



Compiler Structure Intermediate Code Generation and Optimization

Code Optimization

@ machine-independent/machine-dependent code-optimization

@ objectives: produce better target code

faster running time

e shorter target code

e consuming less power
o

@ An example

tl = inttofloat (60)
t2 = id3 * t1
t3 = id2 + t2
idl = t3
¥

Code Optimizer

UNSW, Sydney

tl = id3 * 60.0
idl = id2 + t1

Compilers 29 Jun 2023

16 /21



Compiler Structure Code Generation

Code Generation

@ map an intermediate representation into target language
e instruction selection
o register allocation

tl = id3 * 60.0
idl = id2 + t1

Code Generator

LDF R2, id3

MULF R2, R2, #60.0
LDF R1, id2

ADDF R1, R1, R2
STF idi, R1

UNSW, Sydney Compilers 29 Jun 2023

17 /21



(@INEES T Symbol-Table Management

Symbol-Table Management

o Symbol table:

e a data structure recording each variable name and attributes, including
storage, type, scope, ...

1 | position
initial
3 | rate

L)

SYMBOL TABLE

e should be efficient for finding records and storing or retrieving data
from the records.

UNSW, Sydney Compilers 29 Jun 2023 18/21



Applications of Compiler Technology

@ Compiler design is not only about compilers

o Applications
o Implementation of High-Level Programming Languages

@ support increased levels of programming abstractions
@ e.g., data abstraction and inheritance in Java, type system in Rust

Optimizations for Computer Architectures

o parallelism: instruction level and processor level
@ memory hierarchy: closest to the processor being fastest but smallest

Design of New Computer Architectures

o RISC architecture
o Specialized architecture, e.g., VLIW, SIMD, vector machine, ...

e Program Translations

o Binary translation: translate binary code for one machine to another
@ Hardware synthesis: translate RTL descriptions into gates
o Database Query Interpreters, Compiled Simulation

e Software Productivity Tools
@ e.g., bug detection, type checking, bounds checking, ...

UNSW, Sydney Compilers 29 Jun 2023 19/21



End-of-Chapter

Compilers: Principles, Techniques, and Tools
Chapter 1 Introduction

Dongjie He
University of New South Wales
https://dongjiehe.github.io/teaching/compiler/

29 Jun 2023

UNSW, Sydney Compilers 29 Jun 2023 20/21


https://dongjiehe.github.io/teaching/compiler/

Lab 1: Get Familiar with LLVM's Code Structure

o LLVM Project, https://1lvm.org/, is a collection of modular and
reusable compiler and toolchain technologies.

LLVM Core: a modern source- and target-independent optimizer

Clang: an LLVM native C/C++/Objective-C compiler

LLD: a linker

@ Task 1: install LLVM on your machine

@ https://llvm.org/docs/GettingStarted.html#getting-the-source-code-and-building-1lvm

@ Task 2: getting familiar with LLVM'’s code structure

UNSW, Sydney Compilers 29 Jun 2023 21/21


https://llvm.org/
https://llvm.org/docs/GettingStarted.html#getting-the-source-code-and-building-llvm

	Outline
	Programming Languages
	Evolution
	Basics

	Language Processors
	Compilers, Interpreters, and Other Language Processors
	A Language-Processing System

	Compiler Structure
	Lexical Analysis
	Syntax Analysis
	Semantic Analysis
	Intermediate Code Generation and Optimization
	Code Generation
	Symbol-Table Management

	Applications of Compiler Technology
	End-of-Chapter

