
Dongjie He1, Yujiang Gui1, Yaoqing Gao2, Jingling Xue1

1School of Computer Science and Engineering
University of New South Wales

2Huawei Toronto Research Center

Presenter: Yujiang Gui

32nd ISSTA, July 2023

Reducing the Memory Footprint of IFDS-based Data-Flow 
Analyses Using Fine-Grained Garbage Collection 

ISSTA 2023 1 



ISSTA 2023 2

The IFDS Algorithm

o Transforms an analysis into a graph-reachability problem
o Solves a wide range of data-flow analyses

• Compiler optimization
• Bug detection (ASE’18)
• Taint analysis (PLDI’14, FSE’14)
• Pointer analysis (ECOOP’16, ASE’21, TSE’23)
• Typestate-like analysis (OOPSLA’08, PLDI’14)
• …

o Has been implemented in many tools
 

Reps, Thomas, Susan Horwitz, and Mooly Sagiv. “Precise Interprocedural Dataflow Analysis via Graph Reachability.”, POPL’95.



ISSTA 2023 3

A Running Example: Taint Analysis



ISSTA 2023 3

A Running Example: Taint Analysis

Path Edge



ISSTA 2023 3

A Running Example: Taint Analysis

Path Edge



ISSTA 2023 3

A Running Example: Taint Analysis

Path Edge



ISSTA 2023 3

A Running Example: Taint Analysis

Path Edge



ISSTA 2023 3

A Running Example: Taint Analysis

Path Edge



ISSTA 2023 3

A Running Example: Taint Analysis

Path Edge



ISSTA 2023 3

A Running Example: Taint Analysis

Path Edge



ISSTA 2023 4

The Drawback: Memory-Intensive
o Maintains a huge number of path edges
 

 

0

100

200

300

400

500

600

0

20

40

60

80

100

120

140

Weather Metadata Lumicall Book Reader Overchan

#PathEdge (M) Memory Usage (GB)



ISSTA 2023 4

The Drawback: Memory-Intensive
o Maintains a huge number of path edges
 

o Fails to solve taint analysis on some Android apps
• Even on a server with 730GB RAM

o Slows down the analysis
• Frequent re-hashing operations

 

0

100

200

300

400

500

600

0

20

40

60

80

100

120

140

Weather Metadata Lumicall Book Reader Overchan

#PathEdge (M) Memory Usage (GB)



ISSTA 2023 5

Objective

Improving the Scalability and Efficiency



ISSTA 2023 5

Objective

Improving the Scalability and Efficiency

o Discovers facts only at some program points
• Taint analysis



ISSTA 2023 5

Objective

Improving the Scalability and Efficiency

o Discovers facts only at some program points
• Taint analysis

o Non-live path edges
• Visited only once (86.97%)
• Waste memory resources

 



ISSTA 2023 5

Objective

Improving the Scalability and Efficiency

o Discovers facts only at some program points
• Taint analysis

o Non-live path edges
• Visited only once (86.97%)
• Waste memory resources

 
o Garbage collection! But how to…

• Preserve important properties
§ Correctness
§ Precision
§ Termination

• Avoid redundant computations



ISSTA 2023 6

Existing Approach

CleanDroid (ICSE’21)
o With 2 major limitations

• Coarse-grained
• Allows redundant computations



ISSTA 2023 7

Limitation 1: Coarse Granularity
Running garbage collection just before 
line 10…



ISSTA 2023 8

Limitation 1: Coarse Granularity

(a) before GC

(b) after GC (c) after the analysis

Maximum #PathEdge maintained: 13. 



ISSTA 2023 9

Limitation 1: Coarse Granularity

(a) before GC

(b) after GC (c) after the analysis

Method-Level: Coarse-Grained



ISSTA 2023 10

Fine-Grained Data-Fact-Level GC

(a) before GC

(b) after GC (c) after the analysis

Observation 1: The path edges 
with different anchor sites are 
handled independently. 

Maximum #PathEdge maintained: 9. 



ISSTA 2023 11

Limitation 2: Redundant Computations
Running garbage collection just before 
line 10…



ISSTA 2023 12

Limitation 2: Redundant Computations

(a) before GC

(b) after GC (c) after the analysis

The method misc() is analyzed redundantly.



ISSTA 2023 13

Avoiding Redundant Computations

(a) before GC

(b) after GC (c) after the analysis

Observation 2: All path edges 
sharing the same anchor site 
are generated from the same 
self-loop path edge.

With redundancy-avoiding edges, the 
method misc() is analyzed only once.



ISSTA 2023 15

Data-Fact-Level Path-Edge GC Algorithm



ISSTA 2023 14

Our Approach: FPC

Using a fine-grained path edge garbage collector

o Data-fact-level
o Light-weight
o Efficient
o No redundancy



ISSTA 2023 16

Implementation

o Implemented in FlowDroid (PLDI’14) to compare 
with CleanDroid (ICSE’21)

o In about 600 lines of Java code

o Has been merged into FlowDroid

o Available at https://github.com/DongjieHe/FPC
 



ISSTA 2023 17

Evaluation

o Benchmark
• 58 apps from 2 previous papers: ASE’19 and CGO’21

o Evaluate on 2 metrics
• Memory usage
• Analysis time

o Evaluate under varying GC intervals
• Default: 1-second

 



ISSTA 2023 18

RQ1: Memory Usage
Memory budget: 200 GB per app

0
20
40
60
80

100
120
140
160
180
200

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

Maximum Memory Usage (GB)

CleanDroid FPC

FPC can reduce the peak memory usage by 1.4× on average and can scale 
3 more apps than baseline.



ISSTA 2023 19

RQ2: Analysis Time
Time budget: 3 hours per app

FPC can improve both the scalability and efficiency of CleanDroid, the 
speedups range from 0.9× to 18.5× with an average of 1.7×.



ISSTA 2023 20

RQ3: Varying GC Intervals

FPC has improved CleanDroid by an average of 1.40× ±0.03 for the 
memory usage, and 1.74× ±0.02 for the analysis time. The result obtained 
using 1-second GC interval is reliable.



ISSTA 2023 21

Q & A

Dongjie He: dongjieh@cse.unsw.edu.au
Yujiang Gui: yujiang.gui@unsw.edu.au

Thank you!

mailto:dongjieh@cse.unsw.edu.au
mailto:yujiang.gui@unsw.edu.au

