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The IFDS Algorithm

o Transforms an analysis into a graph-reachability problem
o Solves a wide range of data-flow analyses

• Compiler optimization
• Bug detection (ASE’18)
• Taint analysis (PLDI’14, FSE’14)
• Pointer analysis (ECOOP’16, ASE’21, TSE’23)
• Typestate-like analysis (OOPSLA’08, PLDI’14)
• …

o Has been implemented in many tools
 

Reps, Thomas, Susan Horwitz, and Mooly Sagiv. “Precise Interprocedural Dataflow Analysis via Graph Reachability.”, POPL’95.
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A Running Example: Taint Analysis
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The Drawback: Memory-Intensive
o Maintains a huge number of path edges
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The Drawback: Memory-Intensive
o Maintains a huge number of path edges
 

o Fails to solve taint analysis on some Android apps
• Even on a server with 730GB RAM

o Slows down the analysis
• Frequent re-hashing operations
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Improving the Scalability and Efficiency
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Improving the Scalability and Efficiency

o Discovers facts only at some program points
• Taint analysis

o Non-live path edges
• Visited only once (86.97%)
• Waste memory resources

 
o Garbage collection! But how to…

• Preserve important properties
§ Correctness
§ Precision
§ Termination

• Avoid redundant computations
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Existing Approach

CleanDroid (ICSE’21)
o With 2 major limitations

• Coarse-grained
• Allows redundant computations
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Limitation 1: Coarse Granularity
Running garbage collection just before 
line 10…
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Limitation 1: Coarse Granularity

(a) before GC

(b) after GC (c) after the analysis

Maximum #PathEdge maintained: 13. 
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Limitation 1: Coarse Granularity

(a) before GC

(b) after GC (c) after the analysis

Method-Level: Coarse-Grained
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Fine-Grained Data-Fact-Level GC

(a) before GC

(b) after GC (c) after the analysis

Observation 1: The path edges 
with different anchor sites are 
handled independently. 

Maximum #PathEdge maintained: 9. 
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Limitation 2: Redundant Computations
Running garbage collection just before 
line 10…
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Limitation 2: Redundant Computations

(a) before GC

(b) after GC (c) after the analysis

The method misc() is analyzed redundantly.
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Avoiding Redundant Computations

(a) before GC

(b) after GC (c) after the analysis

Observation 2: All path edges 
sharing the same anchor site 
are generated from the same 
self-loop path edge.

With redundancy-avoiding edges, the 
method misc() is analyzed only once.
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Data-Fact-Level Path-Edge GC Algorithm
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Our Approach: FPC

Using a fine-grained path edge garbage collector

o Data-fact-level
o Light-weight
o Efficient
o No redundancy
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Implementation

o Implemented in FlowDroid (PLDI’14) to compare 
with CleanDroid (ICSE’21)

o In about 600 lines of Java code

o Has been merged into FlowDroid

o Available at https://github.com/DongjieHe/FPC
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Evaluation

o Benchmark
• 58 apps from 2 previous papers: ASE’19 and CGO’21

o Evaluate on 2 metrics
• Memory usage
• Analysis time

o Evaluate under varying GC intervals
• Default: 1-second
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RQ1: Memory Usage
Memory budget: 200 GB per app

0
20
40
60
80

100
120
140
160
180
200

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

Maximum Memory Usage (GB)

CleanDroid FPC

FPC can reduce the peak memory usage by 1.4× on average and can scale 
3 more apps than baseline.
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RQ2: Analysis Time
Time budget: 3 hours per app

FPC can improve both the scalability and efficiency of CleanDroid, the 
speedups range from 0.9× to 18.5× with an average of 1.7×.
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RQ3: Varying GC Intervals

FPC has improved CleanDroid by an average of 1.40× ±0.03 for the 
memory usage, and 1.74× ±0.02 for the analysis time. The result obtained 
using 1-second GC interval is reliable.
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Q & A

Dongjie He: dongjieh@cse.unsw.edu.au
Yujiang Gui: yujiang.gui@unsw.edu.au

Thank you!

mailto:dongjieh@cse.unsw.edu.au
mailto:yujiang.gui@unsw.edu.au

