
1

A CFL-Reachability Formulation of Callsite-
Sensitive Pointer Analysis with Built-in On-

the-Fly Call Graph Construction

Dongjie He1,2, Jingbo Lu1,3, and Jingling Xue1

SECTREND

ECOOP 2024 Vienna Austria

2

q A new CFL-reachability formulation of kCFA (call-site sensitive pointer
analysis) for Java, supporting on-the-fly callgraph construction.
§ !" ∩ !$ ∩ !%

q P3Ctx: the first precision-preserving selective context sensitivity technique
to accelerate kCFA.

3

q Programs (in C/C++/Java, …) are full of pointers or references
q Answer the following two problems

v
a

b

memory memory

(2) Can a and b be aliases?(1) What can a pointer point to?

4

q Programs (in C/C++/Java, …) are full of pointers or references
q Answer the following two problems

q Foundation of many Static Program Analysis

q Implementations in many popular frameworks

v

a

b

memory memory

(2) Can a and b be aliases?(1) What can a pointer point to?

Compiler
Optimization

Call-graph
Construction

Program
Verification

Program
Understanding Bug Detection …

5

qkCFA has two formulations:

6

Andersen-style Inclusion-based formulation for kCFA

Widely adopted in frameworks like Soot/Spark, WALA, DOOP, QILIN, …

7

Sridharan’s CFL-reachability formulation for kCFA
!"# = !" ∩ !#

!": !#:

PAG construction rules

Inverse edge Call dispatch

8

qkCFA has two formulations:
§ Andersen-style inclusion-based formulation
§ Sridharan’s CFL-reachability formulation !" ∩ !$

q The two formulation are not equally precise.
§ The 2nd is less precise than the 1st.

9

Some examples to show precision loss in !"#
Using a (Most Precise) Call Graph Constructed on the Fly or in Advance

Spurious value flow in !"# formulation

10

Some examples to show precision loss in !"#
Using a (Most Precise) Call Graph Constructed on the Fly or in Advance

Spurious value flow in !"# formulation

!"# also leads applications built upon it to lose precision, e.g., Selectx

Jingbo Lu, Dongjie He, and Jingling Xue. Selective Context-Sensitivity for kCFA
with CFL-Reachability. 28th International Static Analysis Symposium (SAS'21).

11

qkCFA has two formulations:
§ Andersen-style inclusion-based formulation
§ Sridharan’s CFL-reachability formulation !" ∩ !$

q The two formulation are not equally precise.
§ The 2nd is less precise than the 1st.

qWe aim to develop a precision-preserving selective
context sensitivity technique to accelerate kCFA.

12

!"#$: A New CFL-Reachability Formulation for %CFA

§ !"#$ supports built-in on-the-fly call graph construction
How?

Challenges

&.(… , +,, … // c

§ CH1: how to pass & to -ℎ/012?
§ CH2: how to establish a CFL-reachability path from +, to 3, under # while associating

to & to trigger dynamic dispatch?
§ CH3: How to pass +, to 3, without changing context #?

(2(⋯ , 3,,⋯)
#

-ℎ/012
CH1

CH3CH2

13

!"#$ = !" ∩ !# ∩ !$ (explained shortly)

'(:'):

'*:

We address these challenges by formulating !"#$ as ') ∩ '(∩ '*

14

New PAG Construction Rules for !"#$ = !" ∩ !# ∩ !$

15

Address CH1 and CH2 with !" and !#
§ address CH1 by requiring new[t] match dispatch[t]

A1 &'([*] , -../0& 1 -../0& 1#33 5/.6-789[*] :ℎ<=*:?@@()

B1 &'([D] E -../0& 1 -../0& 1#33 5/.6-789[*] :ℎ<=*:?@@()

FG:

16

Address CH1 and CH2 with !" and !#
§ address CH1 by requiring new[t] match dispatch[t]

A1 &'([*] , -../0& 1 -../0& 1#33 5/.6-789[*] :ℎ<=*:?@@()

B1 &'([D] E -../0& 1 -../0& 1#33 5/.6-789[*] :ℎ<=*:?@@()

§ address CH2 by modeling parameter passing as stores and loads, and also enforce FG

O2 cannot flow to v

FHG = FH ∩ FG

FH:

17

!"# is not precise

Imprecision of !"# caused by an incorrect dispatch site

Spurious

1

2

3

5

4
5

18

!"# is not precise

Imprecision of !"# caused by an incorrect dispatch context

Spurious

1
2

3

4

5

10

6

7

8

9

19

Address CH3 by also enforcing !"

#$:

Ensure come back to the same callsite under the same context.

20

!"#$ is precise

Eliminate imprecision of !"# caused by an incorrect dispatch site

Infeasible as does not match

1

2

3

5

4
5

21

!"#$ is precise

Eliminate imprecision of !"# caused by an incorrect dispatch context

Infeasible as does not belong to %&

1
2

3

4

5

10

6

7

8

9

22

!"#$

qA new CFL-reachability formulation for kCFA
with built-in callgraph construction

qDemonstrating that kCFA is a special kind of
context-sensitive language, i.e., the intersection
of multiple CFLs.

23

P3Ctx: An !"#$-based technique for accelerating kCFA

Selective Context-Sensitivity

Only apply context-sensitivity to precision-critical variables/objects

Criterion of precision critical nodes

Like !%#, !"#$ is also undecidable. Need Regularization.

24

Regularize !"#$
Regularize !$ to !$% :

&':

&'(:

&) ∩ &+ ∩ &'(= &) ∩ &+ = &)+

25

Regularize !"#$
Regularize !" to !"% :

!":

!"% :

disregard field
sensitivity

interpret dispatch as assign

no longer require load to match store

no longer distinguish
store and &'()*

26

Regularize !"#$
We keep %& unchanged.

%'&(= %' ∩ %& ∩ %(⟹ %', ∩ %& ∩ %(, = %', ∩ %&

%', is equivalent to the following DFA (Deterministic Finite Automata):

27

§ Replace !" with !#$
§ Use balanced edges to ensure CS-C2
§ Assume every this variable are not null (some objects can flow to it).
§ Replace CS-C1 and CS-C3 with the following condition: (% in method M)

Verify selection criterion CS-C1, CS-C2, and CS-C3 over-approximately

P3Ctx: An '()*-based technique for accelerating kCFA
!#$

28

P3Ctx: An !"#$-based technique for accelerating kCFA

The DFA has two properties:

equivalent to

where % ∈ '()) means this/, 1lows ↣6 %,)
for some M.

29

P3Ctx: An !"#$-based technique for accelerating kCFA

To verify

We compute % using following rules over PAG= ((, *)

Theorem (Precision-preserving): ,CFA produces exactly the same points-to
information when performed with selective context-sensitivity under P3Ctx.

30

Implementation

P3Ctx is implemented on top of SelectX in about 500 LOC.

Artifact (including source): https://zenodo.org/records/11061892

https://zenodo.org/records/11061892

31

Evaluation: Settings

§ Machine: Intel® Xeon® W-2245 3.90GHz, 512GB RAM

§ OS: Ubuntu 20.04.3 LTS (Focal Fossa)

§ Baselines: SelectX (SAS’21), Zipper (OOPSLA’18), !CFA

§ Benchmarks: 13 benchmarks from the latest DaCapo benchmark suite

§ Java library: JRE1.8.0_31

32

Evaluation: Precision

P3Ctx is precision preserving.

Precision loss of Zipper-guided 2CFAPrecision loss of Selectx-guided 2CFA

Precision Loss: P3Ctx < SelectX < Zipper

33

Evaluation: Speedups

Speedups over 1CFA Speedups over 2CFA

For 1CFA (most widely used): P3Ctx > Zipper >SelectX

For 2CFA: Zipper >SelectX >P3Ctx
No one can make 3CFA scalable

We compute speedups by considering all analysis time including pre-analysis time.

34

Summary

Contribution 1: !"#$ = !" ∩ !' ∩ !$
§ a new CFL-reachability formulation for kCFA with built-in callgraph construction.

§ show that kCFA is a special kind of context-sensitive language

Contribution 2: (3*+,
§ the first precision-preserving acceleration technique for -CFA.

35

Q & A

qPlease refer to our paper for more technical details!

qContact:

hedongjie15@gmail.com

