ECOOP 2024 Vienna Austria

A CFL-Reachability Formulation of Callsite-Sensitive Pointer Analysis with Built-in Onthe-Fly Call Graph Construction

Dongjie He^{1,2}, Jingbo Lu^{1,3}, and Jingling Xue¹

SECTREND

Contributions

□ A new CFL-reachability formulation of *k*CFA (call-site sensitive pointer analysis) for Java, supporting on-the-fly callgraph construction.

• $L_D \cap L_c \cap L_R$

□ P3Ctx: the first precision-preserving selective context sensitivity technique to accelerate *k*CFA.

A Brief Introduction to Pointer Analysis

Programs (in C/C++/Java, ...) are full of **pointers** or **references** Answer the following two problems

(1) What can a pointer point to?

(2) Can *a* and *b* be aliases?

A Brief Introduction to Pointer Analysis

Programs (in C/C++/Java, ...) are full of **pointers** or **references** Answer the following two problems

(1) What can a pointer point to?

(2) Can *a* and *b* be aliases?

□ Foundation of many Static Program Analysis

Compiler	Call-graph	Program	Program	Due Detection]
Optimization	Construction	Verification	Understanding	Bug Detection	

□ Implementations in many popular frameworks

Motivation

□ *k*CFA has two formulations:

Andersen-style Inclusion-based formulation for *k*CFA

$$\frac{\mathbf{x} = \mathbf{new} \ \mathbf{T} \ // \ O \ ctx \in \mathsf{MethodCtx}(\mathsf{M})}{\langle O, \lceil ctx \rceil_{hk} \rangle \in \mathsf{PTS}(\mathbf{x}, ctx)} [I-\mathsf{NEW}] \qquad \qquad \frac{\mathbf{x} = \mathbf{y} \ ctx \in \mathsf{MethodCtx}(\mathsf{M})}{\mathsf{PTS}(\mathbf{y}, ctx) \subseteq \mathsf{PTS}(\mathbf{x}, ctx)} [I-\mathsf{ASSIGN}] \\ \frac{\mathbf{x} = \mathbf{y}.\mathbf{f} \ ctx \in \mathsf{MethodCtx}(\mathsf{M})}{\langle O, htx \rangle \in \mathsf{PTS}(\mathbf{y}, ctx)} [I-\mathsf{LOAD}] \qquad \qquad \mathbf{x}.\mathbf{f} = \mathbf{y} \ ctx \in \mathsf{MethodCtx}(\mathsf{M}) \\ \frac{\langle O, htx \rangle \in \mathsf{PTS}(\mathbf{y}, ctx)}{\mathsf{PTS}(O.\mathbf{f}, htx) \subseteq \mathsf{PTS}(\mathbf{x}, ctx)} [I-\mathsf{LOAD}] \qquad \qquad \frac{\langle O, htx \rangle \in \mathsf{PTS}(\mathbf{x}, ctx)}{\mathsf{PTS}(\mathbf{y}, ctx) \subseteq \mathsf{PTS}(O.\mathbf{f}, htx)} [I-\mathsf{STORE}] \\ \frac{\mathbf{x} = \mathbf{m}(a_1, \dots, a_n) \ // \ c \ ctx \in \mathsf{MethodCtx}(\mathsf{M}) \ ctx' = \lceil \mathsf{c} :: ctx \rceil_k}{ctx' \in \mathsf{MethodCtx}(\mathsf{m}) \ \mathsf{PTS}(\mathsf{ret}^{\mathsf{m}}, ctx')} [I-\mathsf{SCALL}] \\ \frac{\mathsf{v} \in [1, n] : \mathsf{PTS}(a_i, ctx) \subseteq \mathsf{PTS}(\mathbf{x}, ctx)}{\mathsf{v} \in [1, n] : \mathsf{PTS}(\mathsf{a}_i, ctx) \subseteq \mathsf{PTS}(\mathsf{x}, ctx)} [I-\mathsf{VCALL}] \\ \frac{\mathsf{t} = \mathsf{DynTypeOf}(O) \ \mathsf{m}' = \mathsf{dispatch}(\mathsf{c}, \mathsf{t}) \ ctx' = \lceil \mathsf{c} :: ctx \rceil_k}{ctx' \in \mathsf{MethodCtx}(\mathsf{m}') \ \mathsf{PTS}(\mathsf{ret}^{\mathsf{m}'}, ctx') \subseteq \mathsf{PTS}(\mathsf{x}, ctx)} [I-\mathsf{VCALL}] \\ \langle O, htx \rangle \in \mathsf{PTS}(\mathsf{this}^{\mathsf{m}'}, ctx') \ \forall i \in [1, n] : \mathsf{PTS}(\mathsf{a}_i, ctx) \subseteq \mathsf{PTS}(\mathsf{p}_i^{\mathsf{m}'}, ctx') \end{cases}$$

Widely adopted in frameworks like Soot/Spark, WALA, DOOP, QILIN, ...

Sridharan' s CFL-reachability formulation for *k*CFA

$$L_{FC} = L_F \cap L_C$$

flowsto \longrightarrow new flows^{*} flows \longrightarrow assign | store[f] alias load[f] $L_F: \begin{array}{ccc} \text{alias} & \longrightarrow & \overline{\text{flowsto}} & \text{flowsto} \\ \hline \overline{\text{flowsto}} & \longrightarrow & \overline{\text{flows}}^* & \overline{\text{new}} \end{array}$ $\overline{\text{flows}} \longrightarrow \overline{\text{assign}} \mid \overline{\text{load}[f]} \text{ alias store}[f]$

realizable \longrightarrow exit entry

- $L_C: \begin{array}{ccc} \mathsf{exit} & \longrightarrow & \mathsf{exit} \text{ balanced} \mid \mathsf{exit} \ \check{c} \mid \epsilon \\ \mathsf{entry} & \longrightarrow & \mathsf{entry} \text{ balanced} \mid \mathsf{entry} \ \hat{c} \mid \epsilon \end{array}$
 - balanced \longrightarrow balanced balanced | \hat{c} balanced \check{c} | ϵ

PAG construction rules

 $\frac{\mathbf{x} = \mathbf{new T} / / O}{O \xrightarrow{\mathbf{new}} \mathbf{x}} [P-NEW] \qquad \frac{\mathbf{x} = \mathbf{y}}{\mathbf{y} \xrightarrow{\text{assign}} \mathbf{x}} [P-ASSIGN] \qquad \frac{\mathbf{x} = \mathbf{y} \cdot \mathbf{t}}{\mathbf{y} \xrightarrow{\text{load}[f]} \mathbf{x}} [P-LOAD]$ $\begin{array}{c} \mathbf{x}.\mathbf{f} = \mathbf{y} \\ \hline \mathbf{y} \xrightarrow{\text{store[f]}} \mathbf{x} \end{array} \quad \begin{bmatrix} \mathbf{P}\text{-}\mathbf{S}\text{TORE} \end{bmatrix} \quad \begin{array}{c} \mathbf{x} = \mathbf{m}(a_1, \dots, a_n) \; // \; \mathbf{c} \\ \hline \forall \; i \in [1, n] : a_i \xrightarrow[\hat{\alpha}]{\text{assign}} p_i^{\mathbf{m}} \quad \mathbf{ret}^{\mathbf{m}} \xrightarrow[\hat{\alpha}]{\text{ssign}} \mathbf{x} \end{array} \begin{bmatrix} \mathbf{P}\text{-}\mathbf{S}\text{CALL} \end{bmatrix}$ $\frac{\mathbf{x} = \mathbf{r}.\mathbf{m}(a_1, \dots, a_n) \; // \; \mathbf{c} \quad \mathbf{m}' \text{ is a target of this callsite}}{\mathbf{r} \xrightarrow{assign}{\hat{a}} \mathsf{this}^{\mathbf{m}'} \; \mathsf{ret}^{\mathbf{m}'} \; \xrightarrow{assign}{\hat{a}} \mathbf{x} \; \; \forall \; i \in [1, n] : a_i \xrightarrow{assign}{\hat{a}} p_i^{\mathbf{m}'}} \; [P-VCALL]$

Inverse edge

Call dispatch

Motivation

□ *k*CFA has two formulations:

- Andersen-style inclusion-based formulation
- Sridharan's CFL-reachability formulation $L_F \cap L_c$

□ The two formulation are not equally precise.

• The 2nd is less precise than the 1st.

Some examples to show precision loss in L_{FC}

Using a (Most Precise) Call Graph Constructed on the Fly or in Advance

```
1 class E { 10 if (...) {
2 void foo(G p) { 11 E e1 = new E(); // E1
3 Object v = p.g; 12 w.g = e1;
4 }} 13 } else {
5 class F extends E { 14 F f1 = new F(); // F1
6 void foo(G q) { } 15 w.g = f1;
7 } 16 }
8 class G { Object g; } 17 E x = w.g;
9 G w = new G(); // G1 18 x.foo(null); // c
```

Spurious value flow in L_{FC} **formulation** $E1 \xrightarrow{\text{new}} e1 \xrightarrow{\text{store}[g]} w \xrightarrow{\overline{\text{new}}} G1 \xrightarrow{\text{new}} w \xrightarrow{\text{load}[g]} x \xrightarrow{\text{assign}} \text{this}^{E:foo()}$ $F1 \xrightarrow{\text{new}} f1 \xrightarrow{\text{store}[g]} w \xrightarrow{\overline{\text{new}}} G1 \xrightarrow{\text{new}} w \xrightarrow{\text{load}[g]} x \xrightarrow{\text{assign}} \hat{c}$ this^{E:foo()}

Some examples to show precision loss in L_{FC}

Using a (Most Precise) Call Graph Constructed on the Fly or in Advance

1 class E {	10 if () {
<pre>2 void foo(G p) {</pre>	11 E e1 = new E(); // E1
<pre>3 Object v = p.g;</pre>	12 w.g = e1;
4 }}	13 } else {
5 class F extends E {	14 F f1 = new F(); // F1
<pre>6 void foo(G q) { }</pre>	15 w.g = f1;
7 }	16 }
8 class G { Object g; }	
9 G w = new G(); // G1	18 x.foo(null); // c _ }

L_{FC} also leads applications built upon it to lose precision, e.g., Selectx

Jingbo Lu, Dongjie He, and Jingling Xue. Selective Context-Sensitivity for *k*CFA with CFL-Reachability. 28th International Static Analysis Symposium (SAS'21).

Motivation

□ *k*CFA has two formulations:

- Andersen-style inclusion-based formulation
- Sridharan's CFL-reachability formulation $L_F \cap L_c$

□ The two formulation are not equally precise.

• The 2nd is less precise than the 1st.

□ We aim to develop a precision-preserving selective context sensitivity technique to accelerate *k*CFA.

L_{DCR}: A New CFL-Reachability Formulation for kCFA

• *L*_{DCR} supports built-in on-the-fly call graph construction

Challenges

- CH1: how to pass r to this^m?
- CH2: how to establish a CFL-reachability path from a_i to p_i under C while associating to r to trigger dynamic dispatch?
- CH3: How to pass a_i to p_i without changing context C?

$L_{DCR} = L_D \cap L_C \cap L_R$ (explained shortly)

We address these challenges by formulating L_{DCR} as $L_D \cap L_C \cap L_R$

flowsto	\longrightarrow	$new[\texttt{t}] \ (flows \mid dispatch[\texttt{t}])^*$		and a Provided as	
flows	\rightarrow	$assign \mid store[\mathtt{f}] \; alias \; load[\mathtt{f}]$	<i>L_C</i> :	realizable exit	exit entry exit balanced exit $\check{c} \epsilon$
L_D : alias	\rightarrow	flowsto flowsto			entry balanced entry $\hat{c} \epsilon$
flowsto	\rightarrow	$(\overline{dispatch[t]} \mid \overline{flows})^* \ \overline{new[t]}$			balanced balanced $\mid \hat{c}$ balanced $\check{c} \mid \epsilon$
flows	\rightarrow	$\overline{assign} \mid \overline{load[\mathtt{f}]} \text{ alias } \overline{store[\mathtt{f}]}$			

 $\mathsf{recoveredCtx} \quad \longrightarrow \quad \mathsf{recoveredCtx} \; \hat{c} \mid \mathsf{recoveredCtx} \; \check{c} \mid \mathsf{recoveredCtx} \; \mathsf{siteRecovered} \mid \epsilon$

 L_R : siteRecovered \longrightarrow \hat{c} ctxRecovered \check{c}

 $\mathsf{ctxRecovered} \quad \longrightarrow \quad \mathsf{matched} \ \mathsf{ctxRecovered} \ | \ \mathsf{ctxRecovered} \ \mathsf{matched} \ | \ \check{c} \ \mathsf{ctxRecovered} \ \hat{c} \ | \ \epsilon$

matched \longrightarrow matched matched | \hat{c} matched \check{c} | siteRecovered | ϵ

New PAG Construction Rules for $L_{DCR} = L_D \cap L_C \cap L_R$

14

Address CH1 and CH2 with L_D and L_C

Address CH1 and CH2 with L_D and L_C

address CH2 by modeling parameter passing as stores and loads, and also enforce L_C

$$L_{DC} = L_D \cap L_C$$

O2 cannot flow to v

$$01 \xrightarrow{\text{new}[0]} \text{o1} \xrightarrow{\text{assign}} \text{o1} \xrightarrow{\text{store}[f]} \text{d} \xrightarrow{\overline{\text{new}[D]}} \text{D1} \xrightarrow{\text{new}[D]} \text{d} \xrightarrow{\text{store}[1]} x \xrightarrow{\overline{\text{assign}}} \text{d} \xrightarrow{\overline{\text{new}[A]}} \text{A1}$$

$$\xrightarrow{\text{new}[A]} \text{a} \xrightarrow{\text{assign}}_{\hat{c1}} x \xrightarrow{\text{assign}} x\#c3 \xrightarrow{\text{dispatch}[A]}_{\hat{c3}} \text{this}^{A:foo()} \xrightarrow{\text{load}[1]} p \xrightarrow{\text{load}[f]} v$$

L_{DC} is not precise

Imprecision of *L_{DC}* caused by an incorrect dispatch site

L_{DC} is not precise

Imprecision of L_{DC} caused by an incorrect dispatch context

Address CH3 by also enforcing L_R

Ensure come back to the same callsite under the same context.

L_{DCR} is precise

Eliminate imprecision of *L_{DC}* caused by an incorrect dispatch site

L_{DCR} is precise

Eliminate imprecision of L_{DC} caused by an incorrect dispatch context

 $\begin{array}{c} \text{K1} \xrightarrow{\text{new}[K]} \text{k1} \xrightarrow{\text{assign}}_{c\hat{6}} \text{k} \xrightarrow{\text{store}[1]}_{c\hat{8}} \text{j} \xrightarrow{\overline{assign}}_{c\hat{6}} \text{j1} \xrightarrow{\text{new}[J]}_{c\hat{6}} \text{J1} \xrightarrow{\text{new}[J]}_{c\hat{6}} \text{j1} \xrightarrow{\overline{assign}}_{c\hat{6}} \text{j} \xrightarrow{\overline{assign}}_{c\hat{8}} \text{j\#c8} \xrightarrow{\overline{dispatch[J]}}_{c\hat{8}} \text{this}^{id} \xrightarrow{|\text{load}[1]} \\ p \xrightarrow{\text{store}[0]} \text{this}^{id} \xrightarrow{\overline{dispatch[J]}}_{c\hat{8}} \text{j\#c8} \xrightarrow{\overline{assign}}_{c\hat{6}} \text{j1} \xrightarrow{\overline{assign}}_{c\hat{6}} \text{j1} \xrightarrow{\overline{new}[J]}_{c\hat{6}} \text{J1} \xrightarrow{\overline{new}[J]}_{c\hat{6}} \text{J1} \xrightarrow{\overline{assign}}_{c\hat{6}} \text{j1} \xrightarrow{\overline{assign}}_{c\hat{7}} \text{j1} \xrightarrow{\overline{assign}}_{c\hat{6}} \text{j1} \xrightarrow{\overline{assign}}_{c\hat{6}} \text{j1} \xrightarrow{\overline{assign}}_{c\hat{7}} \text{j1} \xrightarrow{\overline{assign}}_{c\hat{6}} \text{j1} \xrightarrow{\overline{assign}}_{c\hat{6}} \text{j1} \xrightarrow{\overline{assign}}_{c\hat{6}} \text{j1} \xrightarrow{\overline{assign}}_{c\hat{7}} \text{j1} \xrightarrow{\overline{assign}}_{c\hat{6}} \text{j1} \xrightarrow{\overline{assign}}_{c\hat{7}} \text{j1} \xrightarrow{\overline{assign}}_{c\hat{6}} \text{j1} \xrightarrow{\overline{assign}}_{c\hat{7}} \text{j1} \xrightarrow{\overline{assign}}_{c\hat{6}} \text{j1} \xrightarrow{\overline{assign}}_{c\hat{7}} \text{j2} \xrightarrow{\overline{assign}}_{c\hat{7}} \text{j1} \xrightarrow{\overline{assign}}_{c\hat{7}} \text{j1} \xrightarrow{\overline{assign}}_{c\hat{7}} \text{j1} \xrightarrow{\overline{assign}}_{c\hat{7}} \text{j1} \xrightarrow{\overline{assign}}_{c\hat{7}} \text{j2} \xrightarrow{\overline{assign}}_{c\hat{7}} \text{j1} \xrightarrow{\overline{assign}}_{c\hat{7}} \text{j2} \xrightarrow{\overline{assign}}_{c\hat{7}} \text{j3} \xrightarrow{\overline{assign}}_{c\hat{7}} \text{j3} \xrightarrow{\overline$

□A new CFL-reachability formulation for *k*CFA with built-in callgraph construction

Demonstrating that kCFA is a special kind of context-sensitive language, i.e., the intersection of multiple CFLs.

Selective Context-Sensitivity

Only apply context-sensitivity to precision-critical variables/objects

Criterion of precision critical nodes

$$\begin{aligned} \mathbf{CS-C1} &: L_F(p_{O,n,v}) \in L_F \\ \mathbf{CS-C2} &: L_C(p_{O,n}) \in L_C \land L_C(p_{n,v}) \in L_C \\ \mathbf{CS-C3} &: L_C^{\mathsf{en}}(p_{O,n}) \neq \epsilon \land L_C^{\mathsf{ex}}(p_{n,v}) \neq \epsilon \end{aligned}$$

Like *L_{FC}*, *L_{DCR}* is also undecidable. Need Regularization.

Regularize *L*_{DCR}

Regularize L_R to L_R^r :

 $\texttt{recoveredCtx} \quad \longrightarrow \quad \texttt{recoveredCtx} \; \hat{c} \mid \texttt{recoveredCtx} \; \check{c} \mid \texttt{recoveredCtx} \; \texttt{siteRecovered} \mid \epsilon$

 L_R : siteRecovered \longrightarrow \hat{C} ctxRecovered \check{C}

ctxRecovered \longrightarrow matched ctxRecovered | ctxRecovered matched | \check{c} ctxRecovered \hat{c} | ϵ

matched \longrightarrow matched matched | \hat{c} matched \check{c} | siteRecovered | ϵ

 L_R^r : recoveredCtx \longrightarrow recoveredCtx $\hat{c} \mid$ recoveredCtx $\hat{c} \mid$ recoveredCtx $\hat{c} \mid$ recoveredCtx $\hat{c} \mid \epsilon$

$$L_D \cap L_C \cap L_R^r = L_D \cap L_C = L_{DC}$$
²⁴

Regularize *L*_{DCR}

Regularize L_D to L_D^r :

Regularize *L*_{DCR}

We keep L_c unchanged.

$$L_{DCR} = L_D \cap L_C \cap L_R \Longrightarrow L_D^r \cap L_C \cap L_R^r = L_D^r \cap L_C$$

 L_D^r is equivalent to the following DFA (Deterministic Finite Automata):

Verify selection criterion CS-C1, CS-C2, and CS-C3 over-approximately

- Replace L_F with L_D^r
- Use balanced edges to ensure CS-C2
- Assume every *this* variable are not **null** (some objects can flow to it).
- Replace CS-C1 and CS-C3 with the following condition: (n in method M)

$$\langle \texttt{this}^{\mathtt{M}}, \texttt{flows} \rangle \rightarrowtail^+ \langle n, q \rangle \rightarrowtail^+ \langle \texttt{this}^{\mathtt{M}}, \overline{\texttt{flows}} \rangle$$

The DFA has two properties:

- **PROP-O**. Let *O* be an object created in a method M. Then $\langle \texttt{this}^{M}, \texttt{flows} \rangle \rightarrow^{+} \langle O, \mathcal{O} \rangle \iff \langle O, \mathcal{O} \rangle \rightarrow^{+} \langle \texttt{this}^{M}, \overline{\texttt{flows}} \rangle$ always holds.
- **PROP-V.** Let v be a variable defined in a method M. Then $\langle \texttt{this}^{M}, \texttt{flows} \rangle \rightarrow^{+} \langle v, q \rangle \iff \langle v, \overline{q} \rangle \rightarrow^{+} \langle \texttt{this}^{M}, \overline{\texttt{flows}} \rangle$ always holds, where $q \in \{\texttt{flows}, \overline{\texttt{flows}}\}$ (since v is a variable).

To verify
$$n \in R(\mathcal{O}) \lor n \in R(\mathsf{flows}) \cap R(\overline{\mathsf{flows}})$$

We compute R using following rules over PAG = (N, E)

Theorem (Precision-preserving): *k*CFA produces exactly the same points-to information when performed with selective context-sensitivity under P3Ctx.

Implementation

P3Ctx is implemented on top of SelectX in about 500 LOC.

Artifact (including source): <u>https://zenodo.org/records/11061892</u>

Evaluation: Settings

- Machine: Intel[®] Xeon[®] W-2245 3.90GHz, 512GB RAM
- OS: Ubuntu 20.04.3 LTS (Focal Fossa)
- Baselines: SelectX (SAS'21), Zipper (OOPSLA'18), kCFA

- Benchmarks: 13 benchmarks from the latest DaCapo benchmark suite
- Java library: JRE1.8.0_31

the Da Capo benchmark suite

Evaluation: Precision

Precision loss of Zipper-guided 2CFA

P3Ctx is precision preserving.

Precision Loss: P3Ctx < SelectX < Zipper

Evaluation: Speedups

We compute speedups by considering all analysis time including pre-analysis time.

For 1CFA (most widely used): P3Ctx > Zipper >SelectX For 2CFA: Zipper >SelectX >P3Ctx No one can make 3CFA scalable

Summary

Contribution 1: $L_{DCR} = L_D \cap L_c \cap L_R$

- a new CFL-reachability formulation for kCFA with built-in callgraph construction.
- show that kCFA is a special kind of context-sensitive language

Contribution 2: *P*3*Ctx*

• the first precision-preserving acceleration technique for *k*CFA.

Please refer to our paper for more technical details!

Contact:

hedongjie15@gmail.com