ECOOP 2024 Vienna Austria

A CFL-Reachability Formulation of Callsite-Sensitive Pointer Analysis with Built-in Onthe-Fly Call Graph Construction

Dongjie He^{1,2}, Jingbo Lu^{1,3}, and Jingling Xue¹

SECTREND

Contributions

□ A new CFL-reachability formulation of *kCFA* (call-site sensitive pointer analysis) for Java, supporting on-the-fly callgraph construction.

 \blacksquare $L_D \cap L_C \cap L_R$

 \Box P3Ctx: the first precision-preserving selective context sensitivity technique to accelerate *k*CFA.

A Brief Introduction to Pointer Analysis

q Programs (in C/C++/Java, …) are full of **pointers** or **references** \square Answer the following two problems

(1) What can a pointer point to? (2) Can *a* and *b* be aliases?

A Brief Introduction to Pointer Analysis

q Programs (in C/C++/Java, …) are full of **pointers** or **references** \Box Answer the following two problems

(1) What can a pointer point to? (2) Can *a* and *b* be aliases?

\Box Foundation of many Static Program Analysis

 \square Implementations in many popular frameworks

Motivation

Q*k*CFA has two formulations:

Andersen-style Inclusion-based formulation for kCFA

$$
\begin{array}{c}\n\mathbf{x} = \mathbf{new} \top / / O \quad \text{ctx} \in \text{MethodCtx(M)} \\
\langle O, \lceil \text{ctx} \rceil_{hk} \rangle \in \text{PTS}(\mathbf{x}, \text{ctx}) \qquad [\text{I-NEW}] \qquad \mathbf{x} = \mathbf{y} \quad \text{ctx} \in \text{MethodCtx(M)} \\
\mathbf{x} = \mathbf{y} \cdot \mathbf{f} \quad \text{ctx} \in \text{MethodCtx(M)} \\
\langle O, \text{htx} \rangle \in \text{PTS}(\mathbf{y}, \text{ctx}) \qquad \mathbf{x} \cdot \mathbf{f} = \mathbf{y} \quad \text{ctx} \in \text{MethodCtx(M)} \\
\langle O, \text{htx} \rangle \in \text{PTS}(\mathbf{x}, \text{ctx}) \qquad \langle O, \text{htx} \rangle \in \text{PTS}(\mathbf{x}, \text{ctx}) \qquad [\text{I-STORE}] \\
\mathbf{PTS}(O.\mathbf{f}, \text{htx}) \subseteq \text{PTS}(\mathbf{x}, \text{ctx}) \qquad [\text{I-LOAD}] \qquad \mathbf{x} = \mathbf{m}(a_1, \ldots, a_n) \quad // \quad \quad \quad \text{ctx} \in \text{MethodCtx(M)} \quad \text{ctx}' = [\text{c}::\text{ctx}]_{k} \quad [\text{I-SCALL}] \\
\langle \text{ctx}' \in \text{MethodCtx(m)} \quad \text{PTS}(\text{ret}^m, \text{ctx}') \subseteq \text{PTS}(\mathbf{x}, \text{ctx}) \qquad [\text{I-SCALL}] \\
\forall i \in [1, n] : \text{PTS}(a_i, \text{ctx}) \subseteq \text{PTS}(\text{tr}^m, \text{ctx}') \qquad \text{t} = \text{DaynTypeOf}(O) \quad \text{m}' = \text{dispatch}(\text{c}, \text{t}) \quad \text{ctx}' = [\text{c}::\text{ctx}]_{k} \quad [\text{I-VCALL}] \\
\langle O, \text{htx} \rangle \in \text{PTS}(\text{this}^m, \text{ctx}') \quad \forall i \in [1, n] : \text{PTS}(a_i, \text{ctx}) \subseteq \text{PTS}(\text{tr}^n, \text{ctx}') \quad \text{t} \end{array}\n\end{array}
$$

Widely adopted in frameworks like Soot/Spark, WALA, DOOP, QILIN, …

Sridharan's CFL-reachability formulation for *k*CFA

$$
L_{FC} = L_F \cap L_C
$$

flowsto \longrightarrow new flows* flows \longrightarrow assign | store[f] alias load[f] L_F : alias \longrightarrow flowsto flowsto
flowsto \longrightarrow flows^{*} new $\frac{1}{\text{flows}} \longrightarrow \frac{1}{\text{assign}} |\overline{\text{load}[f]} \text{ alias store}[f]|$

realizable \longrightarrow exit entry

-
- L_C : exit \longrightarrow exit balanced $|\text{ exit } \check{c}| \in$
entry \longrightarrow entry balanced $|\text{ entry } \hat{c}| \in$

balanced \longrightarrow balanced balanced $|\hat{c}$ balanced $\check{c} | \epsilon$

PAG construction rules

 $\frac{x = new T // O}{O \xrightarrow{new} x}$ [P-NEW] $\frac{x = y}{v \xrightarrow{assign} x}$ [P-ASSIGN] $\frac{x = y.t}{v \xrightarrow{load[f]} x}$ [P-LOAD] $\cfrac{x.f = y}{y \xrightarrow{\text{store}[f]} x} \quad [P\text{-STORE}] \quad \cfrac{x = m(a_1, ..., a_n) // c}{\forall i \in [1, n] : a_i \xrightarrow{\text{assign}} p_i^m \quad \text{ret}^m \xrightarrow{\text{assign}} x} \quad [P\text{-SCALL}]$ $\frac{x = r.m(a_1, ..., a_n) // c \t m' is a target of this call site}{r \xrightarrow{assign} this^{m'} \t ret^{m'} \xrightarrow{assign} x \t \forall i \in [1, n] : a_i \xrightarrow{assign} p_i^{m'} } [P\text{-VCALL}]$

Inverse edge

Call dispatch

Motivation

\Box *kCFA* has two formulations:

- Andersen-style inclusion-based formulation
- Sridharan's CFL-reachability formulation $L_F \cap L_C$

\Box The two formulation are not equally precise.

The 2nd is less precise than the $1st$.

Some examples to show precision loss in L_{FC}

Using a (Most Precise) Call Graph Constructed on the Fly or in Advance

```
1 class E {<br>
2 void foo(G p) {<br>
11 E e1 = new E(); // E1<br>
3 Object v = p.g; 12 w.g = e1;<br>
4 }}<br>
5 class F extends E {<br>
14 F f1 = new F(); // F1
 6 void foo(G q) { } 15 w.g = f1;
```
Spurious value flow in L_{FC} **formulation** $E1 \xrightarrow{\text{new}} e1 \xrightarrow{\text{store}[g]} w \xrightarrow{\overline{\text{new}}} G1 \xrightarrow{\text{new}} w \xrightarrow{\text{load}[g]} x \xrightarrow{\text{assign}} \text{this}^{E:foo()}$

Some examples to show precision loss in L_{FC}

Using a (Most Precise) Call Graph Constructed on the Fly or in Advance

L_{EC} also leads applications built upon it to lose precision, e.g., Selectx

Jingbo Lu, Dongjie He, and Jingling Xue. Selective Context-Sensitivity for *k*CFA with CFL-Reachability. 28th International Static Analysis Symposium (SAS'21).

Motivation

Q*k*CFA has two formulations:

- Andersen-style inclusion-based formulation
- Sridharan's CFL-reachability formulation $L_F \cap L_C$

\Box The two formulation are not equally precise.

The 2nd is less precise than the $1st$.

 \Box We aim to develop a precision-preserving selective context sensitivity technique to accelerate *k*CFA.

*L_{DCR}***: A New CFL-Reachability Formulation for** *k***CFA**

 L_{DCR} supports built-in on-the-fly call graph construction

Challenges

- **CH1**: how to pass r to this m ?
- **CH2**: how to establish a CFL-reachability path from a_i to p_i under \bm{C} while associating to r to trigger dynamic dispatch?
- **CH3**: How to pass a_i to p_i without changing context \mathbf{C} ?

How?

$L_{DCR} = L_D \cap L_C \cap L_R$ (explained shortly)

We address these challenges by formulating L_{DCR} as $L_D \cap L_C \cap L_R$

recovered Ctx \longrightarrow recovered Ctx \hat{c} | recovered Ctx \check{c} | recovered Ctx site Recovered | ϵ

siteRecovered \longrightarrow \hat{c} ctxRecovered \check{c} L_R :

ctxRecovered \longrightarrow matched ctxRecovered | ctxRecovered matched | \check{c} ctxRecovered \hat{c} | ϵ

matched \longrightarrow matched matched $|\hat{c}$ matched $\check{c}|$ site Recovered $|\epsilon|$

New PAG Construction Rules for $L_{DCR} = L_D \cap L_C \cap L_R$

14

Address CH1 and CH2 with L_D and L_C

Address CH1 and CH2 with L_D and L_C

address **CH2** by modeling parameter passing as stores and loads, and also enforce L_C

$$
L_{DC}=L_D\cap L_C
$$

O2 cannot flow to v

$$
\begin{CD} @>1\xrightarrow{\text{new}[0]} @>01\xrightarrow{\text{assign}} @>1\xrightarrow{\text{circle}[f]} @<\overbrace{\text{new}[D]} @>1\xrightarrow{\text{new}[D]} @<\overbrace{\text{store}[1]} @<\overbrace{\text{assign}} @<\overbrace{\text{assign}} @<\overbrace{\text{new}[A]} @<\overbrace{\text{assign}} @<\overbrace{\text{align}} @<\overbrace{\text{align}} @<\overbrace{\text{display the number of } @<\overbrace{\text{signal}} @<\overbrace{\text{data}} @<\overbrace{\text{data
$$

L_{DC} is not precise

Imprecision of L_{DC} **caused by an incorrect dispatch site**

L_{DC} is not precise

Imprecision of L_{DC} **caused by an incorrect dispatch context**

 $K1 \xrightarrow{\text{new}[K]} k1 \xrightarrow{\text{assign}} k \xrightarrow{\text{store}[1]} j \xrightarrow{\text{assign}} j1 \xrightarrow{\text{new}[J]} J1 \xrightarrow{\text{new}[J]} j1 \xrightarrow{\text{new}[J]} j1 \xrightarrow{\text{assign}} j \xrightarrow{\text{assign}} j \# c8 \xrightarrow{\text{dispatch}[J]} \text{this}^{\text{id}} \xrightarrow{\text{load}[1]}$ $p \xrightarrow{\text{store}[0]} \text{this}^{\text{id}} \xrightarrow{\text{dispatch}[J]} j \# \text{c}8 \xrightarrow{\overline{\text{assign}}} j \xrightarrow{\overline{\text{assign}}} j1 \xrightarrow{\text{new}[J]} J1 \xrightarrow{\text{new}[J]} j1 \xrightarrow{\text{assign}} j \xrightarrow{\text{assign}} v \xrightarrow{\text{assign}} v1$ $KL \xrightarrow{new[K]} k1 \xrightarrow{\text{assign}} k \xrightarrow{\text{store}[1]} j \xrightarrow{\overline{\text{assign}}} j1 \xrightarrow{\overline{\text{new}[J]}} J1 \xrightarrow{\text{new}[J]} j1 \xrightarrow{\text{assign}} j \xrightarrow{\text{assign}} j \xrightarrow{\text{assign}} j \xrightarrow{\text{dispatch}[J]} \text{this}^{\text{id}} \xrightarrow{\text{load}[1]}$ $p \xrightarrow{\text{store}[0]} \text{this}^{\text{id}} \xrightarrow{\text{dispatch}[J]} j \text{#c8} \xrightarrow{\text{assign}} j \xrightarrow{\text{assign}} j1 \xrightarrow{\text{new}[J]} J1 \xrightarrow{\text{new}[J]} j1 \xrightarrow{\text{new}[J]} j1 \xrightarrow{\text{assign}} j \xrightarrow{\text{assign}} v2$

Spurious

Address CH3 by also enforcing L_R

Ensure come back to the same callsite under the same context.

L_{DCR} is precise

Eliminate imprecision of L_{DC} **caused by an incorrect dispatch site**

L_{DCR} is precise

Eliminate imprecision of !"# **caused by an incorrect dispatch context**

\Box A new CFL-reachability formulation for *k*CFA with built-in callgraph construction

QDemonstrating that KCFA is a special kind of context-sensitive language, i.e., the intersection of multiple CFLs.

P3Ctx: An L_{DCR} -based technique for accelerating *k*CFA

Selective Context-Sensitivity

Only apply context-sensitivity to **precision-critical** variables/objects

Criterion of precision critical nodes

CS-C1 : $L_F(p_{O,n,v}) \in L_F$ $CS-C2: L_C(p_{O,n}) \in L_C \wedge L_C(p_{n,v}) \in L_C$ **CS-C3**: $L_C^{en}(p_{O,n}) \neq \epsilon \wedge L_C^{ex}(p_{n,v}) \neq \epsilon$

Like L_{FC} , L_{DCR} is also undecidable. Need Regularization.

Regularize L_{DCR}

Regularize L_R to L_R^r :

recovered Ctx \longrightarrow recovered Ctx \hat{c} | recovered Ctx \check{c} | recovered Ctx site Recovered | ϵ

siteRecovered \longrightarrow \hat{c} ctxRecovered \check{c} L_R :

ctxRecovered \longrightarrow matched ctxRecovered | ctxRecovered matched | \check{c} ctxRecovered \hat{c} | ϵ

matched \longrightarrow matched matched $|\hat{c}$ matched $\check{c}|$ siteRecovered $|\epsilon|$

recovered $\mathsf{Ctx}\quad\longrightarrow\quad$ recovered $\mathsf{Ctx}\ \hat{c}\ |\$ recovered $\mathsf{Ctx}\ \check{c}\ |\$ recovered $\mathsf{Ctx}\ \check{\overline{\mathcal{C}}}\ |\ \epsilon$ L_R^r :

$$
L_D \cap L_C \cap L_R^r = L_D \cap L_C = L_{DC}
$$

Regularize L_{DCR}

Regularize L_D to L_D^r :

Regularize L_{DCR}

We keep L_c unchanged.

$$
L_{DCR} = L_D \cap L_C \cap L_R \Longrightarrow L_D^r \cap L_C \cap L_R^r = L_D^r \cap L_C
$$

 L_D^r is equivalent to the following DFA (Deterministic Finite Automata):

P3Ctx: An L_{DCR} -based technique for accelerating *k***CFA**

Verify selection criterion CS-C1, CS-C2, and CS-C3 over-approximately

- Replace L_F with L_D^r
- § Use balanced edges to ensure **CS-C2**
- § Assume every *this* variable are not **null** (some objects can flow to it).
- Replace CS-C1 and CS-C3 with the following condition: (n in method M)

$$
\Big\vert\, \langle \texttt{this}^\texttt{M}, \textsf{flows}\rangle \rightarrowtail^+ \langle n, q\rangle \rightarrowtail^+ \langle \texttt{this}^\texttt{M}, \overline{\textsf{flows}}\rangle
$$

P3Ctx: An L_{DCR} -based technique for accelerating KCFA

 $\langle \texttt{this}^\texttt{M}, \textsf{flows} \rangle \rightarrowtail^+ \langle n, q \rangle \rightarrowtail^+ \langle \texttt{this}^\texttt{M}, \overline{\textsf{flows}} \rangle$ equivalent to $n \in R(\mathcal{O}) \quad \lor \quad n \in R(\text{flows}) \cap R(\text{flows})$ where $n \in R(s)$ means $\langle \text{this}^M, \text{flows} \rangle \rightarrow^+ \langle n, s \rangle$ for some M.

The DFA has two properties:

- **PROP-0.** Let O be an object created in a method M. Then $\langle \text{this}^M, \text{flows} \rangle \rightarrow^+ \langle O, \mathcal{O} \rangle \Longleftrightarrow$ $\langle O, \mathcal{O} \rangle \rightarrow^+ \langle \text{this}^M, \overline{\text{flows}} \rangle$ always holds.
- **PROP-V.** Let v be a variable defined in a method M. Then $\langle \text{this}^M, \text{flows} \rangle \rightarrow^+ \langle v, q \rangle \Longleftrightarrow$ $\langle v, \overline{q} \rangle \rightarrow^+ \langle \text{this}^M, \overline{\text{flows}} \rangle$ always holds, where $q \in \{\text{flows}, \overline{\text{flows}}\}$ (since v is a variable).

P3Ctx: An L_{DCR} -based technique for accelerating *k***CFA**

To verify
$$
[n \in R(\mathcal{O}) \quad \vee \quad n \in R(\text{flows}) \cap R(\text{flows})]
$$

We compute R using following rules over PAG = (N, E)

$$
n_1 \underset{\hat{c}}{\rightarrow} \text{this}^{\text{M}} \in E
$$
\n
$$
\text{this}^{\text{M}} \in R(\text{flows}) \quad \text{flows} \in R^{-1}(\text{this}^{\text{M}})
$$
\n
$$
n_1 \overset{\ell}{\rightarrow} n_2 \in E \quad q_1 \in R^{-1}(n_1) \quad \delta(q_1, \ell) = q_2
$$
\n
$$
n_2 \in R(q_2) \quad q_2 \in R^{-1}(n_2)
$$
\n
$$
n_1 \underset{\hat{c}}{\rightarrow} \text{this}^{\text{M}} \in E \quad \text{this}^{\text{M}} \underset{\hat{c}}{\rightarrow} n_2 \in E \quad \text{flows} \in R^{-1}(\text{this}^{\text{M}})
$$
\n
$$
n_1 \overset{\text{balanced}}{\rightarrow} n_2 \in E
$$
\n
$$
\text{Finally} \quad n_2 \in E \quad \text{Thus}^{\text{M}} \in E \quad \text{Thus}^{\text{M}} \in E \quad \text{Thus}^{\text{M}} \in E \quad \text{Thus}^{\text{M}} \in E
$$

Theorem (Precision-preserving): *kCFA* produces exactly the same points-to information when performed with selective context-sensitivity under P3Ctx.

P3Ctx is implemented on top of SelectX in about 500 LOC.

Artifact (including source): <https://zenodo.org/records/11061892>

Evaluation: Settings

- Machine: Intel® Xeon® W-2245 3.90GHz, 512GB RAM
- OS: Ubuntu 20.04.3 LTS (Focal Fossa)
- **Baselines**: SelectX (SAS'21), Zipper (OOPSLA'18), *kCFA*

- § **Benchmarks**: 13 benchmarks from the latest **DaCapo benchmark suite**
- Java library: JRE1.8.0_31

the **DaCapo** benchmark suite

Evaluation: Precision

P3Ctx is precision preserving.

Precision Loss: P3Ctx < SelectX < Zipper

Evaluation: Speedups

We compute speedups by considering all analysis time including pre-analysis time.

For 1CFA (most widely used): P3Ctx > Zipper >SelectX For 2CFA: Zipper >SelectX >P3Ctx No one can make 3CFA scalable

Summary

Contribution 1: $L_{DCR} = L_D \cap L_C \cap L_R$

- a new CFL-reachability formulation for kCFA with built-in callgraph construction.
- show that $kCFA$ is a special kind of context-sensitive language

Contribution 2: P3Ctx

 \blacksquare the first precision-preserving acceleration technique for k CFA.

QPlease refer to our paper for more technical details!

q**Contact:**

hedongjie15@gmail.com