
Understanding and Detecting Evolution-Induced Compatibility
Issues in Android Apps

Dongjie He
State Key Laboratory of Computer
Architecture, Institute of Computing

Technology, CAS
University of Chinese Academy of

Sciences
Beijing, China

hedongjie@ict.ac.cn

Lian Li∗
State Key Laboratory of Computer
Architecture, Institute of Computing

Technology, CAS
University of Chinese Academy of

Sciences
Beijing, China
lianli@ict.ac.cn

Lei Wang
State Key Laboratory of Computer
Architecture, Institute of Computing

Technology, CAS
University of Chinese Academy of

Sciences
Beijing, China

wanglei2011@ict.ac.cn

Hengjie Zheng
State Key Laboratory of Computer
Architecture, Institute of Computing

Technology, CAS
University of Chinese Academy of

Sciences
Beijing, China

zhenghengjie@ict.ac.cn

Guangwei Li
State Key Laboratory of Computer
Architecture, Institute of Computing

Technology, CAS
University of Chinese Academy of

Sciences
Beijing, China

liguangwei@ict.ac.cn

Jingling Xue
University of New South Wales
School of Computer Science and

Engineering
Sydney, Australia

jingling@cse.unsw.edu.au

ABSTRACT
The frequent release of Android OS and its various versions bring
many compatibility issues to Android Apps. This paper studies
and addresses such evolution-induced compatibility problems. We
conduct an extensive empirical study over 11 different Android
versions and 4,936 Android Apps. Our study shows that there are
drastic API changes between adjacent Android versions, with aver-
agely 140.8 new types, 1,505.6 new methods, and 979.2 new fields
being introduced in each release. However, the Android Support
Library (provided by the Android OS) only supports less than 23%
of the newly added methods, with much less support for new types
and fields. As a result, 91.84% of Android Apps write additional
code to support different OS versions. Furthermore, 88.65% of the
supporting codes share a common pattern, which directly com-
pares variable android.os.Build.VERSION.SDK_INT with a constant
version number, to use an API of particular versions.

Based on our findings, we develop a new tool called IctApiFinder,
to detect incompatible API usages in Android applications. Ic-
tApiFinder effectively computes the OS versions on which an API
may be invoked, using an inter-procedural data-flow analysis frame-
work. It detects numerous incompatible API usages in 361 out of
1,425 Apps. Compared to Android Lint, IctApiFinder is sound and

∗Corresponding author

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ASE ’18, September 3–7, 2018, Montpellier, France
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5937-5/18/09. . . $15.00
https://doi.org/10.1145/3238147.3238185

able to reduce the false positives by 82.1%. We have reported the is-
sues to 13 Apps developers. At present, 5 of them have already been
confirmed by the original developers and 3 of them have already
been fixed.

CCS CONCEPTS
• Software and its engineering → Automated static analysis;
Software reliability; Software safety;

KEYWORDS
Android compatibility, incompatible API usage, Android evolution
ACM Reference Format:
Dongjie He, Lian Li, Lei Wang, Hengjie Zheng, Guangwei Li, and Jingling
Xue. 2018. Understanding and Detecting Evolution-Induced Compatibility
Issues in Android Apps. In Proceedings of the 2018 33rd ACM/IEEE Inter-
national Conference on Automated Software Engineering (ASE ’18), Septem-
ber 3–7, 2018, Montpellier, France. ACM, New York, NY, USA, 12 pages.
https://doi.org/10.1145/3238147.3238185

1 INTRODUCTION
Android is the most popular mobile operating system with over
80% market share [10]. The number of Android applications is
increasing at an alarming speed, with about 35,000 new Apps re-
leased on Google Play every month [1]. However, Android OS is
released frequently and it is a well-known challenge for the ap-
plication developers to deal with compatibility issues on different
OS versions [27, 39]. This challenge is now a hot topic on internet
forums such as Stack Overflow (414 different topics), and the de-
velopers have to deal with complaints from users about the poor
compatibility of their Apps frequently.

There are no mature tools to detect evolution-induced compat-
ibility issues for Android Apps, i.e., compatibility issues caused
by Android system evolution. Existing studies have investigated

167

https://doi.org/10.1145/3238147.3238185
https://doi.org/10.1145/3238147.3238185

ASE ’18, September 3–7, 2018, Montpellier, France Dongjie He, Lian Li, Lei Wang, Hengjie Zheng, Guangwei Li, and Jingling Xue

several aspects of the related issues. For example, previous works
[37, 41, 44] try to understand software reuses in Android Apps and
find them heavily depend on Android API. McDonnell et al.[36]
studied how fast Android API evolves and the impact of API evo-
lution on the compatibility issues of Android Apps. Li et al.[30]
studied inaccessible Android APIs and concluded that inaccessible
APIs used in Apps are neither forward nor backward compati-
ble. FicFinder[47] uses API-context pairs (manually extracted from
known compatibility issues) to detect unknown fragmentation-
induced compatibility issues. Although these works are helpful in
understanding evolution-induced compatibility issues for Android
Apps, little is known on how developers fix such issues, whether
these issues are common in Apps and what are their root causes. In
addition, existing studies have not investigated these issues down
to the source code level. Hence, they cannot provide deeper in-
sights (e.g., common fixing patterns) to understand and mitigate
evolution-induced compatibility issues.

To better understand evolution-induced compatibility issues in
Android Apps, we conduct an extensive empirical study over the
11 most popular Android OS versions and 4,936 Android Apps. We
find that 91.84% of Android Apps write specific code to deal with
evolution-induced compatibility issues. This is due to the drastic
API changes induced by Android evolution and the insufficient
support from the Android Support Library: there are 140.8 new
types, 1,505.6 new methods, and 979.2 new fields being introduced
in each new SDK release and only 21.60% new types, 22.74% new
methods, and 5.36% fields are supported by the Support Library.
Furthermore, we find that fixing evolution-induced compatibility
issues in Android Apps is usually very simple: 88.65% of them
compare the variable android.os.Build.VERSION.SDK_INT, abbreviated
as SDK_INT, with a constant integer value directly to check the
versions of the underlying Android OS. We believe these findings
can provide guidance to detect, diagnose and fix evolution-induced
compatibility issues.

Based on our findings, we develop IctApiFinder, a new tool to
automatically detect incompatible API usages in Android Apps.
Incompatible API usages are one type of evolution-induced com-
patibility issues which invoke API methods not supported by the
underlying Android versions. They are serious bugs which often
crash the Apps and throw “java.lang.NoSuchMethodError” excep-
tions. IctApiFinder computes on which Android versions each API
can be invoked, using an inter-procedural data-flow analysis frame-
work. It then checks whether an API invocation is incompatible
or not by examining each specific Android SDK version. We have
implemented IctApiFinder in Soot[46] and have applied it to 1,425
Android Apps downloaded from F-Droid[8], where 361 Apps have
been found to be problematic. We have manually analyzed the bug
reports from 20 randomly selected Apps, and have found that our
tool could effectively reduce 82.1% false positives compared to An-
droid Lint, a tool available in Android SDK. We have reported our
findings to their original developers for 13 of the 20 Apps: 5 re-
ported issues have been acknowledged by their original developers,
and 3 of them are considered as critical bugs which have already
been fixed. Note that one already-fixed bug is actually caused by
an external library, which cannot be found by Android Lint, and
is also difficult to diagnose for the developers. To summarize, this
paper makes the following contributions:

• We conduct the first empirical study of evolution-induced
compatibility issues on large-scale, real-world Android Apps
(4,936 Apps and 11 Android OS versions). Our findings can
help to better understand and characterize such issues, and
shed lights on future studies on this topic.

• We propose a new method to automatically detect incompat-
ible API usages in Android Apps, by precisely computing the
reachable Android OS versions for each API (the OS versions
on which the API may be invoked) using an inter-procedural
context-sensitive data-flow analysis framework. Our method
drastically improves the precision of existing tools, reducing
the false positives of Android Lint by 82.1%.

• We design and implement a new tool, IctApiFinder, to auto-
matically detect incompatible API usages in Android Apps.
IctApiFinder have detected incompatible API usage bugs in
361 out of 1,425 Apps. We have reported our findings to
their original developers for 13 randomly-selected Apps, 5
reported issues have been acknowledged and 3 critical issues
have already been fixed.

The rest of this paper is organized as follows: Section 2 presents
the necessary background information. Section 3 describes our
empirical study. We propose our detection method in Section 4
and evaluate it in Section 5. We discuss the threats to validity
in Section 6 and summarize related works in Section 7. Finally,
Section 8 concludes the paper.

2 BACKGROUND
Android is a fast evolving system. The platform provides APIs (i.e.,
Android SDK) to its applications as the programming interfaces.
These interfaces keep changing as Android evolves. By convention,
versions of Android SDKs are differentiated using a unique integer
identifier, named API level [4]. The API level starts from 1, and at
present, the API level of the latest SDK version is 27.

2.1 Declare SDK Versions in Android Apps

Listing 1: Example code snippet to declare SDK versions.
1 <uses-sdk

2 android:minSdkVersion = "10"

3 android:targetSdkVersion = "27"

4 android:maxSdkVersion = "27" />

Android Apps need to declare their supported SDK versions via
the <uses-sdk> element in their manifest files (i.e., AndroidMani-
fest.xml) [48]. As shown in Listing 1, there are 3 attributes given
integer values:

• minSdkVersion. The minSdkVersion value declares the
minimum API level supported by an App. The App will
not be installed on an Android system if its minSdkVersion
value is larger than the API level of the underlying system.

• targetSdkVersion. The targetSdkVersion value defines
the API level that an App targets at. Android adopts the
backward-compatible API behaviors of the declared target
SDK version, even when the App is running on a higher SDK
version. This design aims to ensure consistent behavior of
the Apps on different SDK versions.

• maxSdkVersion. The maxSdkVersion value gives the max-
imum platform API level on which an App can run. This

168

Understanding and Detecting Evolution-Induced Compatibility Issues in Android AppsASE ’18, September 3–7, 2018, Montpellier, France

attribute is already deprecated since Android 2.1 (API level
7).

The declared SDK versions only suggest on which versions an
App can be installed. In practice, App developers commonly use
the runtime value of variable SDK_INT to check the SDK version of
the underlying system [47].

2.2 Android Support Library
Android OS provides the Android Support Library as a basic so-
lution to tackle the increasingly severe evolution-induced com-
patibility issues. This library was firstly released in 2011. It has
since become the most widely used Android library [3]. The An-
droid Support Library consists of a collection of libraries which can
roughly be divided into two groups: compatibility and component
libraries [15].

Compatibility libraries focus on back porting features for new
SDK releases. It provides wrappers for a subset of interfaces (or
types) on different SDK versions. Instead of invoking APIs provided
by the SDK directly, Apps can call the wrappers in the Support
library. As such, Apps developed for a new SDK version may be
able to run on previous SDK versions, without modification. The
major compatibility libraries are v4- and v7-appcompat.

Component libraries implement features that are not part of the
standard framework. These self-contained libraries can be easily
added or removed from a project without concerning for dependen-
cies. The major component libraries include v7-recyclerview and
v7-cardview. In this paper, we focus on the compatibility libraries
since the component libraries do not handle compatibility issues.

2.3 Android Lint
Android Lint is a code scanning tool introduced in ADT (Android
Development Tools) 16. It checks for various potential bugs and
optimization improvements. The tool integrated in the latest version
of Android Studio features more than 200 default checks. One of
them called ApiDetector aims to detect incompatible API usages.
This check scans through all invocations to Android APIs. It warns
about an invocation to a particular API if it is not available on
SDK versions supported by the App, as declared in its manifest file.
Lint ignores code snippets annotated with certain annotations, e.g.,
@TargetApi and @SuppressLint [11]. Although not mentioned
in any documents, we notice that Lint avoids false positives by
ignoring code patterns when an API is invoked in an if statement
whose condition compares variable SDK_INT to an integer value to
check the underlying Android SDK version.

3 EMPIRICAL STUDY
The study tries to address the following three research questions.

• RQ1:(Root cause):What are the root causes of evolution-
induced compatibility issues?

• RQ2:(Issue severity):How common are these issues in real
Android Apps?

• RQ3:(Issuefixing):HowdoAndroid developers fix evolution-
induced compatibility issues in practice?

3.1 Methodology
To answer the above research questions, we collect a large set of
data consisting of 11 Android SDK versions (together with the
Android Support Library in these versions), and 4,936 Apps. This
subsection presents our datasets and analytical methods.

Table 1: List of selected Android SDK versions.

Level Revision Shares # Types # Methods # Fields

16 android-4.1.2_r2.1 1.7% 3,217 30,057 11,679
17 android-4.2.2_r1.2b 2.6% 3,259 30,569 12,004
18 android-4.3_r3.1 0.7% 3,290 31,104 12,512
19 android-4.4_r1.2.0.1 12.0% 3,412 32,139 13,325
21 android-5.0.2_r3 5.4% 3,673 35,426 16,333
22 android-5.1.1_r9 19.2% 3,683 35,568 16,380
23 android-6.0.1_r9 28.1% 3,471 35,239 16,757
24 android-7.0.0_r7 22.3% 3,823 39,773 20,016
25 android-7.1.2_r9 6.2% 3,828 39,896 20,076
26 android-8.0.0_r9 0.8% 4,181 44,307 21,419
27 android-8.1.0_r9 0.3% 4,201 44,455 21,471

3.1.1 Datasets Collection. We consider API levels 16-27 in our
research. TABLE 1 presents the selected Android SDK versions
(Column 2) and their market shares (Column 3). The other versions
are not selected since their market shares are negligible. API level
20 is specific to wearable devices thus it is not included in our
study either [30]. We compile the sources of these SDK versions
downloaded from AOSP [5]. For each version, we extract its SDK
(android.jar) and the corresponding Support Library for further
study. The last three columns in TABLE 1 give the number of types,
methods, and fields in each SDK version, respectively.

We conduct our study using a large set of third-party Apps (in
APK format, without source code) downloaded from the Andro-
Zoo repository [18]. AndroZoo is a specialized repository for the
research community, and we totally download 8,047 Apps from it.
In this study, we only consider Apps targeting our selected API
levels (i.e., targetSdkVersion value ranges from 16 to 27), and
4,936 Apps are selected.

Table 2: List of manually inspected Apps. The 10 Apps in
F-Droid with the most usage counts of variable SDK_INT are
selected.

APP Release KLOC # SDK_INTs

org.telegram.messenger 4.6.0a 324.2 531
com.poupa.vinylmusicplayer 0.16.4.4 35.8 209
org.glucosio.android 1.3.0-FOSS 8.2 195
com.amaze.filemanager 3.2.1 30.3 185
im.vector.alpha 0.8.1 52.5 185
com.github.axet.maps 8.1.0-4-Google 120.9 179
com.biglybt.android.client 1.1.4 483.8 173
eu.kanade.tachiyomi 0.6.8 2.7 165
org.bottiger.podcast 0.160.2 41.9 165
es.usc.citius.servando.calendula 2.5.3 26.3 154

TABLE 2 lists the 10 open-source Apps downloaded from F-
Droid[8] (a popular open-source App store) for manual inspection.
The 10 Apps are selected because they frequently use the variable
SDK_INT, which is commonly used by developers to check specific
SDK versions and address compatibility issues on those versions.
We write a crawler to download all latest version of the total 1,425
Apps in F-Droid. The 10 Apps which use variable SDK_INT for

169

ASE ’18, September 3–7, 2018, Montpellier, France Dongjie He, Lian Li, Lei Wang, Hengjie Zheng, Guangwei Li, and Jingling Xue

the most number of times are chosen. Column 4 gives the usage
counts of variable SDK_INT for each App. We manually inspect the
source codes of the 10 Apps, to understand how developers address
evolution-induced compatibility issues in practice.

3.1.2 Analytical Methods. To answer RQ1, we compare the
differences between any two adjacent SDK versions. Specifically,
we check whether any newly introduced APIs are supported by its
corresponding Android Support library or not. To answer RQ2, we
use Soot[46] to scan the 4,936 Apps downloaded from AndroZoo,
and count how many times the variable SDK_INT is used. In our
experiments, we assume that variable SDK_INT is mostly used to
test the underlying SDK version and address evolution-induced
compatibility issues. We manually inspect the code snippets where
SDK_INT is used for the 10 Apps in TABLE 2, to answer RQ3 and
validate the above assumption.

3.2 Findings

(a) Type

(b) Method

(c) Field

Figure 1: Differences between adjacent SDK versions.

3.2.1 RQ1: Root cause.

• Finding 1: Android SDK version evolution leads to signifi-
cant API changes.

Figure 1 compares the differences between two adjacent SDK ver-
sions. We observe dramatic changes as Android SDK evolves. On
average, 140.8 new types, 1,505.6 new methods and 979.2 new fields
are introduced, as the Android SDK evolves into a new version.

• Finding 2: Android Support Library provides support for
less than 23% of the new introduced APIs.

The Android Support Library is introduced to ease compatibility
issues in the Android ecosystem. We are curious about how well
they address compatibility issues between different SDK versions.
In our research, we compare any two adjacent SDK versions by
checking how many newly introduced APIs (types, methods, and
fields) are supported by the Android Support Library. We conser-
vatively assume that an API is supported by the Android Support

Library if it is used in the library. This gives us an optimistic estima-
tion, since there are also normal usages besides those as wrapper
methods. Disappointingly, the support ratio is only 21.60% for new
types, 22.74% for new methods, and 5.36% for new fields, suggesting
insufficient support to address the prevalent compatibility issues.

Table 3: API changes supported by the Android Support Li-
brary.

#Supported / #New introduced
Adjacent Levels Type Method Field

17vs18 0/67 0/744 0/571
18vs19 6/122 75/1,044 91/813
19vs21 11/265 136/3,383 3/3,022
21vs22 0/10 4/154 0/64
22vs23 2/152 2/1,970 0/823
23vs24 102/355 1,100/4,605 179/3,267
24vs25 1/5 7/132 0/60
25vs26 164/357 2,424/4,450 261/1,350

• Finding 3: Without considering API behavioral changes,
86% of Apps can directly run on the next Android version
without any modification. Thus, evolution-induced compat-
ibility issues are mainly introduced from API behavioral
changes and new features in later SDK versions.

4041

426

71 134 11 14
0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 1~49 50~99 100~499 500~999 >=1000

A
P
K

Figure 2: Distribution of Apps using abandoned APIs.

Figure 2 counts how those APIs abandoned in the next SDK
version are used in Android Apps. The interesting fact is that 4,041
Apps out of the total 4,697 Apps do not use any abandoned APIs.
Hence, if not considering API behavioral changes, we can conclude
that 86% Apps can run on a later SDK version without any mod-
ification. This implies that developers address evolution-induced
compatibility issues mainly because they need to adapt API behav-
ioral changes or use new features in later SDK versions.

Answer to RQ1: To summarize, the main causes of
evolution-induced compatibility issues in Android Apps
are the drastic API changes induced by Android evolution,
and the insufficient support from the Android Support
Library. As a result, App developers often have to deal
with evolution-induced compatibility issues in order to use
latest features and support multiple SDK versions.

170

Understanding and Detecting Evolution-Induced Compatibility Issues in Android AppsASE ’18, September 3–7, 2018, Montpellier, France

3.2.2 RQ2: Issue severity.

• Finding 4: 91.84% of Apps write specific code to address
evolution-induced compatibility issues.

We use Soot [46] to analyze the 4,936 Apps downloaded from
AndroZoo, where 32 Apps cannot be processed. Among the remain-
ing 4,904 Apps, 4,504 Apps use variable SDK_INT (usages in the
Android support libraries, e.g., classes whose name started with
android.support.*, are excluded), suggesting that 91.84% of Apps
check the underlying Android SDK versions to address evolution-
induced compatibility issues in their implementation. We also count
how many times SDK_INT is used in each App. On average, an App
uses variable SDK_INT for 55.45 times (Figure 3).

Figure 3: SDK_INT usage counts in Apps

• Finding 5: Less than 6.74% APIs are frequently used, and
SDK_INT is the most frequently used field.

Figure 4 studies the usages for each Android API: 54,593 APIs
have never been used by the 4,904 Apps we processed, and only
6.74% APIs are used by more than 100 Apps. We have manually
inspected the 66 APIs with more than one million usage numbers.
They can be classified into three categories: 33 APIs belong to
the JDK library, with 18 in java.lang.*, 12 in java.util.* and 3 in
java.io.*; 30 APIs start with android.*, with 8 in android.os.Parcel,
5 in android.util.Log, 4 in android.os.Bundle, 3 in android.content.-

Intent, 2 in android.app.Activity and android.os.Binder, and other
6 in 6 diffrent packages, respectively; the remaining 3 APIs all be-
long to org.json.JSONObject. Moreover, we find that SDK_INT is
the only field with more than one million usage counts, which also
confirms our finding that the Apps developers frequently handle
evolution-induced compatibility issues by themselves.

54593

9811

3099
1533

0

10000

20000

30000

40000

50000

60000

0 1~100 101~1000 1001~4679

A
P
I

Figure 4: Distribution of APIs by usage counts.

Answer to RQ2: Evolution-induced compatibility issues
are very common and about 91.84% of Apps write specific
code to deal with such issues.

3.2.3 RQ3: Issue fixing.

• Finding 6:most fixing patterns are very simple, complicated
patterns are rare.

We have manually inspected the 10 Apps in TABLE 2, and
found several common patterns to address evolution-induced com-
patibility issues. The most common practice is to invoke differ-
ent APIs directly on different versions, according to the runtime
value of SDK_INT. For example, Listing 2 shows a code snippet ex-
tracted from com.amaze.filemanager[2], where the SDKAPImethod
quitSafely, instead of quit, is used after API level 18.

Listing 2: Common practice to address evolution-induced in-
compatibility issues.
1 if (SDK_INT >= 18) {
2 // let it finish up first with what it's doing
3 handlerThread.quitSafely();
4 } else
5 handlerThread.quit();

Frequently, the developers introduce wrapper methods to deal
with evolution-induced compatibility issues. The code snippet (also
extracted from com.amaze.filemanager[2]) in Listing 3 invokes dif-
ferent password encrypt wrappers (CryptUtil.aesEncryptPassword
and CryptUtil.rsaEncryptPassword) for different SDK versions, where
different SDK APIs are invoked by the wrappers accordingly.

Listing 3: Address evolution-induced compatibility issues
using wrapper methods.
1 if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.M) {
2 return CryptUtil.aesEncryptPassword(plainText);
3 } else if (Build.VERSION.SDK_INT >= 18) {
4 return CryptUtil.rsaEncryptPassword(context, plainText);
5 } else
6 return plainText;

In addition to directly check the value of SDK_INT in an if state-
ment, developers sometimes check the value of SDK_INT using dif-
ferent forms of expressions, e.g., ternary expressions. Listing 4 uses
ternary expressions to decide the frame size for different Android
versions.

Listing 4: Address evolution-induced compatibility issues
using ternary expression.
1 LayoutHelper.createFrame(Build.VERSION.SDK_INT >= 21 ? 56 : 60,
2 Build.VERSION.SDK_INT >= 21 ? 56 : 60, (LocaleController.isRTL
3 ? Gravity.LEFT : Gravity.RIGHT) | Gravity.BOTTOM,
4 LocaleController.isRTL ? 14 : 0, 0, LocaleController.isRTL ? 0 : 14, 14);

Complicated patterns are usually applied to adapt a complete new
Type. These patterns are rare in real-world Apps (non-exist in the 10
Apps we analyze), but very common in the Android Support Library.
For example, android.support.v4.view.ViewCompat is a type used to
adapt different versions of type android.view.View. Listing 5 shows
the simplified code snippet. It uses different inner types to wrap
the APIs for distinct SDK versions (lines 2-20), then initializes the
static instance according to a particular SDK version (lines 21-33).

• Finding 7: The most common practice (88.65% of usages)
checks the underlying SDK version by comparing the vari-
able SDK_INT directly with a constant API level value.

We have manually inspected all usages of variable SDK_INT in
the 10 Apps in TABLE 2. There are 1,249 usages in total in the
source codes of the 10 Apps, usages in external libraries excluded.
The usage patterns can be classified into 3 categories: SDK_INT is

171

ASE ’18, September 3–7, 2018, Montpellier, France Dongjie He, Lian Li, Lei Wang, Hengjie Zheng, Guangwei Li, and Jingling Xue

directly compared with a constant value, and the comparison result
is used in conditions of if statements (C1); the value of SDK_INT is
propagated to other variables appearing in if conditions (e.g., via
field stores and loads), this is also a complicated pattern involving
complex dependencies (C2); control-flow irrelevant usages like log-
printing (C3).

Listing 5: Complicated fixing strategy in ViewCompat.
1 public class ViewCompat {
2 interface ViewCompatImpl {
3 void setElevation(View view, float elevation);
4 }
5 static class BaseViewCompatImpl implements ViewCompatImpl {
6 @Override
7 public void setElevation(View view, float elevation) {
8 }
9 }
10 static class EclairMr1ViewCompatImpl extends BaseViewCompatImpl {...}
11 static class GBViewCompatImpl extends EclairMr1ViewCompatImpl {...}
12
13 static class KitKatViewCompatImpl extends JbMr2ViewCompatImpl {...}
14 static class LollipopViewCompatImpl extends KitKatViewCompatImpl {
15 public void setElevation(View view, float elevation) {
16 view.setElevation(elevation);
17 }
18 }
19 ...
20 static class Api24ViewCompatImpl extendsMarshmallowViewCompatImpl {...}
21 static final ViewCompatImpl IMPL;
22 static {
23 final int version = android.os.Build.VERSION.SDK_INT;
24 if (BuildCompat.isAtLeastN()) {
25 IMPL = new Api24ViewCompatImpl();
26 }
27 else if (version >= 21) {
28 IMPL = new LollipopViewCompatImpl();
29 }
30 else {
31 IMPL = new BaseViewCompatImpl();
32 }
33 }
34 public static void setElevation(View view, float elevation) {
35 IMPL.setElevation(view, elevation);
36 }
37 }

TABLE 4 gives the usage counts of variable SDK_INT by cate-
gories.Most of the usages (88.44%) are control flow-related (Columns
2 and 3), i.e., the value of SDK_INT is used directly or indirectly in
if conditions. In addition, most usages (78.4%) adopt the simple
common practiceC1 (i.e., directly compare variable SDK_INT with a
constant value) to check the SDK version of the underlying system.
The App org.telegram.messenger is an exception, it stores the value
of SDK_INT to static field Util.SDK_INT, which is then checked for
84 times. There are also many statements in that App printing the
value of SDK_INT. For the other 9 Apps, the percentage of control
flow-related usages (Columns 2 and 3), and the percentage of the
simple common practiceC1 (Column 2 only) are 97.14% and 95.81%,
respectively.

Answer to RQ3: Most evolution-induced compatibility
issue fixing patterns are very simple. In particular, the
most common practice (78.4%) checks the SDK version of
the underlying system by directly comparing the variable
SDK_INT with a constant value.

Table 4: Categorized Usage counts of variable SDK_INT.

App Name #C1 #C2 #C3

org.telegram.messenger 409 84 109
com.poupa.vinylmusicplayer 48 0 4
org.glucosio.android 5 0 0
com.amaze.filemanager 127 0 1
im.vector.alpha 40 0 3
com.github.axet.maps 39 2 4
com.biglybt.android.client 38 1 1
eu.kanade.tachiyomi 31 0 0
org.bottiger.podcast 80 2 0
es.usc.citius.servando.calendula 27 1 0

4 INCOMPATIBLE API USAGE DETECTION
According to our findings, 91.84% of Apps try to address evolution-
induced compatibility issues by checking the underlying SDK ver-
sion in their implementation. The developers need to use the right
version of API on each supported SDK version. However, this pro-
cess is error-prone and often leads to incompatible API usages. A
query on Google and Stack Overflow using the keyword “Android
NoSuchMethodError” gives us 162,000 results, and 414 topics, respec-
tively (April 17, 2018). It is becoming a prevalent problem. However,
there are no tools to detect these issues precisely and effectively.
As a result, many Android Apps are poorly tested[28].

Android Lint can be used to detect incompatible API usages.
However, it is not commonly used by the developers due to its high
false positive rates. Listing 6 gives an example. The API used on
line 9 is introduced into SDK after level 11, but the minSdkVersion
is set to 10. Hence, a “java.lang.NoSuchMethodError” exception will
be thrown, crashing the App on SDK version 10. For this example,
Android Lint will report two issues, on line 9 and on line 12, respec-
tively. The report on line 12 is a false positive because Lint does
not apply inter-procedural analysis and does not consider context-
sensitivity. In addition, Lint cannot detect incompatible API usages
in external libraries, leading to false negatives. Currently, Android
development uses Gradle[9] as the automated building tool and
Apps rely heavily on external libraries.

Listing 6: Example code snippet with incompatible
API usage.
1 // minSdkVersion: 10; targetSdkVersion 27.
2 public class MainActivity extends Activity {
3 private TextView mView;
4 protected void onCreate(Bundle bundle) {
5 ...
6 if(Build.VERSION.SDK_INT >= 24)
7 wrapper(mView, c, s, null, i);
8 else
9 mView.startDrag(c, s, null, i); // API1 [11, 23]
10 }
11 private wrapper(View v, ClipData c, ...) {
12 v.startDragAndDrop(c, s, o, i); // API2 [24, 27]
13 }
14 }

4.1 Detection Method
We develop a new inter-procedural dataflow analysis to detect
incompatible API usages. Definition 4.1 gives the necessary and
sufficient conditions for incompatible API usages.

Definition 4.1. For any App, the use of an API is incompatible if
and only if it satisfies the following three conditions:

172

Understanding and Detecting Evolution-Induced Compatibility Issues in Android AppsASE ’18, September 3–7, 2018, Montpellier, France

• There exists a SDK version whose API Level is larger than
or equal to the declared minSdkVersion value of the App.

• The API is used by the App on that SDK version.
• The API is not included in the SDK of that particular version.

It is trivial to check the first and last conditions, as implemented
in Android Lint. The challenge lies in how to determine whether
an API is used or not on a given SDK version. We formulate this
challenge into a classical inter-procedural data-flow analysis, which
computes the set of reachable Android versions for each API usage
in a context-sensitive manner.

We compute the set of reachable SDK versions at each program
point for the App under evaluation. At the entry point, the set
includes all SDK versions declared in the manifest file of the APP,
e.g., from minSdkVersion to the largest level 27. This set is up-
dated at program points checking SDK versions. We consider the
common practice where the variable SDK_INT is directly compared
to a constant integer value (Finding 7), and the comparison result
is used as conditions of if statements. These if statements are
referred to as checkpoint statements. The set of reachable SDK ver-
sions in the true or false branch of the checkpoint statement are
updated accordingly. Equations 1-2 give the data flow functions,
where CHKEDi is defined according to the condition of check-
point statements. For example, if the condition is SDK_INT ≤ 24,
thenCHKEDi = {1, 2, · · · , 23} (assuming minSdkVersion is 1) and
CHKEDi = {24, 25, 26, 27}.

INi =
⋃

p∈predi

(OUTp) (1)

OUTi =

INi ∩CHKEDi true branch of checkpoint statement
INi ∩CHKEDi false branch of checkpoint statement
INi otherwise.

(2)
For each usage of APIi , we check whether APIi is included in

any reachable SDK version at the usage point or not. If not, a bug
is reported.

4.2 Implementation

APK

Issue
ReportChecker

Path Tracer

Reporter

Build ICFG

IFDS Solver

SDK-4

paths

android-4.jar

SDK-5

android-5.jar android-27.jar

SDK-27

……

……

<API, available versions>

ICFG

ICFG

<API use, reachable versions>

Figure 5: The Architecture of IctApiFinder.

We implement IctApiFinder (InCompaTible API usage Finder)
in Soot. The tool detects incompatible API usages in Android Apps
by analyzing the .apk file of an App directly.

 5 … …

 6 if (Build.VERSION.SDK_INT >= 24)

 7 wrapper(mView, c, s, null, i);

 8 else

 9 mView.startDrag(c, s, null, i);

 11 private wrapper(View v, ClipData c, ...) {

 12 v.startDragAndDrop(c, s, o, i);

 13 }

10 ... 23 24 ... 27

24 ... 27

CallFlow

ReturnFlow

NormalFlow

CalltoReturnFlow

Figure 6: Illustration example to detect incompatible API us-
ages in Listing 6.

Figure 5 depicts the architecture of our implementation.We build
the inter-procedural control flow graph (ICFG) for Android Apps
using Soot’s SPARK[29] call graph construction algorithm [19].
The inter-procedural data flow solver is implemented on top of
Heros[22], a commonly used IFDS framework[40]. To checkwhether
a given API is included in a particular SDK version or not, we use
Doop[42], a framework for points-to analysis of Java programs, to
extract APIs from SDK (android.jar) file and use a datalog engine,
LogicBlox[17, 23] to load API information for each SDK version.
Previous works[36][48] extract such information from a SDK docu-
ment called api-versions.xml, which is not as accurate [48].

Next, we give a brief description on how the IFDS framework
computes reachable SDK versions at each program point, and how
we detect incompatible API usages using an example.

4.2.1 IFDS Framework. IFDS is a classical context-sensitive inter-
procedural data flow analysis framework. This framework can be
used to find precise solutions to a general class of inter-procedural
data-flow-analysis problems, where the set of data flow facts D is a
finite set and the data flow functions are distributive.

The IFDS framework formulates the dataflow analysis problem
into a general graph reachability problem on a supergraph extended
from ICFG. Nodes are elements in the finite domain of data-flow
facts, and edges encode the semantics of transferring functions.
There are four types of edges: normal-flow edges to propagate data-
flow facts within a procedural; and call-flow edges, return-flow
edges, and call-to-return-flow edges to propagate data-flow facts
inter-procedurally. As shown in Figure 6, for each program point
in the ICFG, there is a set of nodes in the extended supergraph,
where each node represents an SDK version number at a program
point. Edges connect nodes representing the same SDK version
number at successive program points, to propagate the reachable
SDK version to the next program point. At a checkpoint statement
C (line 6), an edge from a node beforeC and afterC exists only if its
corresponding SDK version number satisfies the checked condition.
An SDK version is reachable at a program point if there exists a
path from the entry to its corresponding node of the SDK version
at that program point.

173

ASE ’18, September 3–7, 2018, Montpellier, France Dongjie He, Lian Li, Lei Wang, Hengjie Zheng, Guangwei Li, and Jingling Xue

4.2.2 Detection Example. Figure 6 shows how we detect incom-
patible API usages in the example in Listing 6. At the program
point before line 6, the reachable SDK versions are {10, · · · , 27},
as declared in the manifest file. Line 6 is a checkpoint statement.
According to Equation 2, the reachable SDK versions at line 7 and
line 9 are {24, · · · , 27} and {10, · · · , 23}, respectively. Line 7 in-
vokes the wrapper method. So the reachable SDK versions at line
7, {24, · · · , 27}, are propagated to line 12, along the call-flow edges.

At the checking stage, IctApiFinder does not report the false
positive in line 12 since the API used on line 12 exists in SDK
versions 24-27 according to the extracted information. However,
the API used on line 9 does not exist in SDK 10. Hence, IctApiFinder
reports an incompatible API usage bug on line 9.

5 EVALUATION
In this section, we evaluate IctApiFinder using the total 1,426 real-
world open source Android Apps from F-Droid (a popular open-
source App store). We do not test with the 4,936 Apps from An-
droZoo since it will be difficult to verify the results without source
code information. All experiments are conducted on an Intel(R)
Core(TM) i5-4590 box with 4 CPU cores and 16GB memory. The un-
derlying OS is Ubuntu 16.04.4 LTS. Our evaluation aims to answer
the following two research questions:

• RQ4: precision of IctApiFinder : Can IctApiFinder pro-
vide more precise detection results for Apps developers?

• RQ5: usefulness of IctApiFinder: Can IctApiFinder help
to detect unknown incompatible API usages in real-world
Android Apps? Can it provide useful information for Apps
developers to diagnose and fix incompatible API usage is-
sues?

5.1 RQ4: precision of IctApiFinder

1064

227

48 28 21 19 2 16

0

200

400

600

800

1000

1200

0 1~5 6~10 11~20 21~30 31~40 41~50 51~389

A
P
K
 N
U
M

Figure 7: Distribution of Apps in F-Droid by incompatible
API usage counts

We apply IctApiFinder to all Apps (using the latest version)
available in F-Droid[8], i.e., the total 1,426 Apps in F-Droid. The
App pl.hypeapp.endoscope_5 cannot be processed by Soot [46]. On
average, our tool processes an App in 6.08 seconds. The most time-
consuming App is com.nextcloud.client_30000399, which takes 3
mintues and 45 seconds to analyze. Figure 7 shows the number

of incompatible API usages reported by our tool in the total 1,425
Apps we analyzed. IctApiFinder finds incompatible API usages in
361 (25.33%) of the total 1,425 Apps. Although the Apps developers
have made extensive efforts to address compatibility issues, many
Apps still suffer from incompatible API usages.

We randomly select 20 out of the 361 Apps with incompatible API
usage issues for manual inspection. TABLE 5 lists the 20 Apps we
choose. The ‘APP’ and ‘Version’ columns give their names and ver-
sions, respectively. Column 4 and 5 present the number of incompat-
ible API usages reported by Android Lint and IctApiFinder, respec-
tively. IctApiFinder is sound in reporting incompatible API usages
because of an over-approximate strategy used by the IFDS solver.
Hence, it will nevermiss any incompatible API usage bugs. However,
Android Lint often suffers from false negatives because it will skip
processing sources with certain annotations (e.g. @SuppressLint,
@TargetApi). In this experiment, we remove these annotation tags
for a fair comparison. In addition, Lint does not process libraries
thus often misses incompatible API usage bugs in external libraries.
To minimize the effect of such kind of false negatives, we conserva-
tively add all issues reported by IctApiFinder in external libraries
into that of Lint.

By comparing Column # Lint and # IctApiFinder, we find that
the issues reported by IctApiFinder are significantly less than that
of Lint. On average, IctApiFinder can effectively reduce the false
positive rate of Android Lint by 82.1%.

Answer to RQ4: In conclusion, IctApiFinder largely re-
duces the false positive rate of Android Lint by 82.1%. It
processes an App within 7 seconds on average.

5.2 RQ5: Usefulness of IctApiFinder
We have manually checked all reports generated by IctApiFinder
for the 20 Apps in TABLE 5. Columns # TP and # FP present the
results. IctApiFinder reports 217 issues in the 20 Apps, including 71
false positives, with a false positive rate of 32.72%. Most of the false
positives are due to imprecision in the inter-procedural control-flow
graph: our algorithm soundly assumes that all components in an
APK are directly reachable from the entry without considering the
complicated conditions to trigger a component.

After manual inspection, we believe that 13 Apps suffer from real
incompatible API usages and have reported them to their original
developers. At present, we have received confirmation from the
developers of the 4 Apps: com.vonglasow.michael.qz (the 6th App),
com.xargsgrep.portknocker (the 7th App), com.zegoggles.smssync
(the 9th App), and org.severalproject (the 16th App). These issues
are color-flagged in red in Table 5. The 3 issues we reported in the
App com.zegoggles.smssync (the 9th App) are actually false posi-
tives since it applies a complicated strategy to address incompatible
API usages, which is not considered in our current implementa-
tion. For the App it.feio.android.omninotes.foss (the 12th App),
although we did not receive any confirmation from its develop-
ers directly, the developers have added a ‘Development’ tag to our
reports in their issue tracking system, suggesting further action
needed. These issues are color-flagged in orange in TABLE 5. The
issue in jonas.tool.saveForOffline (the 14th App) is color-flagged

174

Understanding and Detecting Evolution-Induced Compatibility Issues in Android AppsASE ’18, September 3–7, 2018, Montpellier, France

Table 5: Effectiveness of IctApiFinder over 20 randomly-selected Apps

ID APP Version # Lint # IctApiFinder # TP # FP

1 com.github.premnirmal.tickerwidget 2.4.04 17 3 3 0
2 de.christinecoenen.code.zapp 1.10.0 21 1 0 1
3 ca.rmen.android.networkmonitor 1.30.0 46 13 12 1
4 com.easytarget.micopi 3.6.11 2 1 0 1
5 com.prhlt.aemus.Read4SpeechExperiments 1.1 1 1 0 1
6 com.vonglasow.michael.qz 1.1 32 7 7 0
7 com.xargsgrep.portknocker 1.0.11 44 17 13 4
8 com.ymber.eleven 1.0 15 9 9 0
9 com.zegoggles.smssync 1.5.11-beta7 5 3 0 3
10 de.devmil.muzei.bingimageofthedayartsource 1.4 37 37 37 0
11 de.kromke.andreas.unpopmusicplayerfree 1.41 29 14 0 14
12 it.feio.android.omninotes.foss 5.4.3 37 28 24 4
13 jackpal.androidterm 1.0.70-rebuild 52 14 0 14
14 jonas.tool.saveForOffline 3.1.6 3 1 1 0
15 net.opendasharchive.openarchive.release 0.0.17-alpha-1 12 8 0 8
16 org.servalproject 0.93 5 1 1 0
17 org.openintents.notepad 1.5.4 4 3 2 1
18 org.sensors2.osc 0.2.0 25 14 0 14
19 org.smssecure.smssecure 0.16.8-unstable 93 5 2 3
20 org.softeg.slartus.forpdaplus 3.4.8.2 732 37 35 2

in green because we can successfully trigger this bug and crash the
App.

In the following, we discuss some real incompatible API usages
detected by our tool.

5.2.1 jonas.tool.saveForOffline. This App[13] (the 14th App)
downloads web pages for off-line reading. Its minSdkVersion value
is 16. TheApp invokes theAPI android.webkit.WebSettings.setMed-
iaPlaybackRequiresUserGesture, which is introduced into SDK af-
ter version 17. We run this App on a GALAXY S3 (API level 16)
device rented from WeTest[16]. The App directly crashed while
browsing off-line pages and threw a “java.lang.NoSuchMethodError”
exception.

5.2.2 com.xargsgrep.portknocker. This App[12] (the 7th App) is
a basic port knocker client and its minSdkVersion value is 10. It uses
the external component com.ianhanniballake.localstorage.Local-
StorageProvider, which is inherited from theAPI android.provider.
DocumentsProvider. However, this API is introduced since SDK ver-
sion 19. We reported the issues to the original developers and
they confirmed them in a 2 days. The issues are fixed in revision
7f37522[7] by increasing the App’s minSdkVersion to 19. This kind
of incompatible API usages are very common since third party-
libraries are frequently used in Apps. It is also very difficult to
avoid by the developers. Note that Android Lint does not process
external libraries. IctApiFinder successfully finds these incompati-
ble API usage issues, demonstrating its effectiveness.

5.2.3 org.servalproject. This App (the 16thApp, also called Batp-
hone)[14] provides free and secure phone-to-phone voice calling,
SMS and file sharing over Wi-Fi, without the need for a SIM card or
a commercial mobile telephone carrier. This App’s minSdkVersion
value is 8while it uses theAPI java.lang.String: void String(byte[],

int,int,java.nio.charset.Charset)which is added into SDK since
level 9. The developers thanked us and fixed this issue in revision
05e784a[6] by using java.lang.String: void String(byte[],int,

int,java.lang.String) on SDK version 8.
The above examples show that IctApiFinder can detect critical

unknown incompatible API usage issues in real-world Android
Apps, including these issues deeply hidden in external libraries.

Such issues are very common, but hard to be detected by the devel-
opers and Android Lint.

To help with bug diagnosis and verification, we also implement
a path tracer which provides up to 10 possible reachable paths to
the developers for each incompatible API usage. Our bug reports
present the API usage, the incompatible versions, as well as the
reachable pathswhich could help the developers to quickly diagnose
and fix incompatible API usages.

Answer to RQ5: IctApiFinder is useful in detecting un-
known incompatible API usages. We have found numerous
real incompatible API usages in 13 of the 20 Apps manually
inspected, where issues reported in 5 Apps have already
been confirmed or directly triggered. It also demonstrates
its effectiveness by reporting incompatible API usages in
external libraries, which are common but difficult to find
by developers and Android Lint. The report of IctApiFinder
includes detailed information such as reachable paths and
incompatible versions, which is helpful for developers to
quickly diagnose and fix the reported issues.

6 DISCUSSIONS
6.1 Threats To Validity
Subject selection. The validity of our empirical study results may
be subject to the threat that we only manually inspect 10 Android
Apps as subjects in analyzing evolution-induced compatibility is-
sues fixing patterns. However, these 10 Apps are selected from 1,425
candidate Apps from F-Droid as they contain the most number of
fixing practices to address evolution-induced compatibility issues,
with a total number of 1,249 usages of the variable SDK_INT. More
importantly, the findings obtained from studying these 10 Apps
have been proven to be useful in detecting unknown incompatible
API usages in real-world Apps.

Errors in manual inspection. Our study may suffer from er-
rors inmanually analyzing code snippetswhich uses variable SDK_INT
to address evolution-induced compatibility issues. To reduce this

175

ASE ’18, September 3–7, 2018, Montpellier, France Dongjie He, Lian Li, Lei Wang, Hengjie Zheng, Guangwei Li, and Jingling Xue

threat, we follow the widely-adopted cross-validating method to
ensure the correctness of our results.

Assumptions. In our empirical study, we make two assump-
tions. The first assumption is that usages of variable SDK_INT all
address evolution-induced compatibility issues. In practice, there
also exist other usages such as log-printing. However, these usages
only account for less than 11.56% of the total usages in our study.
Another assumption is that a new API is supported by the Android
Support Library if it is used in the Support Library. This is a con-
servative assumption since there are also normal usages of the API.
The API support ratio provided by the Android Support Library
will be even lower. Hence it does not affect our conclusion that the
support from the Android Support Library is insufficient.

Android OS Evolution. The last threat may come from the
strategy of Android evolution. All our empirical findings are based
on current major android versions. However, Android is a fast evolv-
ing system and many OS versions will be gradually phased out.
There may be significant changes in the Android ecosystem to ad-
dress evolution-induced compatibility issues. We cannot guarantee
that our findings still hold in the remote future.

6.2 Further Reduce False Positives
In our empirical study, we have classified the usages of SDK_INT
into three categories. IctApiFinder only considers the most common
practice (C1). There are also complicated cases which require precise
pointer analysis [32, 33, 43, 45] to track dependencies of variable
SDK_INT, or complicated fixing strategies as in List 5. We plan to
address these issues in our future work.

Most of the false positives are due to the imprecision of our
inter-procedural control flow graph (ICFG). Currently, the ICFG we
use is actually same as the one in Flowdroid [20], which conserva-
tively assumes that all components in Android Apps are directly
reachable from the entry point, without considering the complex
control flows to trigger a component. However, this is not true.
For example, some “Activity” can only be reached after the call
to “startActivityForResult”. Hence, a more precise ICFG which
is required to further reduce false positives. In general, it requires
control flow specialization [26, 51] and reflection analysis [50] to
build the precise ICFG.

7 RELATEDWORK
To the best of our knowledge, we are the first to quantify Android
evolution-induced compatibility issues with data from a large body
of real Android Apps and provide tool to detect these issues. Existing
work have studied the general Android API evolution problem and
fragment-induced compatibility issues.

Android API evolution. The maintenance of mobile applica-
tions remains to be largely undiscovered in the software mainte-
nance field[38]. API evolution is a frequently research topic in this
area. McDonnell et al.[36] have performed an empirical study on
API stability and adoption in Android, in which they showed that
Android is rapidly evolving, at a rate of 115 averagely API updates
per month. However, compared to the fast evolving APIs, it takes
much longer time on average to adopt new versions in Android
Apps. Linares et al. [35] have shown that Android API changes
will trigger more Stack Overflow discussions. Work [34] and [21]

investigated the relationship between the popularity of Android
Apps and the SDK API changes. Their empirical study pointed out
that more popular Android Apps generally tend to use APIs that
are less change-prone. The above works are helpful in learning
evolution-induced compatibility issues. This paper extends existing
works by showing the root causes and quantifying the severity of
evolution-induced compatibility issues in real Android Apps. Our
findings facilitate effective detection and diagnose of evolution-
induced compatibility issues in practice.

Android compatibility issues. Android fragmentation also
causes portability and compatibility issues within the entire An-
droid ecosystem [25, 49, 52]. A few recent works have been try-
ing to address these fragmentation-induced compatibility issues.
Ham et al.[24] proposed a Device API Level Check Method. Their
method records the test results of Android API for each device in
a pre-stored database, which is then used to check API usage in-
formation and detect compatibility issues. Wei et al.[47] manually
extract API usage information (referred to as API-Context pair)
from existing compatibility issues, and use such information to
detect fragmentation-induced compatibility issues. The latest work,
CiD [31], detects evolution-induced compatibility issues by building
a so-called conditional call graph, which is not context-sensitive.
This paper targets evolution-induced compatibility issues, and we
apply a context-sensitive data-flow analysis to automatically detect
incompatibility issues, without manual annotation.

8 CONCLUSION AND FUTUREWORK
This paper conducts an extensive empirical study on evolution-
induced compatibility issues in Android Apps. Our studies discover
the following interesting findings: the Android Support library pro-
vides support for less than 23% of the new APIs in each release,
and most Apps (91.84%) need to address evolution-induced compat-
ibility issues in their implementation. The most common practice
(88.65%) adopts a simple code pattern. These findings are help for
future research on this topic.

Based on our findings, we develop IctApiFinder, which detects
incompatible API usage issues in Android Apps based on inter-
procedural data-flow analysis. IctApiFinder detects incompatible
API usage issues on 361 Apps out of the 1,425 Apps we tested. It
is sound and can effectively reduce the false positives of Android
Lint by 82.1%.

In the future, we plan to automatically verify the bugs IctApiFinder
detected. We also plan to give useful fixing suggestions to develop-
ers by mining equivalent APIs on different Android SDKs.

ACKNOWLEDGEMENT
This work is supported by the Innovation Research Group of Na-
tional Natural Science Foundation of China (61521092 and 61672492),
the National Key research and development program of China
(2016YFB1000402 and 2017YFB0202002), the National Natural Sci-
ence Foundation of China (U1736208), and Australia Research Coun-
cil grants (DP170103956).

REFERENCES
[1] 2018. Retrieved April 26, 2018 from https://www.statista.com/statistics/266210/

number-of-available-applications-in-the-google-play-store

176

https://www.statista.com/statistics/266210/number-of-available-applications-in-the-google-play-store
https://www.statista.com/statistics/266210/number-of-available-applications-in-the-google-play-store

Understanding and Detecting Evolution-Induced Compatibility Issues in Android AppsASE ’18, September 3–7, 2018, Montpellier, France

[2] 2018. Amaze File Manager. Retrieved April 26, 2018 from https://f-droid.org/en/
packages/com.amaze.filemanager/

[3] 2018. Android Development tools. Retrieved April 26, 2018 from http://www.
appbrain.com/stats/libraries/dev

[4] 2018. Android: Platform codenames, versions, and API levels. Retrieved April
26, 2018 from https://source.android.com/setup/start/build-numbers

[5] 2018. AOSP: Android Open Source Project. Retrieved April 26, 2018 from
https://source.android.com/

[6] 2018. Fix EIC issues for batphone. Retrieved April 26, 2018 from https://github.
com/servalproject/batphone/commits/development

[7] 2018. Fix minSDKVersion for PortKnocker. Retrieved April 26, 2018 from
https://github.com/xargsgrep/PortKnocker/commit/master

[8] 2018. Free and Open Source Android App Repository. Retrieved April 26, 2018
from https://f-droid.org

[9] 2018. Gradle build tool. Retrieved April 26, 2018 from https://gradle.org
[10] 2018. IDC: Smartphone OS Market Share. Retrieved April 26, 2018 from

https://www.idc.com/promo/smartphone-market-share/os
[11] 2018. Lint API Check. Retrieved April 26, 2018 from http://tools.android.com/

recent/lintapicheck
[12] 2018. Port Knocker. Retrieved April 26, 2018 from https://f-droid.org/en/

packages/com.xargsgrep.portknocker/
[13] 2018. Save For Offline. Retrieved April 26, 2018 from https://f-droid.org/en/

packages/jonas.tool.saveForOffline/
[14] 2018. Serval Mesh. Retrieved April 26, 2018 from https://f-droid.org/en/packages/

org.servalproject/
[15] 2018. Understanding the Android Support Library. Retrieved April 26, 2018

from http://martiancraft.com/blog/2015/06/android-support-library/#fn:3
[16] 2018. WeTest: Professional and Reliable One-stop Testing Service. Retrieved

April 26, 2018 from http://wetest.qq.com/
[17] Serge Abiteboul, Richard Hull, and Victor Vianu. 1995. Foundations of databases:

the logical level. Addison-Wesley Longman Publishing Co., Inc.
[18] Kevin Allix, Tegawendé F Bissyandé, Jacques Klein, and Yves Le Traon. 2016.

Androzoo: Collecting millions of android apps for the research community. In
Proceedings of the 13th International Conference on Mining Software Repositories.
ACM, 468–471.

[19] Steven Arzt. 2017. Static data flow analysis for android applications. Ph.D. Disser-
tation. Technische Universität.

[20] Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexandre Bar-
tel, Jacques Klein, Yves Le Traon, Damien Octeau, and Patrick McDaniel. 2014.
Flowdroid: Precise context, flow, field, object-sensitive and lifecycle-aware taint
analysis for android apps. Acm Sigplan Notices 49, 6 (2014), 259–269.

[21] Gabriele Bavota, Mario Linares-Vasquez, Carlos Eduardo Bernal-Cardenas, Mas-
similiano Di Penta, Rocco Oliveto, and Denys Poshyvanyk. 2015. The impact
of api change-and fault-proneness on the user ratings of android apps. IEEE
Transactions on Software Engineering 41, 4 (2015), 384–407.

[22] Eric Bodden. 2012. Inter-procedural data-flow analysis with ifds/ide and soot. In
Proceedings of the ACM SIGPLAN International Workshop on State of the Art in
Java Program analysis. ACM, 3–8.

[23] Todd J Green, Molham Aref, and Grigoris Karvounarakis. 2012. Logicblox, plat-
form and language: A tutorial. In Datalog in Academia and industry. Springer,
1–8.

[24] Hyung Kil Ham and Young Bom Park. 2011. Mobile application compatibility
test system design for android fragmentation. In International Conference on
Advanced Software Engineering and Its Applications. Springer, 314–320.

[25] Dan Han, Chenlei Zhang, Xiaochao Fan, Abram Hindle, Kenny Wong, and Eleni
Stroulia. 2012. Understanding android fragmentation with topic analysis of
vendor-specific bugs. In Reverse Engineering (WCRE), 2012 19th Working Confer-
ence on. IEEE, 83–92.

[26] Liu Jie, Wu Diyu, and Jingling Xue. 2018. TDroid: Exposing App Switching
Attacks in Android with Control Flow Specialization. In Proceedings of the 33rd
International Conference on Automated Software Engineering.

[27] Mona Erfani Joorabchi, Ali Mesbah, and Philippe Kruchten. 2013. Real challenges
in mobile app development. In Empirical Software Engineering and Measurement,
2013 ACM/IEEE International Symposium on. IEEE, 15–24.

[28] Pavneet Singh Kochhar, Ferdian Thung, Nachiappan Nagappan, Thomas Zim-
mermann, and David Lo. 2015. Understanding the test automation culture of app
developers. In Software Testing, Verification and Validation (ICST), 2015 IEEE 8th
International Conference on. IEEE, 1–10.

[29] Ondřej Lhoták and Laurie Hendren. 2003. Scaling Java Points-to Analysis Using
Spark. In International Conference on Compiler Construction. Springer, 153–169.

[30] Li Li, Tegawendé F Bissyandé, Yves Le Traon, and Jacques Klein. 2016. Access-
ing inaccessible android apis: An empirical study. In Software Maintenance and
Evolution (ICSME), 2016 IEEE International Conference on. IEEE, 411–422.

[31] Li Li, Tegawendé F Bissyandé, Haoyu Wang, and Jacques Klein. 2018. CiD:
automating the detection of API-related compatibility issues in Android apps.

In Proceedings of the 27th ACM SIGSOFT International Symposium on Software
Testing and Analysis. ACM, 153–163.

[32] Lian Li, Cristina Cifuentes, and Nathan Keynes. 2011. Boosting the Performance
of Flow-sensitive Points-to Analysis Using Value Flow. In Proceedings of the
19th ACM SIGSOFT Symposium and the 13th European Conference on Foundations
of Software Engineering (ESEC/FSE ’11). ACM, New York, NY, USA, 343–353.
https://doi.org/10.1145/2025113.2025160

[33] Lian Li, Cristina Cifuentes, and Nathan Keynes. 2013. Precise and Scalable
Context-sensitive Pointer Analysis via Value Flow Graph. In Proceedings of the
2013 International Symposium on Memory Management (ISMM ’13). ACM, New
York, NY, USA, 85–96. https://doi.org/10.1145/2464157.2466483

[34] Mario Linares-Vásquez, Gabriele Bavota, Carlos Bernal-Cárdenas, Massimiliano
Di Penta, Rocco Oliveto, and Denys Poshyvanyk. 2013. API change and fault
proneness: a threat to the success of Android apps. In Proceedings of the 2013 9th
joint meeting on foundations of software engineering. ACM, 477–487.

[35] Mario Linares-Vásquez, Gabriele Bavota, Massimiliano Di Penta, Rocco Oliveto,
and Denys Poshyvanyk. 2014. How do api changes trigger stack overflow dis-
cussions? a study on the android sdk. In proceedings of the 22nd International
Conference on Program Comprehension. ACM, 83–94.

[36] Tyler McDonnell, Baishakhi Ray, and Miryung Kim. 2013. An empirical study
of api stability and adoption in the android ecosystem. In Software Maintenance
(ICSM), 2013 29th IEEE International Conference on. IEEE, 70–79.

[37] I. J. Mojica, B. Adams, M. Nagappan, S. Dienst, T. Berger, and A. E. Hassan. 2014.
A Large-Scale Empirical Study on Software Reuse in Mobile Apps. IEEE Software
31, 2 (Mar 2014), 78–86. https://doi.org/10.1109/MS.2013.142

[38] Meiyappan Nagappan and Emad Shihab. 2016. Future trends in software engineer-
ing research for mobile apps. In Software analysis, evolution, and reengineering
(SANER), 2016 IEEE 23rd International Conference on, Vol. 5. IEEE, 21–32.

[39] Je-Ho Park, Young Bom Park, and Hyung Kil Ham. 2013. Fragmentation problem
in Android. In Information Science and Applications (ICISA), 2013 International
Conference on. IEEE, 1–2.

[40] Thomas Reps, Susan Horwitz, and Mooly Sagiv. 1995. Precise interprocedural
dataflow analysis via graph reachability. In Proceedings of the 22nd ACM SIGPLAN-
SIGACT symposium on Principles of programming languages. ACM, 49–61.

[41] I. J. M. Ruiz, M. Nagappan, B. Adams, and A. E. Hassan. 2012. Understanding reuse
in the Android Market. In 2012 20th IEEE International Conference on Program
Comprehension (ICPC). 113–122. https://doi.org/10.1109/ICPC.2012.6240477

[42] Yannis Smaragdakis and Martin Bravenboer. 2011. Using Datalog for fast and
easy program analysis. In Datalog Reloaded. Springer, 245–251.

[43] Yulei Sui and Jingling Xue. 2016. On-demand Strong Update Analysis via Value-
flow Refinement. In Proceedings of the 2016 24th ACM SIGSOFT International
Symposium on Foundations of Software Engineering (FSE 2016). ACM, New York,
NY, USA, 460–473. https://doi.org/10.1145/2950290.2950296

[44] M. D. Syer, B. Adams, Y. Zou, and A. E. Hassan. 2011. Exploring the Develop-
ment of Micro-apps: A Case Study on the BlackBerry and Android Platforms.
In 2011 IEEE 11th International Working Conference on Source Code Analysis and
Manipulation. 55–64. https://doi.org/10.1109/SCAM.2011.25

[45] Tian Tan, Yue Li, and Jingling Xue. 2017. Efficient and Precise Points-to Analysis:
Modeling the Heap by Merging Equivalent Automata. In Proceedings of the 38th
ACM SIGPLAN Conference on Programming Language Design and Implementation
(PLDI 2017). ACM, New York, NY, USA, 278–291. https://doi.org/10.1145/3062341.
3062360

[46] Raja Vallée-Rai, Phong Co, Etienne Gagnon, Laurie Hendren, Patrick Lam, and
Vijay Sundaresan. 2010. Soot: A Java bytecode optimization framework. In
CASCON First Decade High Impact Papers. IBM Corp., 214–224.

[47] L. Wei, Y. Liu, and S. C. Cheung. 2016. Taming Android fragmentation: Character-
izing and detecting compatibility issues for Android apps. In 2016 31st IEEE/ACM
International Conference on Automated Software Engineering (ASE). 226–237.

[48] Daoyuan Wu, Ximing Liu, Jiayun Xu, David Lo, and Debin Gao. 2017. Measuring
the declared SDK versions and their consistency with API calls in Android apps.
In International Conference on Wireless Algorithms, Systems, and Applications.
Springer, 678–690.

[49] Lei Wu, Michael Grace, Yajin Zhou, Chiachih Wu, and Xuxian Jiang. 2013. The
impact of vendor customizations on android security. In Proceedings of the 2013
ACM SIGSAC conference on Computer & communications security. ACM, 623–634.

[50] Zhang Yifei, Li Yue, Tian Tan, and Jingling Xue. 2018. Ripple: Refection analysis
for Android Apps in incomplete information environments. Software: Practice
and Experience 8, 1419–1437.

[51] Zhang Yifei, Sui Yulei, and Jingling Xue. 2018. Launch-Mode-Aware Context-
Sensitive Activity Transition Analysis. In Proceedings of the International Confer-
ence on Software Engineering. 598–608.

[52] Xiaoyong Zhou, Yeonjoon Lee, Nan Zhang, Muhammad Naveed, and XiaoFeng
Wang. 2014. The peril of fragmentation: Security hazards in android device
driver customizations. In Security and Privacy (SP), 2014 IEEE Symposium on.
IEEE, 409–423.

177

https://f-droid.org/en/packages/com.amaze.filemanager/
https://f-droid.org/en/packages/com.amaze.filemanager/
http://www.appbrain.com/stats/libraries/dev
http://www.appbrain.com/stats/libraries/dev
https://source.android.com/setup/start/build-numbers
https://source.android.com/
https://github.com/servalproject/batphone/commits/development
https://github.com/servalproject/batphone/commits/development
https://github.com/xargsgrep/PortKnocker/commit/master
https://f-droid.org
https://gradle.org
https://www.idc.com/promo/smartphone-market-share/os
http://tools.android.com/recent/lintapicheck
http://tools.android.com/recent/lintapicheck
https://f-droid.org/en/packages/com.xargsgrep.portknocker/
https://f-droid.org/en/packages/com.xargsgrep.portknocker/
https://f-droid.org/en/packages/jonas.tool.saveForOffline/
https://f-droid.org/en/packages/jonas.tool.saveForOffline/
https://f-droid.org/en/packages/org.servalproject/
https://f-droid.org/en/packages/org.servalproject/
http://martiancraft.com/blog/2015/06/android-support-library/#fn:3
http://wetest.qq.com/
https://doi.org/10.1145/2025113.2025160
https://doi.org/10.1145/2464157.2466483
https://doi.org/10.1109/MS.2013.142
https://doi.org/10.1109/ICPC.2012.6240477
https://doi.org/10.1145/2950290.2950296
https://doi.org/10.1109/SCAM.2011.25
https://doi.org/10.1145/3062341.3062360
https://doi.org/10.1145/3062341.3062360

	Abstract
	1 INTRODUCTION
	2 BACKGROUND
	2.1 Declare SDK Versions in Android Apps
	2.2 Android Support Library
	2.3 Android Lint

	3 EMPIRICAL STUDY
	3.1 Methodology
	3.2 Findings

	4 INCOMPATIBLE API Usage DETECTION
	4.1 Detection Method
	4.2 Implementation

	5 EVALUATION
	5.1 RQ4: precision of IctApiFinder
	5.2 RQ5: Usefulness of IctApiFinder

	6 DISCUSSIONS
	6.1 Threats To Validity
	6.2 Further Reduce False Positives

	7 RELATED WORK
	8 CONCLUSION AND FUTURE WORK
	References

