
JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 1

Selecting Context-Sensitivity Modularly for
Accelerating Object-Sensitive Pointer Analysis

Dongjie He, Jingbo Lu, Yaoqing Gao, and Jingling Xue

Abstract—Object-sensitive pointer analysis (denoted kOBJ under k-limiting) for an object-oriented program can be accelerated if
context-sensitivity can be selectively applied to only some precision-critical variables/objects in a program. Existing pre-analyses for
making such selections, which are performed as whole-program analyses to a program, are developed based on two broad
approaches. One approach preserves the precision of object-sensitive pointer analysis but achieves limited speedups by reasoning
about all the possible value flows in the program conservatively, while the other approach achieves greater speedups but sacrifices
precision (often unduly) by examining only some but not all the value flows in the program heuristically. In this paper, we introduce a
new pre-analysis approach, TURNER

m (where m stands for modularity), that represents a sweet spot between these two existing ones,
as it is designed to enable kOBJ to run significantly faster than the former approach and achieve significantly better precision than the
latter approach. TURNER

m is simple, lightweight yet effective due to two novel aspects in its design. First, we exploit a key observation
that some precision-uncritical objects in the program can be approximated based on the object-containment relationship
pre-established (from Andersen’s analysis). In practice, this approximation introduces only a small degree of imprecision into kOBJ.
Second, leveraging this initial approximation, we apply a novel object reachability analysis to the program by pre-analyzing its methods
according to a reverse topological order of its call graph. When pre-analyzing each method, we make use of a simple DFA
(Deterministic Finite Automaton) to reason about object reachability intra-procedurally from its entry to its exit along all the possible
value flows established by its statements to identify its precision-critical variables/objects. In practice, this new modular object
reachability analysis, which runs linearly in terms of the number of statements in the program, introduces again only a small loss of
precision into kOBJ. We have validated TURNER

m with an open-source implementation in SOOT (already publicly available) against the
state of the art by using a set of 12 widely used Java benchmarks and applications.

Index Terms—Object-Sensitive Pointer Analysis, CFL Reachability, Object Containment, Modular Static Analysis.

✦

1 INTRODUCTION

Pointer analysis is a significant program analysis that ap-
proximates statically the runtime values (memory locations)
for the pointer variables in a program. There are a wide
range of real-world applications, including security analysis
[1], [2], program verification [3], program slicing [4], [5],
program understanding [5], [6], and bug detection [7], [8].

For object-oriented languages such as Java, context sen-
sitivity, which distinguishes the variables declared and ob-
jects allocated locally in a method under different calling
contexts, is adopted widely in developing highly precise
pointer analyses. In general, a context is represented by
a sequence of k context elements under k limiting. There
are two common forms of context-sensitivity: (1) k-call-site-
sensitivity [9] (which distinguishes the contexts of a method
by its k-most-recent call sites) and (2) k-object-sensitivity
[10] (which distinguishes the contexts of a method by its
receiver object’s k-most-recent allocation sites). The latter
is widely regarded as a better abstraction in achieving
precision and efficiency [11], [12], [13], [14], [15].

However, k-object-sensitive pointer analysis (with k-
object-sensitivity as its context abstraction), denoted kOBJ,
still does not scale well for reasonably large programs when

• Dongjie He, Jingbo Lu, and Jingling Xue are from UNSW Sydney,
Australia.
E-mail: {dongjieh, jlu, jingling}@cse.unsw.edu.au

• Yaoqing Gao is from Huawei, Canada.

Manuscript received April 19, 2005; revised August 26, 2015.

k ⩾ 3 and is often time-consuming when it is scalable [11],
[12], [13], [14]. As k increases, blindly applying a k-limiting
context abstraction uniformly to a program can cause the
number of contexts handled to blow up exponentially (often
without improving precision much).

In this paper, we address the problem of developing
a pre-analysis for a Java program to enable kOBJ to ap-
ply context-sensitivity (i.e, a k-limited context abstraction)
only to some of its variables/objects selected and context-
insensitivity to all the other variables/objects in the pro-
gram. Let us make it precise about what precision-critical
variables/objects are (with respect to kOBJ) in a program.

Definition 1. Let n be a variable/object in a program. Let kOBJ
n

be the version of kOBJ, where n is analyzed context-insensitively
but all the remaining variables/objects in the program are analyzed
context-sensitively in exactly the same way as in kOBJ. Then n
is said to be precision-critical if kOBJ and kOBJ

n fail to produce
the identical points-to information for the program.

A pre-analysis is said to be precision-preserving if it can
identify the precision-critical variables/objects in a program
precisely or over-approximately as being context-sensitive,
and non-precision-preserving otherwise. Unfortunately, mak-
ing such selections precisely is out of the question as solving
kOBJ without k-limiting is undecidable [16]. When design-
ing a practical pre-analysis, which aims to select the set of
context-sensitive variables/objects, Cideal, in the program,
the main challenge are to ensure that (1) Cideal includes
as many precision-critical variables/objects as possible but

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 2

as few precision-uncritical variables/objects as possible, (2)
Cideal results in no or little precision loss, and (3) Cideal

is found in a lightweight manner to ensure that the pre-
analysis overhead introduced is negligible (relative to kOBJ).

Recently, several pre-analyses have been proposed [15],
[17], [18], [19], [20]. Broadly speaking, two approaches exist.
EAGLE [15] represents a precision-preserving acceleration
of kOBJ by reasoning about CFL (Context-Free-Language)
reachability in the program. Designed to be precision-
preserving, EAGLE analyzes conservatively and often effi-
ciently the value flows reaching a variable/object and selects
the set of context-sensitive variables/objects as a superset of
the set of precision-critical variables/objects in the program
over-approximately, thereby limiting the potential speedups
thus achieved by kOBJ. On the other hand, ZIPPER [20], as
a non-precision-preserving representative of the remaining
pre-analyses [17], [18], [19], [20], examines the value flows
reaching a variable/object heuristically and often efficiently
by selecting the set of context-sensitive variables/objects to
include some but not all the precision-critical variables/ob-
jects and also some precision-uncritical variables/objects in
the program. As a result, ZIPPER can sometimes improve
the efficiency of kOBJ more substantially than EAGLE in
general, but at the expense of introducing a significant loss
of precision for some programs.

In this paper, we introduce a new pre-analysis approach,
TURNER

m (where m stands for modularity), that represents
a sweet spot between EAGLE and ZIPPER: TURNER

m enables
kOBJ to run significantly faster than EAGLE while achieving
significantly better precision than ZIPPER. Despite a small
loss of precision in the average points-to set size (#avg-
pts), TURNER

m enables kOBJ to achieve usually the same
or nearly the same precision for the other three commonly
used precision metrics [11], [12], [13], [14], [15], call graph
construction (#call-edges), may-fail casting (#may-fail-casts)
and polymorphic call detection (#poly-calls), for a set of 12
widely used Java benchmarks and applications evaluated.

TURNER
m is simple, lightweight yet effective in accel-

erating kOBJ due to two novel aspects in its design. First,
we exploit a key observation that some precision-uncritical
objects in the program can be approximated initially based
on the object-containment relationship that is inferred from
the points-to information pre-computed by applying An-
dersen’s analysis [21]. This approximation turns out to be
practically accurate, as it introduces a small degree of impre-
cision into the final points-to information obtained. Second,
leveraging this initial approximation, we apply a novel
object reachability analysis to the program by pre-analyzing
its methods according to a reverse topological order of its
call graph. When pre-analyzing each method, we make use
of a simple DFA (Deterministic Finite Automaton) to reason
about object reachability intra-procedurally from its entry to
its exit along all the possible value flows established by its
statements to identify its precision-critical variables/objects.
In practice, this new modular object reachability analysis,
which runs linearly in terms of the number of statements in
the program, introduces again only a small loss of precision
into the final points-to information obtained. TURNER

m rep-
resents a significant extension of its earlier version, named
TURNER and reported in our conference paper [22], which
applies its object reachability analysis to all the methods in

a program independently (albeit modularly), as discussed
in Section 6. In our evaluation, kOBJ runs more efficiently
(significantly for some large programs) under TURNER

m

than under TURNER while only being negligibly less precise,
as evaluated and analyzed in Section 5.

We have validated TURNER
m with an open-source im-

plementation in SOOT against EAGLE and ZIPPER using
a set of 12 Java benchmarks and applications. In general,
TURNER

m enables kOBJ to run significantly faster than
EAGLE due to fewer precision-uncritical variables/objects
analyzed context-sensitively and achieve significantly better
precision than ZIPPER due to more precision-critical vari-
ables/objects analyzed context-sensitively than ZIPPER.

In summary, we make the following contributions:

• We present a new pre-analysis approach, TURNER
m,

that can accelerate k-object-sensitive pointer analysis
(kOBJ) for Java significantly while introducing only
some negligible loss of precision.

• We propose to first approximate the precision-
criticality of the objects in a program based on ob-
ject containment and then decide whether its vari-
ables/objects should be context-sensitive or not by
conducting a modular object reachability analysis
intra-procedurally with a DFA by processing the
methods in the program according to a reverse topo-
logical order of its call graph, thereby obtaining a
pre-analysis that is simple, lightweight and effective.

• TURNER
m enables kOBJ to run significantly faster

than EAGLE and achieve significantly better precision
than ZIPPER for a set of 12 widely used Java bench-
marks and applications evaluated in terms of four
common precision metrics, #avg-pts, #call-edges,
#may-fail-casts, and #poly-calls (with TURNER

m los-
ing no or little precision for the last three). In ad-
dition, the superiority of TURNER

m over TURNER is
also demonstrated.

• TURNER
m has been open-sourced at https://www.

cse.unsw.edu.au/∼corg/turnerm. We hope it will
provide a useful open-source framework for re-
searchers and practitioners to develop pointer analy-
sis algorithms and other static program analyses for
Java and Android applications.

The rest of this paper is organized as follows. Section 2
motivates our TURNER

m approach. Section 3 gives a version
of kOBJ that supports selective context-sensitivity. Section 4
formalizes our TURNER

m approach. In Section 5, we evalu-
ate TURNER

m against the state of the art. Section 6 discusses
the related work. Finally, Section 7 concludes the paper.

2 MOTIVATION

We motivate the development of TURNER
m in the context

of the two state-of-the-art pre-analyses, EAGLE [15] and
ZIPPER [20]. EAGLE supports partial context-sensitivity as
it enables kOBJ to analyze only a subset of variables/ob-
jects in a method context-sensitively. On the other hand,
ZIPPER allows kOBJ to analyze a method either fully
context-sensitively or fully context-insensitively. Like EA-
GLE, TURNER

m also supports partial context-sensitivity
in order to maximize the potential speedups attainable.

https://www.cse.unsw.edu.au/~corg/turnerm
https://www.cse.unsw.edu.au/~corg/turnerm

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 3

As in both EAGLE and ZIPPER, TURNER
m (like TURNER

[22]) also relies on the points-to information in a pro-
gram pre-computed by Andersen’s analysis [21] (context-
insensitively) to make its context selections.

In Section 2.1, we give some background information.
In Section 2.2, we examine several main challenges faced in
developing a pre-analysis for accelerating kOBJ and discuss
the methodological differences between our TURNER

m ap-
proach and two existing approaches, EAGLE and ZIPPER. We
also highlight the major difference between TURNER

m and
TURNER [22]. In Section 2.3, we introduce a motivating ex-
ample abstracted from real code by highlighting the effects
of these differences on the context-sensitivity selectively
applied to kOBJ. In Section 2.4, we describe the basic idea
behind TURNER

m (including our insights and trade-offs).

2.1 Background
In object-sensitive pointer analysis [10], the calling contexts
of a method are distinguished by its receiver objects. Let
each allocation site be abstracted by one unique object. In
kOBJ, an object o1 is modeled context-sensitively by a heap
context of length k − 1, [o2, ..., ok], where oi is the receiver
object of a method in which oi−1 is allocated. As a result,
a method with o1 as its receiver object will be analyzed
context-sensitively multiple times, once for each of o1’s heap
contexts [o2, ..., ok], i.e., once under every possible method
context [o1, ..., ok] of length k. Thus, kOBJ can be specified
by either heap or method contexts alone.

Given a variable v analyzed under a method context c,
its context-sensitive points-to set pts(v, c) is expressed as:

pts(v, c) = {(o1, c1),⋯, (on, cn)} (1)

where each pointed-to object oi is identified by its heap
context ci. Let Mv be the set of method contexts under which
v is analyzed. The context-insensitive points-to set pts(v) for
v can be deduced from pts(v, c) by dropping its contexts:

pts(v) = ⋃
c∈Mv

{o ∣ (o, c′) ∈ pts(v, c)}. (2)

When comparing different context-sensitive pointer analy-
ses precision-wise, the context-insensitive points-to infor-
mation thus obtained is used, as is often done in the lit-
erature [12], [14], [15], [17], [18], [20].

2.2 Challenges
A variable/object n in a program is precision-critical if
kOBJ loses precision when it analyzes n context-insensitively
instead of context-sensitively (Definition 1). In the case of
a precision loss, there must exist some variable v such
that its context-insensitive points-to information becomes
less precise. In this case, pts(v) will contain not only the
pointed-to objects found before (when n is analyzed context-
sensitively) but also some spurious pointed-to objects intro-
duced now (when n is analyzed context-insensitively). As n
and v can be further apart in the program, separated by a
long sequence of method calls (with complex field accesses
on n along the way), designing a practical pre-analysis P ,
which selects a set of variables/objects in a program for
kOBJ to analyze context-sensitively, is challenging (since
solving kOBJ without k-limiting is undecidable [16]). For

a program, let Cideal be the set of precision-critical vari-
ables/objects specified by Definition 1 and CP be the set of
context-sensitive variables/objects selected by P . The main
challenges lie in how to ensure that (1) ∣Cideal − CP ∣ is
minimized so that as many precision-critical variables/ob-
jects are selected and ∣CP − Cideal∣ is minimized so that
as few precision-uncritical variables/objects are selected, (2)
CP causes kOBJ to lose no or little precision, and (3) CP

is selected in a lightweight manner so that P introduces
negligible overhead relative to kOBJ.

A pre-analysis for kOBJ exploits the following necessary
condition stated as a fact (given and proved originally in
[15]) to identify conservatively the precision-critical vari-
ables/objects in a program, with their accesses possibly trig-
gered by some statements outside their containing methods.
Without loss of generality, a method is assumed to contain
only one return statement “return r”, where r is a local
variable in the method (referred to as its return variable).

Fact 1. Consider a program being analyzed object-sensitively
with the parameters and the return variable of each method being
modeled as the (special) fields of its receiver objects as in [15]. A
variable n in a method M is considered to be precision-critical
only if, during program execution, there is a value flow entering
and leaving M via a parameter or the return variable of M , by
passing through n (i.e., by first writing into n via an access path
n.f1.⋯.fr , where f1.⋯.fr is a sequence of zero or more fields,
and then reading it from the same access path).

method M

n.f1.⋯.fr

O1

O2

v1

v2

c1

c2

c1

c2

Fig. 1: A precision-critical variable/object n in M . An object
O1 (O2) from outside M flows into n.f1.⋯.fr and then out
of M into a variable v1 (v2) under context c1 (c2).

Figure 1 illustrates the necessary condition stated above
for a variable/object n to be precision-critical. When this
necessary condition holds for n, we can conservatively
opt to analyze n context-sensitively (to maintain precision).
This will allow several such value flows (as illustrated in
Figure 1) to be tracked separately based on their calling con-
texts. Otherwise (i.e., if n is analyzed context-insensitively),
the objects O1 and O2 that are pointed by n.f1.⋯.fr under
the two different contexts, c1 and c2, will be conflated,
causing v1 (v2) to point to the spurious target O2 (O1).

In principle, a pre-analysis must reason about the value
flows in a program both forwards (by tracking the flow of
objects to variables, i.e., def-use chains) and backwards (by
discovering the objects pointed to by variables, i.e., use-def
chains). This entails entering and exiting a method via its
parameters and return variable to keep track of the value
flows spanning across the method. As a result, a pre-
analysis, as illustrated in Figure 2, should identify variable
x as being precision-critical by considering (either directly
or indirectly) a total of four possible value-flow patterns
passing through x (which are essentially “entry-exit”, “exit-
entry”, “entry-entry” and “exit-exit” classified according to

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4

(a) param-return

 1. class B {
 2. Object id(Object p) {
 3. = p;
 4. return ;
 5. }
 6. static void main() {
 7. B b = new B(); // B
 8. Object o1 = new Object();
 9. Object o2 = b.id(o1);
10. }}

 1. class A { Object f; }
 2. class B { A g;
 3. A foo() {
 4. A = new A(); // A
 5. this.g = ;
 6. return ; }
 7. static void main() {
 8. B b = new B(); // B
 9. A a1 = b.foo();
10. a1.f = new Object(); // O
11. A a2 = b.g;
12. Object o = a2.f;
13. }}

 1. class A { Object f; }
 2. class B {
 3. A create() {
 4. A = new A(); // A
 5. return ;
 6. }
 7. static void main() {
 8. B b = new B(); // B
 9. A a = b.create();
10. a.f = new Object(); // O
11. Object o = a.f;
12. }}

 1. class A { Object f; }
 2. class B {
 3. void foo(A q, A p) {
 4. = p;
 5. .f = q;
 6. }
 7. static void main() {
 8. A a1 = new A(); // A1
 9. A a2 = new A(); // A2
10. B b = new B(); // B
11. b.foo(a1, a2);
12. Object o = a2.f;
13. }}

(b) return-param (c) param-param (d) return-return

xx

param

return

xx xx
xx

xx
xx

xx

xx
xx

Fig. 2: Four value-flow patterns for determining whether variable x in each case should be precision-critical or not.

whether the two end points of a value-flow path are a
parameter or the return variable of its containing method
[15], [23]). The same four patterns are also applicable to a
locally allocated object. In each case, x must be precision-
critical, since if x points to distinct objects when its contain-
ing method is called from different call sites (with only one
shown explicitly), these objects will be conflated, resulting
in some potential precision loss (Figure 1).

In “param-return” (Figure 2(a)), the pre-analysis should
recognize that the object created in line 8 will flow into x in
id() via its parameter p and then out of id() via a return
variable, which happens to be x itself. In “return-param”
(Figure 2(b)), the pre-analysis, when checking whether the
object created in line 10 will flow into o in line 12 or not,
will first need to establish whether a1 in line 10 and a2 in
line 12 are aliases or not. This will entail reasoning about
the value flow backwards from a1 to x, this.g, b.g, and
finally a2, by entering foo() via its return statement (i.e.,
return variable) and leaving foo() from its this variable.
In “param-param” (Figure 2(c)), the object A1 created in line
8 will flow into x.f in foo() via its parameter q and
then out of foo() via its parameter p. In “return-return”
(Figure 2(d)), the pre-analysis, when checking whether the
object created in line 10 can flow into o in line 11 or not,
will need to find what a points to, by entering and exiting
create() from its return variable and visiting x in between
(to discover that O flows to o via an intervening x.f).

We can now discuss how TURNER
m differs from EAGLE

[15] and ZIPPER [20] methodologically. To start with, all the
three are relatively lightweight with respect to kOBJ. Below
we examine these pre-analyses in terms of their efficiency
and precision tradeoffs made on approximating Cideal.
There are two caveats. First, Cideal is conceptual but cannot
be found exactly in a program. Second, some precision-
critical variables/objects affect the precision and/or effi-
ciency of kOBJ more profoundly than others, but they cannot

be easily identified. How to do so approximately can be an
interesting research topic in future work.

EAGLE is precision-preserving, since it accounts for all
the four value-flow patterns in Figure 2 by reasoning about
CFL reachability in the program inter-procedurally as a
whole-program analysis to ensure that Cideal − CEAGLE =

∅. For some programs, EAGLE may conservatively mis-
classify many precision-uncritical variables/objects as being
precision-critical, thereby causing CEAGLE − Cideal to be un-
duly large and thus limiting the speedups attainable.

ZIPPER is not precision-preserving (implying that Cideal

− CZIPPER ≠ ∅ in general), since it considers only “param-
return” and “return-param” in Figure 2 heuristically by ap-
plying an inter-procedural pattern-matching algorithm and
ignores “param-param” (according to its authors [20]) and
“return-return” (according to its source code). For some
programs, ZIPPER can achieve greater speedups than EAGLE
(under certain configurations that pre-define how certain
objects should be analyzed) but at some precision loss, since
it has misclassified some precision- yet performance-critical
variables/objects as context-insensitive.

In this paper, TURNER
m is designed to strike a good

balance between EAGLE and ZIPPER. We aim to ensure that
∣CTURNER

m − Cideal∣ < ∣CEAGLE − Cideal∣ so that TURNER
m

can enable kOBJ to run significantly faster than EAGLE (due
to fewer precision-uncritical variable/objects selected for
kOBJ to analyze context-sensitively). At the same time, we
aim to ensure that ∣Cideal − CTURNER

m∣ < ∣Cideal − CZIPPER∣
so that TURNER

m can also enable kOBJ to achieve signifi-
cantly better precision than ZIPPER (due to more precision-
critical variable/objects selected for kOBJ to analyze context-
sensitively). We accomplish this by first exploiting object
containment to approximate the precision-criticality of the
objects in the program and then conducting a modular ob-
ject reachability analysis for each method intra-procedurally
by considering all the four value-flow patterns in Figure 2.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 5

Unlike TURNER, an earlier version of our pre-analysis [22],
which pre-analyzes the methods in the program indepen-
dently (albeit modularly), TURNER

m pre-analyzes them in a
reverse topological order of the call graph of the program,
boosting the performance of kOBJ more significantly while
introducing only some negligible loss of precision.

2.3 Example

Figure 3 gives a Java program abstracted from real code de-
veloped based on JDK. In lines 1-25, a simplified HashMap
class is defined. In lines 26-31, a simplified Entry class
is given. In lines 32-50, class A represents a use case of
HashMap. In foo(), two instances of HashMap, M1 and
M2, and two instances of java.lang.Object, O1 and O2,
are created. Afterwards, O1 (O2), pointed to by v1 (v2), is
deposited into M1 (M2), pointed to by map1 (map2), with O
(received from its parameter k) as the corresponding key,
and later retrieved and saved in w1 (w2). In main(), n
instances of A, A1, ...,An, are created, where n > 1, and then
used as the receivers for invoking foo().

Table 1 lists the contexts used for analyzing this pro-
gram by the five main pointer analyses, 2OBJ, E-2OBJ,
Z-2OBJ, T-2OBJ, and T-2OBJ+M, which happen to pro-
duce the same points-to information but at different de-
grees of efficiency. P -2OBJ denotes the version of 2OBJ
that adopts the selective context-sensitivity prescribed by
P ∈ {E (for EAGLE),Z (for ZIPPER),T (for TURNER)} and
T-2OBJ+M is an extension of T-2OBJ by using a new modular
object reachability proposed in this paper. EAGLE is always
precision-preserving. For this program, ZIPPER happens to
be also precision-preserving, but it is easy to modify it
slightly so that Z-2OBJ will suffer from a loss of precision
(as it does not consider the last two patterns in Figure 2).
Both TURNER and TURNER

m also happen to be precision-
preserving, but T-2OBJ and T-2OBJ+M differ from 2OBJ, Z-
2OBJ and E-2OBJ substantially. Note that even for this small
example, T-2OBJ+M is expected to run more efficiently than
T-2OBJ due to a smaller number of contexts analyzed. Below
we focus on examining how the context-insensitive points-
to information for w1 and w2 in foo(), pts(w1) = {O1}
and pts(w2) = {O2}, is obtained by each of the five main
analyses. For reasons of symmetry, Figure 4 illustrates only
how pts(w1) = {O1} is obtained by these analyses.

First of all, 2OBJ analyzes foo() for a total of n times by
identifying its variables/objects under the i-th invocation
with its receiver object Ai (Figure 4(a)). Thus, we obtain
∀ 1 ⩽ i ⩽ n ∶ pts(w1, [Ai]) = {O1, [Ai]} ∧ pts(w2, [Ai]) =

{O2, [Ai]} context-sensitively. By projecting out all the con-
texts, we finally obtain pts(w1) = {O1} and pts(w2) = {O2}
context-insensitively, as desired.

ZIPPER [20] makes its context-sensitivity selections for a
program by conducting an inter-procedural pre-analysis to
the program. For our example program, as shown in Table 1,
Z-2OBJ behaves identically as 2OBJ except that it analyzes
containsKey() context-insensitively. Note that both anal-
yses compute the points-to information for w1 and w2 in
foo() context-sensitively in the same way (Figure 4(a)).

EAGLE [15] operates also as an inter-procedural pre-
analysis, but is designed to enable 2OBJ to support par-
tial context-sensitivity without losing any precision. For

our example program (Table 1), the variables/objects in
{v1,v2,w1,w2,O1,O2} from foo() and {e,this,t} from
containsKey() will now be context-insensitive. In the
case of foo(), however, k, map1, map2, M1 and M2 must still
be analyzed context-sensitively due to a spurious “param-
param” pattern established collectively due to (1) k is a pa-
rameter, (2) put() can write into M1/M2, and (3) get() can
read from M1/M2. As a result, as illustrated in Figure 4(b),
E-2OBJ will still need to analyze foo() for a total of n
times, since it must distinguish the two HashMap objects
M1 and M2 created in foo() context-sensitively as in 2OBJ,
except that it can now analyze the two objects, O1 and O2,
created in foo() context-insensitively. Therefore, E-2OBJ
yields pts(w1, []) = {O1, []} and pts(w2, []) = {O2, []}, i.e.,
pts(w1) = {O1} and pts(w2) = {O2}.

TURNER [22] conducts its pre-analysis intra-procedurally
by processing all the methods in a program independently.
For this particular program, T-2OBJ, as illustrated in Fig-
ure 4(c), goes beyond E-2OBJ by modeling M1 and M2 also
context-insensitively. As a result, foo() is analyzed context-
insensitively only once. Like E-2OBJ, T-2OBJ also concludes
directly that pts(w1, []) = {O1, []} and pts(w2, []) =

{O2, []}, i.e., pts(w1) = {O1} and pts(w2) = {O2}.
TURNER

m pre-analyzes the methods in a program in
the reverse topological order of the call graph. Compared
with T-2OBJ (Table 1), T-2OBJ+M enables k in both get()
and containsKey() to be further analyzed context-
insensitively. However, for this example, T-2OBJ+M will still
compute the points-to information for w1 and w2 in foo()
identically as T-2OBJ (Figure 4(c)).

2.4 Our Approach

TURNER
m is designed to accelerate kOBJ with partial

context-sensitivity at a negligible loss of precision. Unlike
EAGLE [15] and ZIPPER [20], TURNER

m works by exploiting
first object containment and then object reachability to en-
able kOBJ to strike a better balance between efficiency and
precision. In principle, TURNER

m may cause kOBJ to lose
precision due to its first stage only. In practice, however,
TURNER

m may also cause kOBJ to lose precision due to
its second stage in some rare cases in the presence of type
filtering applied during the pointer analysis (Section 4.3).

As discussed in Section 2.2, identifying both precision-
critical variables and precision-critical objects in a program
simultaneously can be either too conservative (as in EAGLE
[15]) or too imprecise (as in ZIPPER [20]) in terms of the final
precision-critical variables/objects identified. In TURNER

m,
we first pre-select a set of precision-uncritical objects heuris-
tically in a program based on the object containment rela-
tionship deduced from Andersen’s analysis. We then deter-
mine the precision-critical variables/objects in the program
by reasoning about CFL reachability intra-procedurally. We
leverage CFL reachability in this second stage since a CFL
formulation about the points-to information in a method can
capture all its pointer-related value flows completely.

2.4.1 Determining the Precision-Criticality of Objects in a
Program based on Object Containment
We exploit a key insight stated below to identify some
precision-uncritical objects in a program approximately

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 6

 1. class HashMap {
 2. Entry[] table;
 3. Object get(Object k) {
 4. int idx = k.hashCode();
 5. Entry[] t = this.table;
 6. Entry e = t[idx];
 7. Object r = e.value;
 8. return r;
 9. }
10. void put(Object k, Object v) {
11. int idx = k.hashCode();
12. Entry e = new Entry(k, v); // E
13. Entry[] t = this.table;
14. t[idx] = e;
15. }
16. boolean containsKey(Object k) {
17. int idx = k.hashCode();
18. Entry[] t = this.table;
19. Entry e = t[idx]
20. return e != null;
21. }
22. HashMap() {
23. Entry[] t = new Entry[16]; // @
24. this.table = t;
25. }}

26. class Entry {
27. Object key, value;
28. Entry(Object p, Object q) {
29. this.key = p;
30. this.value = q;
31. }}
32. class A {
33. void foo(Object k) {
34. HashMap map1 = new HashMap(); // M1
35. HashMap map2 = new HashMap(); // M2
36. Object v1 = new Object(); // O1
37. Object v2 = new Object(); // O2
38. if (!map1.containsKey(k)) {
39. map1.put(k, v1);
40. Object w1 = map1.get(k);
41. }
42. if (!map2.containsKey(k)) {
43. map2.put(k, v2);
44. Object w2 = map2.get(k);
45. }}
46. public static void main(String args[]) {
47. Object k = new Object(); // O
48. A ai = new A(); // Ai

49. ai.foo(k);
50. }}

1 ≤ i ≤ n

Fig. 3: A Java program abstracted from real code in JDK.

TABLE 1: The contexts used for analyzing the variables/objects in the program given in Figure 3 by 2OBJ, E-2OBJ, Z-2OBJ,
T-2OBJ and T-2OBJ+M (where i in each context that contains Ai/ai ranges over [1, n]).

Method Variables/Objects 2OBJ Z-2OBJ E-2OBJ T-2OBJ T-2OBJ+M

get k [M1, Ai], [M2, Ai] [M1, Ai], [M2, Ai] [M1, Ai], [M2, Ai] [M1], [M2] []
e, r, this, t [M1], [M2]

put k, v, e, this, t [M1, Ai], [M2, Ai] [M1, Ai], [M2, Ai] [M1, Ai], [M2, Ai] [M1], [M2] [M1], [M2]E [M1], [M2] [M1], [M2] [M1], [M2]

HashMap this, t [M1, Ai], [M2, Ai] [M1, Ai], [M2, Ai] [M1, Ai], [M2, Ai] [M1], [M2] [M1], [M2]@ [M1], [M2] [M1], [M2] [M1], [M2]

containsKey k [M1, Ai], [M2, Ai] [] [M1, Ai], [M2, Ai] [M1], [M2] []e, this, t [] []
Entry p, q, this [E, M1], [E, M2] [E, M1], [E, M2] [E, M1], [E, M2] [E, M1], [E, M2] [E, M1], [E, M2]

foo

v1, v2, w1, w2

[Ai] [Ai]
[]

[] []O1, O2
k, map1, map2 [Ai]M1, M2

main k, ai [] [] [] [] []O, Ai

based on the object containment relationship that is inferred
from the points-to information pre-computed (context-
insensitively) by Andersen’s analysis [21]. We first explain
how to pre-select a set of precision-uncritical objects in
a program (Section 2.4.1.1) and then justify further this
heuristic-based design choice (Section 2.4.1.2).

2.4.1.1 Precision-Uncritical Objects: We define what
precision-uncritical objects are and also what we mean when
we say such a design choice preserves the precision of kOBJ.

Definition 2. Let the points-to information be pre-computed by
applying Andersen’s analysis [21]. A top container is an object
O that is pointed to by neither (1) another object (which may be
O itself) via a field of a declared type of C or C[], where C is a
class type nor (2) the return variable of the method in which O is

allocated. A bottom container is an object O that does not point
to another object (which may be O itself) via a field of a declared
type of C or C[], where C is a class type.

Observation 1. A top container is usually an object allocated
and used locally in a method and thus independent of the calling
contexts for the method. A bottom container is an object that
typically encapsulates its primitive data (including arrays of prim-
itive types), which is usually irrelevant to pointer analysis. Given
a program, its top and bottom containers (selected according to
Definition 2) are considered as being precision-uncritical.

Definition 3. Observation 1 is said to be precision-preserving
for a program if kOBJ does not lose precision when it analyzes the
precision-uncritical objects identified in the program according

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 7

(O1, [A1])

(v1, [A1])

(M1, [A1])

(w1, [A1])

(map1, [A1])

(O1, [An])

(v1, [An])

(M1, [An])

(w1, [An])

(map1, [An])

…

(O1, [A1])

(v1, [A1])

(M1, [A1])

(w1, [A1])

(map1, [A1])

(O1, [An])

(v1, [An])

(M1, [An])

(w1, [An])

(map1, [An])

…

(O1, [])

(v1, [])

(M1, [])

(w1, [])

(map1, [])

(O1, [])

(v1, [])

(M1, [])

(w1, [])

(map1, [])

(a) 2OBJ/Z-2OBJ (b) E-2OBJ (c) T-2OBJ/T-2OBJ+M

(O1, [])

(v1, [])

(M1, [A1])

(w1, [])

(map1, [A1])

(M1, [An])

(map1, [An])

…

(O1, [])

(v1, [])

(M1, [A1])

(w1, [])

(map1, [A1])

(M1, [An])

(map1, [An])

…

Fig. 4: Computing pts(w1) = {O1} for the program in Figure 3 differently by 2OBJ, E-2OBJ, Z-2OBJ, T-2OBJ, and T-2OBJ+M.

to Observation 1 context-insensitively and the remaining vari-
ables/objects in the program exactly as before.

Therefore, an object created by a factory method (re-
garded here as a method that returns its own allocated
objects via its return variable) is not a top container. Such
an object is considered as being precision-uncritical iff it is
a bottom container. For a program, its precision-uncritical
objects will be analyzed by kOBJ context-insensitively (as
justified below) and the remaining objects will be further
classified as either precision-critical or precision-uncritical
by an object reachability analysis (Section 2.4.2).

Consider create() in Figure 2(d). The object A created
inside is not regarded as a top container, since it is pointed
to by its return variable. In object-sensitive pointer analysis,
when create() that is called on receiver object B in line
9 is analyzed, returning A to this caller is actually modeled
as this.ret = x (line 5) and a = b.ret (line 9), where
both this and b point to B, and ret can be understood
as a special return variable introduced for create() (Sec-
tion 4) [15]. Conceptually, A is not a top container. In this ex-
ample, A is not a bottom container either, due to A.f = O in
line 10, where O is an instance of java.lang.Object. As a
result, A is considered as being precision-critical. However,
if lines 10-11 were not present, then A would be deemed as
being precision-uncritical as it is now a bottom container.

Consider the program given in Figure 3 (which is free of
factory methods), where a total of n+7 objects can be found:
E, @, M1, M2, O1, O2, O, A1, ...,An. Figure 5 depicts the object
containment relationship deduced from Andersen’s analysis
for these objects. To ease understanding, we have also
included the field names (inside the dashed boxes) along
the points-to edges. According to the object containment
relationship shown, M1 and M2 contain @, which contains
E, which contains O1, O2 and O. By Definition 2, the set
of top containers is given by {M1,M2,A1, ...,An} and the
set of bottom containers is given by {O1,O2,O,A1, ...,An}
(which are not necessarily disjoint). By Observation 1, the
n + 5 objects in {M1,M2,O1,O2,O,A1, ...,An} are therefore

M2M1

O2

@

E

O

Ai
table

arr

key

O1

Fig. 5: The object containment relationship for the program
given in Figure 3, inferred from the points-to information
pre-computed by Andersen’s analysis. The top containers
are highlighted with their circles depicted in red and the
bottom containers are highlighted with their circles filled
with purple. Ai, ...,An, which are abbreviated by one single
circle Ai (1 ⩽ i ⩽ n), are both top and bottom containers.

considered as being precision-uncritical and will thus be
analyzed by kOBJ context-insensitively.

2.4.1.2 Justifications: In our TURNER
m approach,

our object containment analysis (based on Observation 1)
may introduce some imprecision, which may propagate into
its object reachability analysis. TURNER

m will suffer only a
slight loss of precision in #avg-pts computed by T-2OBJ+M
when some top or bottom containers that should be context-
sensitive are misclassified as being precision-uncritical, and
consequently, analyzed by T-kOBJ+M context-insensitively.
However, this has no or little impact on the precision of
#call-edges, #may-fail-casts, and #poly-calls for the set of 12
popular Java programs evaluated.

The set of top containers consists of the objects allocated
and used locally in a method, such as M1 and M2 (two
HashMap objects) in foo() in Figure 3. These objects do

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 8

not require context-sensitivity, since their encapsulated data
does not usually flow out of its containing methods via their
parameters or return variables. On the other hand, a bottom
container also does not usually require context-sensitivity,
as it represents an object that typically encapsulates its
primitive data (if any), including arrays of primitive types if
it ever contains pointers, such as O, O1 and O2 (three field-
less java.lang.Object objects) in Figure 3. In Section 5.3,
we will examine two example programs (Figures 18 and 19)
to explain why TURNER

m causes kOBJ to lose some small
precision in #avg-pts but still achieve the same or nearly the
same precision in #call-edges, #may-fail-casts, and #poly-
calls in real-world programs. Therefore, our heuristic for
selecting precision-uncritical objects is practically effective
with respect to these commonly used precision metrics.

2.4.2 Conducting Object Reachability for a Method
Given a method, TURNER

m relies on a simple DFA to reason
about implicitly the four value-flow patterns in Figure 2
in the method in an intra-procedural manner to select
its variables/objects to be analyzed by T-kOBJ+M context-
sensitively. In Section 4, we will explain how to start with an
object reachability analysis formulated as a CFL reachability
analysis, which can only be solved in the same worst-case
time complexity as kOBJ to be accelerated [24], and reduce
it over-approximately to a DFA-based object reachability
analysis, which can be solved linearly (in terms of the
number of statements in the program). By design, all the
precision-uncritical objects identified by Observation 1 in a
method are deemed to be context-insensitive. The remaining
objects and all the variables in the method will be classified
by the DFA as either precision-critical (context-sensitive) or
precision-uncritical (context-insensitive).

2.4.3 Conducting Object Reachability for a Program
We are required to classify the variables/objects in all the
methods in a program as either context-sensitive or context-
insensitive. In our preliminary investigation [22], our pre-
analysis, TURNER, conducts its object reachability analysis
by processing the methods in the program independently
(albeit modularly). TURNER will be precision-preserving if
Observation 1 is precision-preserving, as applying its object
reachability analysis this way always over-approximates the
precision-critical variables/objects in the program (Theo-
rem 1). For our example in Figure 3, Table 1 gives the con-
texts selected by TURNER for kOBJ, i.e., T-2OBJ. We discuss
only their differences with the contexts selected by EAGLE
for kOBJ, i.e., E-2OBJ. By exploiting object containment as
discussed in Section 2.4.1, M1, M2, O1, O2, and O have
been identified as being precision-uncritical and will thus
be analyzed context-insensitively. Given that M1 and M2 are
now context-insensitive, k, map1, and map2 in foo() will
also be identified as being context-insensitive by our DFA,
since the spurious “param-param” pattern that causes EAGLE
to flag M1, M2, k, map1, and map2 as being context-sensitive
no longer exists (Section 2.3). As M1 and M2 are context-
insensitive, the contexts [M1,Ai] and [M2,Ai] listed under
E-2OBJ have been shortened to [M1] and [M2] under T-2OBJ.

In this paper, TURNER
m conducts its modular object

reachability by adopting a new approach that is method-
ologically different from that adopted in TURNER. Our

key insight is to take advantage of the precision-uncritical
variables/objects discovered earlier in a method to increase
the number of precision-uncritical variables/objects to be
discovered later in another method. In our current design,
we achieve this by processing the methods in a program in a
reverse topological order of its call graph (with its strongly
connected components being collapsed). By construction,
the set of context-insensitive variables/objects found by
TURNER

m is always a superset of the set of context-
insensitive variables/objects found by TURNER (Theorem 3),
which ensures the superiority of TURNER

m to TURNER in
practice, as evaluated in this paper.

Consider a method M that contains a (possibly virtual)
call site l ∶ b = a0.m(a1,⋯, ar). When performing our
object reachability analysis for M , we can ignore all the
value flows leaving ai if its corresponding parameters in all
target (callee) methods invoked at l are precision-uncritical.
Similarly, we can ignore all the value flows leaving the
return variables of the target (callee) methods invoked at l if
all these return variables are precision-uncritical. This new
modular object reachability analysis will boost the perfor-
mance of kOBJ further while introducing only a negligible
loss of precision in rare cases (as explained in Section 4.3).

For our example in Figure 3 (Table 1), T-2OBJ analyzes
the parameters k in both containsKey() and get()
context-sensitively. Under our new modular object reach-
ability analysis, TURNER

m will analyze hashCode() be-
fore containsKey() and get(). As the this variable of
hashCode() is precision-uncritical, which is a parameter
corresponding to k in k.hashCode() in containsKey()
(line 4) and k.hashCode() in get() (line 17), TURNER

m

can now identify the parameters k in both containsKey()
and get() as being precision-uncritical and thus instruct T-
kOBJ+M to analyze both context-insensitively.

3 PRELIMINARIES

We take a standard formalization of kOBJ [10] from [25] and
adapt it to support selective context-sensitivity. This gives a
formal basis to understand our pre-analysis introduced.

3.1 A Simplified Object-Oriented Language

We consider a simple object-oriented language (a subset of
Java), in which a program consists of a set of classes, where
each class consists of static/instance fields and methods.
Table 2 gives six kinds of statements, which are labeled
by their line numbers, operated on by kOBJ. Note that
“x = new T (...)” in Java is modeled as “x = new T ;
x.⟨init⟩(...)”, where ⟨init⟩() is the corresponding con-
structor invoked. Section 5 discusses how to handle complex
language features such as reflection and native code.

As kOBJ is context-sensitive but flow-insensitive, the
control flow statements in a program are irrelevant. As is
standard with several recent implementations of kOBJ [11],
[12], [13], [14], static fields are analyzed context-insensitively
as global variables, but static methods can be analyzed
context-sensitively as instance methods as follows. For a
static method m() defined in class C , a call to m() can
be interpreted as this.m() by proceeding as if m() were
an instance method defined in java.lang.Object and

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 9

TABLE 2: Six kinds of statements analyzed by kOBJ.

Kind Statement Description
new l ∶ v = new T v is a local variable and T is a class type

assign l ∶ v = v
′

v and v
′ are local variables

assigngl l ∶ v = v
′

v or v′ is a global variable
load l ∶ v = v

′
.f v and v

′ are local variables and f is a field
store l ∶ v.f = v

′
v and v

′ are local variables and f is a field

call l ∶ b = a0.m(a1, ..., ar) b and ai are local variables and
m is an instance method

inherited by C . Given this.m(), m() can then be analyzed
context-sensitively under the receiver object pointed to by
this, which is the receiver object of m’s closest (instance)
caller method, if any, on the call stack.

Finally, every method is assumed to have one single
return statement of the form “return r”, where r is a local
variable (referred to as its return variable). Note that a return
statement in a method is not listed explicitly in Table 2, as
it will be handled implicitly at a call statement where the
method is invoked (as shown in Figure 6).

3.2 Selective Object-Sensitive Pointer Analysis
Given a program, let M, F, H, V, G and L be its sets
of methods, fields, allocation sites, local variables, global
variables, and statements (identified by their labels, e.g.,
line numbers), respectively. Let C = H∗ be the universe of
contexts. Given a context ctx = [o1, ..., on] ∈ C and a context
element o, we write o++ ctx for [o, o1, ..., on] and ⌈ctx⌉k for
[o1, ..., ok]. In the rules given for performing kOBJ, we will
make use of the following functions:

• methodOf ∶ L↦M
• methodCtx ∶ M↦ ℘(C)
• dispatch ∶ M ×H↦M
• len ∶ V ∪G ∪H↦ N
• pts ∶ (V ∪H × F) × C↦ ℘(H × C)

where methodOf gives the containing method of a state-
ment, methodCtx keeps track of the (method) contexts used
for analyzing a method, dispatch resolves a virtual call to
its target method, len defines the length of contexts used for
analyzing a variable/object, and pts records the points-to
information found for a variable or an object’s field.

Figure 6 gives five rules used by kOBJ for analyzing six
kinds of statements in Table 2 with two kinds of assignments
processed together in one rule. In [NEW], v points to the
object ol uniquely identified by its allocation site l. Note
that ⌈ctx⌉len(ol) is the heap context of ol (Section 2.1). In
[ASSIGN/ASSIGNGL], two kinds of assignments, where v
and v′ are either local or global variables, are handled as
copies. In [STORE] and [LOAD], field accesses are analyzed
in the standard manner. In [CALL], a call to an instance
method b = a0.m(a1, ..., ar) is analyzed. We write thism

′

,
pm

′

i and retm
′

for the “this” variable, i-th parameter and re-
turn variable of m′, respectively, where m′ is a target method
resolved. Frequently, we also write pm

′

0 for thism
′

. In the
conclusion of this rule, ctx′

∈ methodCtx(m′) reveals how
the method contexts ctx′ of a method m′ are introduced.
Initially, methodCtx(“main”) = {[]}.

kOBJ represents a k-object-sensitive pointer analysis with
a (k − 1)-context-sensitive heap (by handling global vari-
ables context-insensitively as is standard) [11], [12], [13],

[14]. Thus, kOBJ selects the context lengths for different
entities e in V ∪G ∪H differently as follows:

lenkOBJ(e) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0 e ∈ G
k e ∈ V
k − 1 e ∈ H

(3)

TURNER
m will select a subset CITURNER

m ⊆ V∪H so that
kOBJ will analyze CITURNER

m context-insensitively but (V ∪
H) \CITURNER

m context-sensitively as follows:

lenTURNER
m(e) = {0 e ∈ CITURNER

m

lenkOBJ(e) e ∈ (V ∪G ∪H) \CITURNER
m

(4)

As discussed earlier, EAGLE [15] will also enable kOBJ to
analyze only a subset of variables/objects in a method
context-sensitively but ZIPPER [20] will require a method
(i.e., all its variables/objects) to be analyzed either fully
context-sensitively or fully context-insensitively.

4 TURNER
m: OUR APPROACH

We first introduce TURNER
m, by describing its object con-

tainment analysis (Section 4.1), its object reachability anal-
ysis for one single method (Section 4.2), and its modular
object reachability analysis for a program (Section 4.3). We
then discuss its time complexity (Section 4.4).

4.1 Determining the Precision-Criticality of Objects in
a Program based on Object Containment
During the object containment analysis, we identify some
precision-uncritical objects in a program based on the
points-to information pre-computed by Andersen’s analy-
sis [21] according to Observation 1. For an object o, we
write reto to denote the return variable in the method
where o is allocated. For two objects o1 and o2, we write

o1
class−type(f)
−−−−−−−−−−→ o2 if o1.f = o2 for some field f whose

declared type is either C or C[], where C is some class
type. As a result, the set of precision-uncritical objects in a
program, denoted CIOBS

TURNER
m , can be found as follows:

CIOBS
TURNER

m = TopCon ∪ BotCon (5)

where the sets of top and bottom containers are:

TopCon = {o
»»»»»»»»
(∄ (o′, f) ∈ H × F ∶ o

′ class−type(f)
−−−−−−−−−−→ o)

∧ reto does not point to o}

BotCon = {o
»»»»»»»
∄ (o′, f) ∈ H × F ∶ o

class−type(f)
−−−−−−−−−−→ o

′}

(6)

4.2 Conducting Object Reachability for a Method
During the object reachability analysis for a given method,
we use a DFA to determine whether a variable/object in the
method requires context-sensitivity or not. Let CITURNER

m

be the set of context-insensitive variables/objects that are
selected finally by TURNER

m to support selective context-
sensitivity required in (4). By design, CIOBS

TURNER
m ⊆ CITURNER

m ,
i.e., the precision-uncritical objects selected during the ob-
ject containment analysis will always be analyzed context-
insensitively. Therefore, for a given method, its allocated ob-
jects that are not in CIOBS

TURNER
m , together with all the variables

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 10

l ∶ v = new T M = methodOf(l) ctx ∈ methodCtx(M)
(ol, ⌈ctx⌉len(ol)) ∈ pts(v, ⌈ctx⌉len(v))

[NEW]

l ∶ v = v′ M = methodOf(l) ctx ∈ methodCtx(M)
pts(v′, ⌈ctx⌉len(v′)) ⊆ pts(v, ⌈ctx⌉len(v))

[ASSIGN/
ASSIGNGL]

l ∶ v.f = v′ M = methodOf(l) ctx ∈ methodCtx(M) (o, hctx) ∈ pts(v, ⌈ctx⌉len(v))
pts(v′, ⌈ctx⌉len(v′)) ⊆ pts(o.f, hctx)

[STORE]

l ∶ v = v′.f M = methodOf(l) ctx ∈ methodCtx(M) (o, hctx) ∈ pts(v′, ⌈ctx⌉len(v′))
pts(o.f, hctx) ⊆ pts(v, ⌈ctx⌉len(v))

[LOAD]

l ∶ b = a0.m(a1, ..., ar) M = methodOf(l) ctx ∈ methodCtx(M)
(o, hctx) ∈ pts(a0, ⌈ctx⌉len(a0)) m′

= dispatch(m,o) ctx′
= o ++ hctx

ctx′
∈ methodCtx(m′) ∀i ∈ [1, r] ∶ pts(ai, ⌈ctx⌉len(ai)) ⊆ pts(pm

′

i , ⌈ctx′⌉len(pm′

i))
(o, hctx) ∈ pts(thism

′

, ⌈ctx′⌉len(thism′))pts(retm
′

, ⌈ctx′⌉len(retm′)) ⊆ pts(b, ⌈ctx⌉len(b))

[CALL]

Fig. 6: Rules for kOBJ formalized to support selective context-sensitivity.

in the method, will be further classified as either context-
sensitive or context-insensitive according to the DFA.

We first review a standard formulation for performing
pointer analysis intra-procedurally based on CFL reachabil-
ity, which can only be solved in the same worst-case time
complexity as kOBJ [24] (Section 4.2.1). We then evolve it
incrementally in stages into a DFA-based intra-procedural
reachability analysis, which can be solved linearly in terms
of the number of statements in a method (Section 4.2.2).

4.2.1 Standard CFL-Reachability-based Pointer Analysis
A parameterless method that contains no calls can be rep-
resented by a directed graph G, known as PAG (Pointer
Assignment Graph), with its nodes drawn from V ∪ G ∪ H
and its five types of edges added according to the rules
given in Figure 7 [26], [27]. Loads and stores to the elements
of an array are modeled by collapsing all the elements into

a special field arr of the array. For each PAG edge x
ℓ
−→ y

with its label ℓ, its inverse edge is denoted as y
ℓ
−→ x.

l ∶ v = new T

ol
new
−−→ v v

new
−−→ ol

[P-NEW]

v = v′.f

v′
load[f]
−−−−→ v v

load[f]
−−−−→ v′

[P-LOAD]
v.f = v′

v′
store[f]
−−−−→ v v

store[f]
−−−−→ v′

[P-STORE]

v = v′

v′
assign
−−−−→ v v

assign
−−−−→ v′

[P-ASSIGN]
v = v′

v′
assigngl
−−−−−→ v v

assigngl
−−−−−→ v′

[P-ASSIGNGL]

Fig. 7: Creating the PAG edges for a method containing no
calls inside.

Let L be a CFL over Σ formed by the edge labels in G. A
path p in G has a string L(p) in Σ∗ formed by concatenating
in order the labels of edges in p. A node v in G is L-reachable
from a node u in G if there exists a path p from u to v, known
as L-path and denoted by L(u, v), such that L(p) ∈ L. For a
node n in G, we write L(u, v)n if n appears on L(u, v). For

a path p in G such that its label is L(p) = ℓ1,⋯, ℓr in L, its
inverse p has the label L(p) = ℓr,⋯, ℓ1.

We start with a standard grammar that defines the
following language L0 [26], [27]:

L0 ∶

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

flowsto⟶ new flows∗

flows⟶ assign ∣ assigngl ∣ store[f] alias load[f]

flowsto⟶ flows
∗

new

flows⟶ assign ∣ assigngl ∣ load[f] alias store[f]

alias⟶ flowsto flowsto

(7)

If o flowsto v, then v is L0-reachable from o, i.e., L0(o, v).
To handle aliases, flowsto is introduced as the inverse of the
flowsto relation. A flowsto path p can be inverted to obtain
its corresponding flowsto path p using its inverse edges, and
vice versa. Thus, o flowsto x iff x flowsto o. This means that
flowsto actually represents the standard points-to relation.
We can then conclude that x alias y iff x flowsto o flowsto y
for some object o, so that field accesses are handled precisely
by solving a balanced parentheses problem.

1. u = new O(); // O
2. p = new A(); // A
3. q = p;
4. p.f = u;
5. v = q.f;

(a) Code (b) PAG

O A

u

q

p
store[f]

new new

load[f]
v

assign

O A

u

q

p
store[f]

new new

load[f]
v

assign

Fig. 8: The PAG for a code snippet.

For the code snippet (consisting of local variables only),
together with its PAG, shown in Figure 8, we know that
L0(O, v) holds, i.e., O flowsto v, implying that v points to O,
which holds due to the existence of the flowsto path:

O
new
−−→ u

store[f]
−−−−→ p

new
−−→ A

new
−−→ p

assign
−−−−→ q

load[f]
−−−−→ v (8)

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 11

By inverting all the edges in this flowsto path, a flowsto path
showing v flowsto O can be obtained.

4.2.2 TURNER
m’s Object Reachability Analysis

We now over-approximate L0 incrementally to obtain a
regular grammar, i.e., a DFA to decide intra-procedurally
whether a variable/object needs context-sensitivity or not.

4.2.2.1 Ignoring Context-Insensitive Value Flows:
Instead of computing points-to information in a program di-
rectly, TURNER

m analyzes the context-sensitive value flows
across the parameters or return variables of its methods
(Fact 1). Thus, we will ignore the assigngl statements and
the precision-uncritical objects in CIOBS

TURNER
m , as the value-

flows passing through them are context-insensitive.

l ∶ v = new T ol ∉ CIOBS
TURNER

m

ol
cs-likely
−−−−−→ ol

[P-OBJECT]

Fig. 9: Treating the objects in CIOBS
TURNER

m as context-
insensitive.

To handle the objects in CIOBS
TURNER

m context-insensitively
as global variables, as shown in Figure 9, we have added
a self-loop edge label, named cs-likely, for each object that
is not in CIOBS

TURNER
m to indicate that it is currently treated

as being potentially context-sensitive but will be classified
later as being either context-sensitive or context-insensitive
by our reachability analysis. By deleting the two terminals
assigngl and assigngl from and adding one new terminal cs-
likely to the grammar for defining L0, we obtain a revised
grammar for defining L1 as follows:

L1 ∶

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

flowsto⟶ new flows∗

flows⟶ assign ∣ store[f] alias load[f]

flowsto⟶ flows
∗

new

flows⟶ assign ∣ load[f] alias store[f]

alias⟶ flowsto cs-likely flowsto

(9)

Let us consider Figure 8 again by making two indepen-
dent changes to the code snippet given. In one change, if

q is assumed to be a global variable, then p
assign
−−−−→ q will

become p
assigngl
−−−−−→ q. As a result, L1(O,v) can no longer be

established as in (8) earlier (due to the absence of assigngl
in L1). In a different change, if A is a cs-likely object, then
L1(O,v) can also be established as before, since we have:

O
new
−−→ u

store[f]
−−−−→ p

new
−−→ A

cs-likely
−−−−−→ A

new
−−→ p

assign
−−−−→ q

load[f]
−−−−→ v (10)

Otherwise (i.e., if A is precision-uncritical), L1(O,v) will no

longer be possible due to the absence of A
cs-likely
−−−−−→ A.

To simplify matters, returning values from a method can
be treated identically as passing parameters for the method.
In object-sensitive pointer analysis [11], [12], [13], [14], [15],
a method M is analyzed context-sensitively under different
receiver objects. Therefore, its return statement “return r”
can be modeled as “this.ret = r”, where ret is a fresh local
variable (interpreted now as the return variable of M) and
the return values in “this.ret” can be retrieved by its callers
via its receiver objects. Given this simple transformation, the

four value-flow patterns given in Figure 2 can be unified as
just one “param-param” pattern.

Lemma 1. A variable/object n in a method M requires context-
sensitivity only if n lies on a sequence of statements, s1, ..., sr ,
so that (1) si and si+1 form a def-use chain involving only local
variables and cs-likely objects, (2) s1 is a use of a cs-likely object
or a parameter of M , and (3) sr is a def of P.f , where P is a
parameter of M (including this) and f is a field of the objects
pointed by P (including M ’s return variable ret).

Proof. Follows from the fact that the lemma is a restatement
of Fact 1 based on the definition of cs-likely objects.

In this case, n should be context-sensitive, since the mod-
ification effects of different definitions of n on P.f under
different calling contexts of M must be separated context-
sensitively in order to avoid some potential precision loss.

4.2.2.2 Approximating the Value Flows Spanning
across Method Calls: We now consider how to handle a
method call made in a method being analyzed. TURNER

m

will over-approximate the context-sensitive value flows
spanning across a call site without analyzing its invoked
methods. With L1, we can only reason about CFL reachabil-
ity starting from an object. With L2 given below, we can also
start from a variable (as needed in Lemma 1):

L2 ∶

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

flows⟶ (new ∣ assign ∣ store[f] alias load[f])∗

flows⟶ (new ∣ assign ∣ load[f] alias store[f])∗

alias⟶ flows cs-likely flows

(11)

Lemma 2. Let G be the PAG built by the rules in Figures 7 and
9. Then L2 ⊇ L1.

Proof. Follows simply from examining the structural differ-
ences in the productions of L1 and L2.

In both languages, L1 and L2, the aliases between two
variables are established in exactly the same way.

Next, we over-approximate L2 to obtain L3 by abstract-
ing the field accesses with 1-limited access paths and han-
dling aliases more conservatively (as explained below):

L3 ∶

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

flows⟶ (new ∣ assign ∣ load ∣ store alias)∗

flows⟶ (new ∣ assign ∣ load ∣ alias store)∗

alias⟶ flows cs-likely flows

(12)

Thus, the fields in loads and stores are ignored, and loads
and assignments become indistinguishable, but stores are
treated differently (i.e., unsymmetrically as loads) in order
to keep track of aliases as desired. Note that L3 is still a CFL,
since (1) a store is required to match a new, assign or load,
and (2) a store is required to match a new, assign or load.
However, this balanced-parentheses property is somehow
hidden in the alias-production.

For the code snippet given in Figure 8, L3(O,v) will still
hold even if, say, v = q.f is replaced by v = q.g due to
the existence of the following flowsto path:

O
new
−−→ u

store
−−−→ p

new
−−→ A

cs-likely
−−−−−→ A

new
−−→ p

assign
−−−−→ q

load
−−→ v (13)

Lemma 3. Let G be the PAG built by the rules in Figures 7 and
9. Then L3 ⊇ L2.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 12

b = a0.m(a1, ..., ar)

∀ i ∶ ai
store[pm′

i]
−−−−−−→ a0 ∀ i ∶ a0

store[pm′

i]
−−−−−−→ ai

a0
load[retm

′

]
−−−−−−−→ b b

load[retm
′

]
−−−−−−−→ a0

[P-CALL]

Fig. 10: Analyzing a method call.

Proof. In L3, the first two productions can be expressed
equivalently as flows ⟶ (new ∣ assign ∣ load ∣
store alias load?)∗ and flows ⟶ (new ∣ assign ∣ load ∣
load? alias store)∗. As is standard, (s)? indicates that s is
optional, where ‘(’ and ‘)’ can be omitted if s represents one
symbol. We can conclude that L3 ⊇ L2 by noting that the
field access paths in L3 are 1-limited.

In L3, a store can now also be matched (conservatively)
with a store when looking for aliases:

flows⟹+
... store flows cs-likely flows store ... (14)

For the code given in Figure 8, L3(O,v) will thus still hold if
we (1) replace v = q.f by q.g = v and (2) add v = new
V(), where the allocated object, V, is assumed to be cs-likely:

O
new
−−→ ...

assign
−−−−→ q

store
−−−→ v

new
−−→ V

cs-likely
−−−−−→ V

new
−−→ v (15)

where the subpath from O to q is the same as that in (13).
We exploit this property to avoid analyzing the methods

invoked at a call site while still keeping track of all context-
sensitive value flows spanning the call site (conservatively).

Consider how kOBJ analyzes a method call b =

a0.m(a1, ..., ar), with a target method m′ resolved when
a0 points to a receiver object O. Let its r + 1 parameters
be pm

′

0 , ..., pm
′

r , where pm
′

0 represents thism
′

. Let its return
variable retm

′

be introduced as described in Section 4.2.2.1.
Object-sensitively, pm

′

0 , ..., pm
′

r and retm
′

are handled as if
they were special fields of O [15]: ∀ i ∶ a0.p

m′

i = ai for
passing parameters and b = a0.ret

m′

(for retrieving return
values). As a result, Figure 10 gives a rule, [P-CALL], for
adding the PAG edges required for a method call according
to [P-LOAD] and [P-STORE]. When m′ is analyzed by kOBJ,
where its thism

′

variable points to O, its parameters will be
initialized as ∀ i ∶ pm

′

i = thism
′

.pm
′

i and its return values
will be made available in thism

′

.retm
′

.
Given how b = a0.m(a1, ..., ar) is modeled, we can

determine whether or not a context-sensitive value flow
that enters one of its invoked methods via a parameter can
also exit it via another parameter without actually analyzing
the invoked method itself, by enforcing L3(ai, aj) conserva-
tively, i.e., ensuring that whatever flows into ai flows also
into aj , if necessary. As will be clear in Section 4.2.2.3, this
call needs to be approximated this way if a0 may point to
some cs-likely object and can be ignored otherwise.

Lemma 4. Let G be the PAG built by the rules in Figures 7, 9
and 10 for a method M (where how its parameters are modeled
is irrelevant). When analyzing a call b = a0.m(a1, ..., ar) in M ,
L3(ai, aj) is established iff a0 points to some cs-likely object.

Proof. Let O be an object pointed by a0. By [P-CALL],
passing ai and aj to a target method m′ at the call site is
modeled by two stores a0.p

m′

i = ai and a0.p
m′

i = aj . Thus,

flows⟹+
... ai

store
−−−→ a0 flows O ⋯ O flows a0

store
−−−→ aj ... (16)

L3(ai, aj) is then established (as far as this call site is con-
cerned, regardless of its truthhood established elsewhere)
iff O is a cs-likely object, in which case the “⋯” between the

two occurrences of O can be replaced by
cs-likely
−−−−−→.

4.2.2.3 Approximating the Incoming Value Flows
from Parameters: We discuss how to handle the parameters
of a method when it is analyzed. It is not computationally
feasible to formulate our pre-analysis for a method in terms
of L3 directly (even after its parameters have been modeled
in a certain way). As L3 is a CFL (with balanced parenthe-
ses), the worst-time complexity for finding the points-to set
of a variable is O(N3Γ3

L3
), where N is the number of nodes

in the PAG and ΓL3
is the size of L3 [24], [28].

To handle method parameters, we over-approximate L3

by turning it into a regular language L4 defined by:

L4 ∶ {
flows⟶ (new ∣ assign ∣ load)∗((store ∣ store) flows)?
flows⟶ (new ∣ assign ∣ load)∗(cs-likely flows)?

(17)

Lemma 5. Let G be the PAG built by the rules in Figures 7, 9
and 10. Then L4 ⊇ L3.

Proof. Follows from the fact that L4 is regularized from L3

by no longer distinguishing store and store.

Thus, we are now even more conservative in abstracting
aliases in L4 than in L3. If we replace p.f = u with u.f =
p in Figure 8, L3(O,v) will not hold but L4(O,v) will, since

O
new
−−→ u

store
−−−→ p

new
−−→ A

cs-likely
−−−−−→ A

new
−−→ p

assign
−−−−→ q

load
−−→ v (18)

p is a parameter

p
param
−−−−→ p p

param
−−−−→ p

[P-PARAM]

Fig. 11: Adding the PAG edges for method parameters.

We are ready to describe our final regular language L5

used to decide if a variable/object in a method should be
context-sensitive or not. By adding the two self-loop PAG
edges for each parameter of a method according to [P-
PARAM] given in Figure 11 and exploiting the fact that store
and store are treated identically in L4, we obtain:

L5 ∶

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

s⟶ param flows

flows⟶ (new ∣ assign ∣ load)∗((store ∣ store) flows)?
flows⟶ (new ∣ assign ∣ load)∗(cs-likely flows)?
flows⟶ param e

e⟶ ϵ

(19)

This allows us to analyze a method without knowing what
its parameters may point to, by treating it effectively as a
parameterless method (discussed earlier).

Lemma 6. Let G be the PAG built for a method by the rules in
Figures 7 and 9–11. Let P1 and P2 be its two (not necessarily
different) parameters. Then L4(P1, P2) ⟺ L5(P1, P2).

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 13

Proof. Follows straightforwardly reasoning about the minor
differences in the productions of L4 and L5.

As discussed in Section 4.2.1, if L is a CFL, L(u, v)n
holds if L(u, v) holds due to an L-path that contains a node
n. Thus, CITURNER

m that appears in (4) can be defined as:

CITURNER
m = ⋃

M∈M
CITURNER

m(M) (20)

where
CITURNER

m(M) = {n ∣ n ∈ V ∪H ∧ n is a node in GM

∧∄ P1, P2 ∈ param(M) ∶ LGM
5 (P1, P2)n}

(21)

Here, param(M) is the set of parameters of a method M
and L5 is superscripted with the PAG, GM , built for M .
By construction, CIOBS

TURNER
m ⊆ CITURNER

m holds due to the
absence of a self-loop edge, labeled cs-likely, around each
object in CIOBS

TURNER
m . According to (3), all the global variables

in G are handled context-insensitively. Therefore, we do not
have to include G in CITURNER

m explicitly even though this
inclusion can be recognized automatically by our approach.

Let us apply TURNER
m to the four programs in Figure 2

to see how it has successfully selected x to be context-
sensitive (where “return x” in each program has been re-
placed by “this.ret = x” and the objects A created in
Figure 2(b) and 2(d) are assumed to be cs-likely objects):

• Figures 2(a): L5(p,this)x: p
assign
−−−−→ x

store
−−−→ this.

• Figures 2(b): L5(this,this)x: this
store
−−−→ x

new
−−→ A

cs-likely
−−−−−→

A
new
−−→ x

store
−−−→ this.

• Figure 2(c). L5(p,q)x: p
assign
−−−−→ x

store
−−−→ q.

• Figure 2(d): L5(this,this)x: this
store
−−−→ x

new
−−→ A

cs-likely
−−−−−→

A
new
−−→ x

store
−−−→ this.

Finally, we show that our intra-procedural object reach-
ability analysis is precision-preserving if Observation 1 is
precision-preserving. In this case, TURNER [22], which pre-
analyzes the methods in a program independently, will not
cause kOBJ to lose precision. The basic idea is to show
that if a variable/object in a given method is identified as
being context-sensitive according to Lemma 1, i.e., Fact 1
(Figure 2), then it must always reside on an L5-path.

Theorem 1. Suppose Observation 1 is precision-preserving. Let
G be the PAG built for a method M (according to the rules given
in Figures 7 and 9–11). If a variable/object n in M is context-
sensitive by Lemma 1, then L5(P1, P2)n holds, where P1 and P2

are two (not necessarily different) parameters of M .

Proof. Our proof proceeds in the following three steps:

1) We assume that M is analyzed equivalently under
one cs-likely receiver object, OM . Let M ′ be ob-
tained from M by augmenting it with (1) “thisM =

new T // OM” and (2) “P = thisM .P” for every
parameter P of M . Let G′ be the resulting PAG
augmented from G. For every parameter P of M ,

we now have P
assign
−−−−→ thisM

new
−−→ OM

cs-likely
−−−−−→

OM
new
−−→ thisM

assign
−−−−→ P . Thus, L5(P1, P2)n holds

over G, where P1 and P2 are two parameters of M
iff L5(P ′, P ′)n holds over G′, where P ′ is a param-
eter of M . In L5, every variable is now guaranteed
to point to at least one object, which can be OM .

2) We show now that all the context-sensitive value
flows that enter M under its different calling con-
texts are tracked in L5 if they pass through a method
call b = a0.m0(a1, ..., ar) (via a0, ..., ar). Thus, it
suffices to consider each call site in M in isolation.
Note that the loads and stores in a program can
always be modeled as getters and setters.
By Lemmas 5 and 6, Lemma 4 applies also to
L5: L5(ai, aj) is established in analyzing b =

a0.m0(a1, ..., ar) iff a0 points to at least one cs-
likely object. Thus, we only need to argue that if a0
points to only context-insensitive objects, recorded
in Fa0

, then each invoked method at this call site
can be ignored in this sense. In this case (where
OM ∉ Fa0

as OM is context-sensitive by construc-
tion), if some pointed-to objects of a0 are missing
in Fa0

(as our pre-analysis is intra-procedural), then
there must exist a call chain, a0 = x1.m1(...), x1 =

x2.m2(...), ..., xt−1 = xt.mt(...) (modeled effectively
as a0 = x1 = ... = xt in L5), where all the pointed-
to objects of xt in the program are found intra-
procedurally (under the assumption that all the
receiver objects of M are abstracted by one single
context-sensitive object, OM , as explained in Step 1).
Since Observation 1 is assumed to be precision-
preserving, the value flows that enter M under its
different calling contexts (i.e., receiver objects) need
not be tracked, i.e., separated context-sensitively
at each call site mi(). To prove this claim in-
ductively, we write x−1 = x0.m0(...) to represent
b = a0.m0(...). Let Rmi

be the set of objects returned
by mi() but missed by L5, as mi() is not analyzed.
Our claim is true for xt−1 = xt.mt(...), since all the
objects pointed to by xt in the program are context-
insensitive. This also implies that the objects in Rmt

are all conflated under different calling contexts of
M . Suppose that our claim holds for mi(), in which
case, the objects in Rmi

are conflated. Let us con-
sider xi−2 = xi−1.mi−1(...). As xi−1 can only point to
either some context-insensitive objects in Fa0

found
intra-procedurally by L5 or the conflated objects in
Rmi

, our claim must also be true for mi−1().
3) If a variable n is context-sensitive by Lemma 1,

there must exist a cs-likely O due to Step 1 such
that L1(O,P)n ∶ O flows n′ store

−−−→ P , which con-
tains n, where n′ is a variable (which may be n)
and P is a parameter of M . By applying Lem-
mas 2 – 6 and the result established in Step 2,
we must have L5(O,P)n ∶ O flows n′ store

−−−→ P
(passing through n). As a result, L5(P,P)n ∶

P
store
−−−→ n′ flows O

cs-likely
−−−−−→ O flows n′ store

−−−→ P
holds. If an object n is context-sensitive by Lemma 1,
L5(P,P)n can be established similarly.

4.2.2.4 Computing CITURNER
m with a DFA: For a

method M , we give an efficient algorithm for computing
CITURNER

m(M) defined in (21) with a DFA (shown in Fig-
ure 12), which is obtained equivalently from the regular
grammar for L5. Our algorithm proceeds in linear time of

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 14

the number of nodes in the PAG of M by exploiting an
antisymmetric property inherent in our DFA.

The DFA is a quintuple A = (Q,Σ, δ, s, e), where Q =

{s, flows, flows, e} is the set of states, Σ = {param,param,
new,new,assign,assign, load, load, store, store, cs-likely} is
the alphabet, δ ∶ Q × Σ ↦ Q is the state transition function,
s is the start state, and e is the accepting, i.e., final state.

Definition 4. Given a PAG edge n1
σ
−→ n2 with a corresponding

state transition δ(q1, σ) = q2, we define (n1, q1)↣ (n2, q2) as a
one-step transition. The transitive closure of ↣, denoted by ↣+,
represents a multiple-step transition.

We describe an antisymmetric property of our DFA in
Lemmas 7 and 8 below.

Lemma 7. Let n1 and n2 be two PAG nodes. We have (1)
(n1, s) ↣+ (n2, flows) ⟹ (n2, flows) ↣+ (n1, e) and (2)
(n1, s)↣+ (n2, flows) ⟹ (n2, flows)↣+ (n1, e).

Proof. To prove (1), we note that n1 flows n2 ⟹ n2 flows n1

in L5. To prove (2), we note that n1 flows n
store ∣ store
−−−−−−−→ n2 ⟹

n2
store ∣ store
−−−−−−−→ n flows n1 in L5, where n is a PAG node.

Lemma 8. Let n1 and n2 be two PAG nodes. We have
(n2, flows) ↣+ (n1, e) ⟹ (n1, s) ↣+ (n2, flows) and
(n2, flows)↣+ (n1, e) ⟹ (n1, s)↣+ (n2, flows).

Proof. Proceeds similarly as in the proof of Lemma 7 by
noting [P-PARAM] given in Figure 11.

In (21), we include a variable/object n in a method
M (with its PAG denoted by GM) into CITURNER

m(M) if
L
GM

5 (P1, P2)n does not hold for any two parameters P1

and P2 of M . In terms of our DFA, LGM

5 (P1, P2)n holds
iff (P1, s)↣+ (n, q)↣+ (P2, e), where q ∈ {flows, flows}.

The antisymmetric property of our DFA is exploited
below.

Theorem 2. Let n be a variable/object in a method with P1 and
P2 as its two parameters. (P1, s) ↣+ (n, q) ↣+ (P2, e) ⟺
(P2, s)↣+ (n, q)↣+ (P1, e), where q ∈ {flows, flows}.

Proof. Lemmas 7 and 8.

As a result, we have designed an efficient algorithm
for verifying L

GM

5 (P1, P2)n by verifying n ∈ RM(flows) ∩
RM(flows) for a method M (with GM as its PAG), in which,
R ∶ Q ↦ ℘(V ∪ H) returns a set of nodes in GM reached at
a given state q ∈ Q and R−1 ∶ V ∪ H ↦ ℘(Q) is the inverse
of R. These two functions are computed according to the
two rules given in Figure 13. The two rules are simple: [A-I]
performs the initializations needed while [A-II] computes a
fixed point for each function iteratively.

Given RM computed above, we can now obtain
CITURNER

m(M) given in (21) efficiently as follows:

CITURNER
m(M) = {n ∣ n is a node in GM

∧ n ∉ RM(flows) ∩RM(flows)}
(22)

4.3 Conducting Object Reachability for a Program
TURNER

m applies a modular object reachability analysis to
the methods in a program according to a reverse topolog-
ical order of its call graph. This can increase the number
of precision-uncritical variables/objects found in a caller
method based on the precision-uncritical variables/objects
that are already found earlier in its callee methods.

Our final pre-analysis, TURNER
m, given in Algorithm 1,

takes a program P as input and returns CITURNER
m con-

structed for P according to (20) as output. To start with,
we obtain a call graph Gcg for P by applying Andersen’s
analysis [21] (line 1). As Andersen’s analysis is context-
insensitive, Gcg always over-approximates the call graph
constructed for P by kOBJ (with or without selective
context-sensitivity being enforced) as desired. Let Gscc be
obtained from Gcg with its strongly connected component
(SCCs) being merged (line 2). As Gscc is now a DAG,
sccList is obtained simply as a list containing all the SCC
nodes sorted according to some reverse topological order in
Gscc (line 3). In lines 4-7, we apply our object reachability
analysis to the methods in P according to the order in
which their containing SCCs appear in sccList, with all the
methods in the same SCC being ordered randomly. For a
given method M contained in a SCC scc (lines 4-5), we call
buildPAG(M, scc) to build its PAG GM (line 6) and then
find the set of precision-uncritical variables/objects in M ,
i.e., CITURNER

m(M), according to (22) (line 7). When building
GM (lines 9-21), we perform one significant optimization
enabled by our modular object reachability analysis at a
call site l ∶ b = a0.m(a1, ..., ar) in M when all its callee
methods in Cl

M are outside scc. In this case, we ignore the
value flows leaving an argument ai if its corresponding
parameters pm

′

i in all the callee methods contained in Cl
M

are precision-uncritical (lines 14-17), since such value-flows
are usually context-insensitive (Fact 1). Similarly, we ignore
the value flows originating from the return variables in
all the callee methods in Cl

M (into b) if all these return
variables are precision-uncritical (lines 18-20). Finally, we
obtain CITURNER

m by (20) in line 8 as desired.
TURNER [22] introduced in our preliminary investigation

can be regarded as the version of TURNER
m simplified with

lines 11-20 in Algorithm 1 ignored, so that TURNER ends up
applying our object reachability analysis to the methods in
a program independently (in any order). Thus, TURNER

m

is always no less effective than TURNER in identifying the
context-insensitive variables/objects in a method.

Theorem 3. For any given method M analyzed by TURNER
m

and TURNER, CITURNER
m(M) ⊇ CITURNER(M) always holds.

Proof. TURNER [22] pre-analyzes the methods in a program
independently. Thus, GM built for M by TURNER, denoted
GTURNER

M , is simply the one given in line 10 of Algorithm 1.
On the other hand, GM built by TURNER

m must be a sub-
graph of GTURNER

M due to the existence of lines 11-20 of
Algorithm 1. Thus, CITURNER

m(M) ⊇ CITURNER(M).

Below we first state the principle behind the devel-
opment of our modular object reachability analysis in a
theorem and then explain why it may cause kOBJ to lose
precision only in some rare cases due to type filtering being
applied during the pointer analysis.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 15

sstart flows flows e
param

new ∣ assign ∣ load store ∣ store
new ∣ assign ∣ load

param

cs-likely

Fig. 12: The DFA representing the regular grammar for defining L5.

n ∈ NM

n ∈ RM(s) s ∈ R−1
M (n)

[A-I]

n1
σ
−→ n2 ∈ EM q1 ∈ R−1

M (n1) δ(q1, σ) = q2 q2 ∉ R−1
M (n2)

n2 ∈ RM(q2) q2 ∈ R−1
M (n2)

[A-II]

Fig. 13: Computing RM and R−1
M for a method M with GM =

(NM , EM).

Algorithm 1: The TURNER
m pre-analysis.

Input : A program P

Output: CITURNER
m

1 Gcg ← call graph of P built by Andersen’s analysis;
2 Gscc ← CollapsingSCCs(Gcg);
3 sccList ← ReverseTopologicalSort (Gscc);
4 for scc ∈ sccList do
5 for M ∈ scc do
6 GM ← buildPAG(M, scc);
7 Build CITURNER

m(M) for M by (22);

8 CITURNER
m ← ⋃

M∈M
CITURNER

m(M) by (20);

9 Function buildPAG(M, scc)
10 GM ← PAG built for P as in Figures 7, 9 and 10;
11 for l ∶ b = a0.m(a1, ..., ar) ∈ M do
12 Cl

M ← set of callee methods invoked at l;
13 if Cl

M ∩ scc = ∅ then
14 for i ∈ [0, r] do

15 if ∀ m′
∈ Cl

M ∶ pm
′

i ∈ CITURNER
m(m′) then

16 Remove ai
store[pm′

i]
−−−−−−−→ a0 from GM ;

17 Remove a0
store[pm′

i]
−−−−−−−→ ai from GM ;

18 if ∀ m′
∈ Cl

M ∶ retm
′

∈ CITURNER
m(m′) then

19 Remove a0
load[retm

′
]

−−−−−−−−→ b from GM ;

20 Remove b
load[retm′]
−−−−−−−−→ a0 from GM ;

21 return GM

Theorem 4. Let T-kOBJ (T-kOBJ+M) be kOBJ performed with
selective context-sensitivity prescribed by TURNER (TURNER

m).
Suppose that if kOBJ is applied to analyze a program, pts(a0, c) =
∅ ⟹ ∀ 1 ⩽ i ⩽ r ∶ pts(ai, c) = ∅ always holds for each of its
call sites, a0.m(a1, ..., ar), analyzed under every possible context
c. Then T-kOBJ+M and T-kOBJ yield exactly the same precision
(in terms of pts) for the program.

Proof. By Theorem 3, CITURNER
m(M) ⊇ CITURNER(M) holds

for every method M analyzed by both TURNER
m and

TURNER. By noting further lines 11-20 in Algorithm 1, we
can conclude that for each call site a0.m(a1, ..., ar) in a
program analyzed by kOBJ under every possible context
c, pts(ai) obtained under T-kOBJ+M is a strict superset of
pts(ai) obtained under T-kOBJ only if pts(a0, c) = ∅ ⟹

pts(ai, c) ≠ ∅, where 1 ⩽ i ⩽ r. Thus, under the stated
hypothesis, T-kOBJ+M and T-kOBJ will yield the same pre-
cision (expressed in terms of pts) for the given program.

We use an example (abstracted from JDK) in Figure 14
to help understand this theorem by explaining why T-
kOBJ+M may be slightly less precise than T-kOBJ in some
rare cases due to type filtering being applied during the
pointer analysis. In particular, T-1OBJ has the same precision
as 1OBJ but T-1OBJ+M is slightly less precise. We focus on
pts(v) obtained in line 27, as it is affected by whether v1
defined in line 18 is analyzed context-sensitively or not.

• 1OBJ. In lines 18-19, v1 and v2 will be analyzed un-
der two contexts, [P3] and [P4], due to the two calls
in lines 39-40. Under [P3], we obtain pts(v1, [P3]) =
{(S1, [])} and pts(v2, [P3]) = {(S3, [])}. Under
[P4], we obtain pts(v1, [P4]) = ∅ (due to type-
filtering that happens in line 14) and pts(v2, [P4]) =
{(S4, [])}. Thus, endWith() in line 27 will be
analyzed under [S1] only, yielding pts(v, [S1]) =

{(S3, [])}. Context-insensitively, pts(v) = {S3}.
• T-1OBJ. T-1OBJ also analyzes v1 and v2 context-

sensitively, achieving the same precision as 1OBJ.
• T-1OBJ+M. As the two (formal) parameters,

this and v, in endWith() are precision-
uncritical, TURNER

m will now make both v1
and v2 context-insensitive. For T-1OBJ+M, we then
have pts(v1, []) = (S1, []) and pts(v2, []) =

{(S3, []), (S4, [])}. When endWith() is ana-
lyzed, we obtain pts(v, []) = {(S3, []), (S4, [])}.
Context-insensitively, pts(v) = {S3,S4}, where
S4 is spurious. This happens, since, for the call
v1.endsWith(v2) in line 20, pts(v1, [P4]) =

∅ ⟹ pts(v2, [P4]) = {(S4, [])} ≠ ∅ under
1OBJ (violating the hypothesis stated in Theorem 4
for guaranteeing the precision equivalence between
T-1OBJ and T-1OBJ+M). As discussed in Section 5, T-
kOBJ+M can be significantly faster than T-kOBJ for
some programs despite such a slight precision loss.

In the presence of type filtering, how to improve
TURNER

m so that it can preserve the precision of kOBJ
without losing much efficiency (under the assumption that

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 16

 1. abstract class Permission {
 2. String name;
 3. Permission(String n1) {
 4. this.name = n1;
 5. }
 6. abstract boolean implies(Permission t);
 7. }}
 8. class SocketPermission extends Permission {
 9. SocketPermission(String n3) { super(n3); }
10. boolean implies(Permission p) {
11. if (!(p instanceof SocketPermission)) {
12. return false;
13. }
14. SocketPermission s = (SocketPermission) p;
15. return impliesIgnoreMask(s);
16. }
17. boolean impliesIgnoreMask(SocketPermission q) {
18. String v1 = q.name;
19. String v2 = this.name;
20. return v1.endsWith(v2);}}

21. class AllPermission extends Permission {
22. AllPermission(String n2) { super(n2); }
23. boolean implies(Permission p) {
24. return true;
25. }}
26. class String {
27. boolean endsWith(String v) {
28. return false;
29. }}
30. static void main(String args[]) {
31. String s1 = new String(); // S1
32. String s2 = new String(); // S2
33. String s3 = new String(); // S3
34. String s4 = new String(); // S4
35. Permission p1 = new SocketPermission(s1); // P1
36. Permission p2 = new AllPermission(s2); // P2
37. Permission p3 = new SocketPermission(s3); // P3
38. Permission p4 = new SocketPermission(s4); // P4
39. p3.implies(p1);
40. p4.implies(p2); }

Fig. 14: Precision loss incurred in a program abstracted from real code.

Observation 1 is precision-preserving) can be an interesting
research topic. This can be non-trivial, since type filtering
done on a receiver object of a method may also filter out the
objects flowing into its other parameters context-sensitively
but not context-insensitively, as illustrated by this example.
One possible solution is to develop a type-filtering-aware
constraint solver for pointer analysis so that the effects of
type filtering on an receiver object of a method can also be
reflected on the other objects passed into the method.

4.4 Time Complexity

The worst-case time complexity of TURNER
m in analyzing

a program is linear in terms of its number of statements,
for two reasons. First, CIOBS

TURNER
m given in (5) and (6) can

be found in O(∣H∣) based on the points-to information
already computed by Andersen’s analysis [21]. Second,
RM used in (22) for a method M , with its PAG denoted
GM = (NM , EM), can be computed by the rules in Figure 13
in O(∣EM ∣×∣Q∣), where ∣EM ∣ is the number of edges in GM

(constructed linearly based on the number of statements in
M according to the rules in Figures 7 and 9–11) and ∣Q∣, i.e.,
the number of states in the DFA (Figure 12), is 4.

5 EVALUATION

We demonstrate that TURNER
m can accelerate kOBJ signif-

icantly with only negligible precision loss, by being both
substantially faster than EAGLE [15] (the currently best
precision-preserving pre-analysis) and substantially more
precise than ZIPPER [20] (the currently best non-precision-
preserving pre-analysis). In addition, we also demonstrate
that TURNER

m is substantially more effective than TURNER
(an earlier version of our pre-analysis [22] under which all
the methods in a program are processed independently).

We address the following three research questions:

• RQ1. Is TURNER
m precise?

• RQ2. Is TURNER
m efficient?

• RQ3. Is TURNER
m effective (by exploiting object con-

tainment and object reachability)?

We have implemented TURNER
m in SOOT [29], a pro-

gram analysis and optimization framework for Java, on top
of its context-insensitive Andersen’s pointer analysis, SPARK
[30], and an object-sensitive version of SPARK (i.e., kOBJ)
developed by ourselves. Our pre-analysis is implemented
in about 1300 lines of Java code, which has been open-
sourced at https://www.cse.unsw.edu.au/ corg/turnerm/.
To compare TURNER

m with EAGLE [15] and ZIPPER [20],
we have implemented EAGLE based on its three rules (in
600 lines of Java code) and used ZIPPER’s latest version
(b83b038).

As ZIPPER is evaluated in DOOP [31], we have used a set-
ting as close as possible to its original one in several aspects.
First, objects that are instantiated from StringBuilder
and StringBuffer as well as Throwable (including its
subtypes) are merged per dynamic type and then ana-
lyzed context-insensitively as is often done in DOOP [32]
and WALA [33]. Second, we perform an exception anal-
ysis together with kOBJ as in DOOP by handling excep-
tion objects caught in terms of so-called exception-catch
links [34]. Third, for type-filtering purposes performed on
the elements of an array, we use the declared type of its
elements instead of java.lang.Object. Finally, we use
the summaries provided in SOOT to handle native code.

We have done our experiments on an Intel(R) Xeon(R)
CPU E5-2637 3.5GHz machine with 512GB of RAM. We
have selected a set of 12 popular Java programs, including 9
benchmarks from DaCapo2006 [35], and 3 Java applications
(checkstyle, JPC and findbugs), which are commonly
used in evaluating kOBJ [12], [14], [17], [18], [36]. The Java
library used is JRE1.6.0_45 (as the DaCapo2006 bench-
marks rely only on an older version of JRE). We use TAMI-

https://www.cse.unsw.edu.au/~corg/turnerm/

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 17

FLEX [37], a dynamic reflection analysis tool, to resolve Java
reflection as is often done in the pointer analysis literature
[11], [12], [15], [17], [20]. We have excluded jython and
hsqldb since their context sensitive analyses do not scale
due to overly conservative handling of Java reflection [13].

The time budget used for running each object-sensitive
pointer analysis on a program is set as 24 hours. The analysis
time of a program is an average of three runs.

Table 3 gives our main results. We compare TURNER
m

with EAGLE, ZIPPER and TURNER in terms of their efficiency
and precision tradeoffs made on improving kOBJ. For each
k ∈ {2, 3} considered, kOBJ is the baseline, Z-kOBJ, E-kOBJ
and T-kOBJ are the versions of kOBJ for performing selec-
tive context-sensitivity under ZIPPER, EAGLE and TURNER,
respectively. T-kOBJ+M is the version of kOBJ for performing
selective context-sensitivity under TURNER

m, representing
a significant extension of T-kOBJ proposed in this paper for
supporting our new modular object reachability analysis.

5.1 RQ1: Precision

Table 3 lists four common metrics used for measuring the
precision of a context-sensitive pointer analysis [11], [13],
[15], [20] in terms of its context-insensitive points-to infor-
mation obtained (as described in Section 2.1): (1) #may-fail-
casts: the number of type casts that may fail, (2) #call-edges:
the number of call graph edges discovered, (3) #poly-calls:
the number of polymorphic calls discovered, and (4) #avg-
pts: the average number of objects pointed by a variable, i.e.,
the average points-to set size.

EAGLE [15] is designed to be precision-preserving by
ensuring that E-kOBJ produces exactly the same context-
insensitive points-to information as kOBJ. Thus, E-2OBJ
and E-3OBJ achieve trivially the same precision in all the
four metrics. ZIPPER [20] is designed to accelerate kOBJ
heuristically as much as possible (by also ignoring the
last two value-flow patterns in Figure 2) while allowing
sometimes a significant loss of precision. For 2OBJ, Z-2OBJ
has caused its #avg-pts to increase by 18.1% on average,
resulting in the average percentage precision losses of 7.8%,
0.7%, and 1.7% for #may-fail-casts, #call-edges, and #poly-
calls, respectively. For 3OBJ, Z-3OBJ has caused its #avg-pts
to increase by 16.2% on average, resulting in the average
percentage precision losses of 10.8%, 0.7%, and 2.0% for
#may-fail-casts, #call-edges, and #poly-calls, respectively.

In this research, we are motivated to develop a pre-
analysis approach that can enable kOBJ to run significantly
faster while suffering from only a small loss of precision.
In our preliminary investigation, [22], TURNER pre-analyzes
the methods in a program independently and reasons about
all the four value-flow patterns in Figure 2 in each method
implicitly using a DFA based on object containment and
reachability. Despite some slightly imprecise points-to in-
formation produced (with #avg-pts increasing by 0.6% and
0.5% under T-2OBJ and T-3OBJ, respectively, on average),
both T-2OBJ and T-3OBJ preserve the precision for #may-fail-
casts, #call-edges, and #poly-calls across all the 12 programs.
In this paper, TURNER

m is designed to further improve
TURNER’s efficiency while introducing no or negligible loss
of precision, by applying a new modular object reachability
analysis. Compared with TURNER, TURNER

m has caused

a similar degree of precision loss across the 12 programs
for #avg-pts (with the same average percentage increases of
0.6% under T-2OBJ+M and 0.5% T-3OBJ+M). For the other
three precision metrics, while TURNER

m no longer preserves
precision for #may-fail-casts (with the average percentage
precision losses of 0.3% under T-2OBJ+M and 0.4% under T-
3OBJ+M), TURNER

m still preserves precision for #poly-calls
for all the 12 benchmarks and for #call-edges for 10 out of the
12 programs except for chart and findbugs.

5.2 RQ2: Efficiency

On average, as shown in Table 3, T-kOBJ+M is always faster
than E-kOBJ but can sometimes be slower than Z-kOBJ. By
adopting the context selections prescribed by each of the
four pre-analyses, kOBJ runs faster under all the configu-
rations than before. We compare TURNER

m with EAGLE,
ZIPPER, and TURNER below.

• T-kOBJ+M vs. E-kOBJ. Both achieve nearly the
same precision for #may-fail-casts, #call-edges, and
#poly-calls across the 12 programs for k ∈ {2, 3} (as
discussed above), but T-kOBJ+M is always faster in
each case. For k = 2, the speedups of T-2OBJ+M
over 2OBJ range from 2.5x (for JPC) to 34.6x (for
findbugs) with an average of 6.0x. In contrast, the
speedups of E-2OBJ over 2OBJ range from 1.4x (for
bloat and lusearch) to 2.7x (for findbugs) with
an average of 1.8x only. For k = 3, the speedups of T-
3OBJ+M over 3OBJ range from 2.9x (for lusearch) to
30.5x (for xalan) with an average of 8.1x, while the
speedups of E-3OBJ over 3OBJ range from 1.1x (for
antlr, fop, luindex, lusearch, and pmd) to 3.8x
(for xalan) with an average of 1.6x only. Thus, the
speedups of T-kOBJ+M over E-kOBJ are 2.9x when
k = 2 and 4.0x (with chart included even though it
cannot be analyzed by 3OBJ scalably) when k = 3.
In addition, T-kOBJ+M exhibits better scalability than
E-kOBJ. For the four programs, chart, eclipse,
checkstyle and findbugs, that are unscalable
under 3OBJ, T-3OBJ+M can now analyze chart and
findbugs but E-3OBJ can analyze chart only.

• T-kOBJ+M vs. Z-kOBJ. Despite its substantially bet-
ter precision, T-kOBJ+M is faster in nine programs
when k = 2 and three when k = 3. Compared with
the kOBJ baseline, the average speedups achieved by
T-kOBJ+M and Z-kOBJ are 6.0x and 3.9x, respectively,
when k = 2, and 8.1x and 9.3x, respectively, when
k = 3. As a result, Z-kOBJ is actually slightly slower
than T-kOBJ+M by 0.9x when k = 2 but faster than
T-kOBJ+M by 2.1x (with chart and findbugs in-
cluded) when k = 3, on average. In terms of scalabil-
ity, T-kOBJ+M is on par with Z-kOBJ for k ∈ {2, 3}.

• T-kOBJ+M vs. T-kOBJ. Despite some negligible loss
of precision, T-kOBJ+M is not only faster than T-kOBJ
across all the 12 programs for k ∈ {2, 3}, but also sub-
stantially faster for some programs (especially some
large ones, such as chart, eclipse, xalan, and
findbugs). By using kOBJ as the baseline, we can
see that T-kOBJ+M is faster than T-kOBJ by boosting
the average speedup achieved from 3.6x to 6.0x when

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 18

TABLE 3: Main results. For a given k ∈ {2, 3}, the speedups of E-kOBJ, Z-kOBJ, T-kOBJ, and T-kOBJ+M are normalized with
kOBJ as the baseline. For all the metrics except “Speedup”, smaller is better.

Metrics 2OBJ E-2OBJ Z-2OBJ T-2OBJ T-2o+M 3OBJ E-3OBJ Z-3OBJ T-3OBJ T-3o+M
Time (s) 24.5 12.4 12.7 6.8 5.2 628.9 570.8 141.4 196.5 173.1
Speedup - 2.0x 1.9x 3.6x 4.7x - 1.1x 4.4x 3.2x 3.6x
#fail-casts 516 516 565 516 518 456 456 513 456 458
#call-edges 50975 50975 51203 50975 50975 50948 50948 51176 50948 50948
#poly-calls 1607 1607 1629 1607 1607 1600 1600 1622 1600 1600

an
tl

r

#avg-pts 6.110 6.110 6.585 6.125 6.127 4.927 4.927 5.427 4.945 4.947
Time (s) 412.6 290.9 324.2 138.9 129.0 10648.2 6994.7 6878.9 1902.8 1734.2
Speedup - 1.4x 1.3x 3.0x 3.2x - 1.5x 1.5x 5.6x 6.1x
#fail-casts 1295 1295 1349 1295 1297 1198 1198 1256 1198 1200
#call-edges 56488 56488 56988 56488 56488 56258 56258 56837 56258 56258
#poly-calls 1549 1549 1587 1549 1549 1535 1535 1577 1535 1535

bl
oa

t

#avg-pts 14.796 14.796 15.672 14.816 14.816 13.995 13.995 14.802 14.019 14.019
Time (s) 206.2 107.5 28.3 75.1 63.3 OoM 12346.4 522.7 7886.1 5599.5
Speedup - 1.9x 7.3x 2.7x 3.3x - - - - -
#fail-casts 1339 1339 1410 1339 1343 - 1239 1316 1239 1243
#call-edges 72426 72426 73009 72426 72432 - 71987 72640 71987 71993
#poly-calls 1988 1988 2011 1988 1988 - 1962 1989 1962 1962

ch
ar

t

#avg-pts 4.905 4.905 5.363 4.971 4.974 - 4.149 4.799 4.168 4.171
Time (s) 10680.5 5885.3 4122.8 4686.0 2649.1 OoM OoM OoM OoM OoM
Speedup - 1.8x 2.6x 2.3x 4.0x - - - - -
#fail-casts 3551 3551 3718 3551 3571 - - - - -
#call-edges 162208 162208 163186 162208 162208 - - - - -
#poly-calls 9525 9525 9572 9525 9525 - - - - -ec

lip
se

#avg-pts 17.334 17.334 19.691 17.519 17.521 - - - - -
Time (s) 18.7 10.2 6.9 5.2 5.0 728.1 651.6 123.8 187.3 184.7
Speedup - 1.8x 2.7x 3.6x 3.8x - 1.1x 5.9x 3.9x 3.9x
#fail-casts 414 414 460 414 416 362 362 416 362 364
#call-edges 34173 34173 34406 34173 34173 34146 34146 34379 34146 34146
#poly-calls 816 816 841 816 816 809 809 834 809 809

fo
p

#avg-pts 3.577 3.577 4.132 3.597 3.597 3.359 3.359 3.942 3.383 3.384
Time (s) 15.7 9.4 6.3 4.6 4.3 596.3 532.6 131.7 185.0 172.2
Speedup - 1.7x 2.5x 3.4x 3.6x - 1.1x 4.5x 3.2x 3.5x
#fail-casts 402 402 455 402 404 348 348 405 348 350
#call-edges 33449 33449 33689 33449 33449 33422 33422 33662 33422 33422
#poly-calls 905 905 932 905 905 898 898 925 898 898lu

in
de

x

#avg-pts 3.595 3.595 4.285 3.612 3.612 3.352 3.352 4.072 3.374 3.374
Time (s) 22.3 15.8 11.1 10.4 8.3 1968.0 1736.8 523.5 881.1 686.7
Speedup - 1.4x 2.0x 2.1x 2.7x - 1.1x 3.8x 2.2x 2.9x
#fail-casts 417 417 473 417 419 366 366 425 366 368
#call-edges 36247 36247 36485 36247 36247 36220 36220 36458 36220 36220
#poly-calls 1103 1103 1131 1103 1103 1096 1096 1124 1096 1096lu

se
ar

ch

#avg-pts 3.611 3.611 4.229 3.627 3.628 3.358 3.358 3.959 3.381 3.381
Time (s) 42.1 23.9 23.8 18.3 14.1 1504.0 1380.1 358.6 266.2 243.0
Speedup - 1.8x 1.8x 2.3x 3.0x - 1.1x 4.2x 5.7x 6.2x
#fail-casts 1174 1174 1252 1174 1176 1116 1116 1199 1116 1118
#call-edges 59664 59664 59832 59664 59664 59599 59599 59767 59599 59599
#poly-calls 2329 2329 2354 2329 2329 2322 2322 2347 2322 2322

pm
d

#avg-pts 4.943 4.943 6.378 4.954 4.954 4.684 4.684 5.973 4.698 4.698
Time (s) 243.2 121.8 54.2 90.9 82.8 25424.4 6771.9 694.2 1386.4 834.2
Speedup - 2.0x 4.5x 2.7x 2.9x - 3.8x 36.6x 18.3x 30.5x
#fail-casts 569 569 629 569 571 516 516 582 516 518
#call-edges 45916 45916 46113 45916 45916 45884 45884 46086 45884 45884
#poly-calls 1589 1589 1611 1589 1589 1582 1582 1604 1582 1582

xa
la

n

#avg-pts 4.253 4.253 5.258 4.272 4.272 4.096 4.096 5.014 4.119 4.119
Time (s) 1240.6 710.2 484.3 339.3 322.3 OoM OoM OoM OoM OoM
Speedup - 1.7x 2.6x 3.7x 3.8x - - - - -
#fail-casts 1129 1129 1203 1129 1131 - - - - -
#call-edges 66702 66702 67528 66702 66702 - - - - -
#poly-calls 2188 2188 2246 2188 2188 - - - - -ch

ec
ks

ty
le

#avg-pts 6.380 6.380 10.070 6.491 6.491 - - - - -
Time (s) 101.9 59.2 31.0 44.0 41.1 2371.1 1172.9 175.9 316.8 303.1
Speedup - 1.7x 3.3x 2.3x 2.5x - 2.0x 13.5x 7.5x 7.8x
#fail-casts 1364 1364 1438 1364 1364 1209 1209 1281 1209 1209
#call-edges 81003 81003 81590 81003 81003 79315 79315 79893 79315 79315
#poly-calls 4255 4255 4301 4255 4255 4115 4115 4159 4115 4115

JP
C

#avg-pts 5.050 5.050 5.486 5.065 5.067 4.434 4.434 4.752 4.458 4.460
Time (s) 1820.6 681.1 128.7 150.9 52.6 OoM OoM 2133.8 1947.0 1333.9
Speedup - 2.7x 14.1x 12.1x 34.6x - - - - -
#fail-casts 2037 2037 2100 2037 2040 - - 1884 1650 1699
#call-edges 87532 87532 88134 87532 87532 - - 87289 86599 86600
#poly-calls 3472 3472 3487 3472 3472 - - 3463 3441 3441fin

db
ug

s

#avg-pts 8.011 8.011 8.804 8.058 8.059 - - 7.203 6.632 6.636

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 19

antlr bloat chart eclipse fop luindexlusearch pmd xalan
checkstyle JPC findbugs Avg

0.0%

2.0%

4.0%

6.0%

8.0%

10.0%

lib+app app

Fig. 15: Percentage increases of context-insensitive variables/objects expressed as ∣CITURNER
m − CITURNER∣/∣V ∪ H∣ when

TURNER is replaced by TURNER
m for a program (including the JDK and its application code) and its application code only.

k = 2 and from 6.2x to 8.1x when k = 3. Thus, T-
kOBJ+M outperforms T-kOBJ by 1.3x when k = 2 and
1.2x when k = 3, on average. However, it should
be emphasized that T-kOBJ+M can be substantially
faster than T-kOBJ for some large programs (Table 3),
achieving, e.g., the speedups of 1.4x for chart (when
k = 3 by reducing its analysis time from 2.2 hours to
1.6 hours, 1.8x for eclipse (when k = 2 by reducing
its analysis time from 1.3 hours to 44.2 minutes),
1.7x for xalan (when k = 3 by reducing its analysis
time from 23.1 minutes to 13.9 minutes), and 2.9x for
findbugs (when k = 2 by reducing its analysis time
from 150.9 seconds to 52.6 seconds).
Figure 15 gives the percentage increases of context-
insensitive variables/objects calculated according to
∣CITURNER

m − CITURNER∣/∣V ∪ H∣ when we switch
from TURNER to TURNER

m (Theorem 3) for a pro-
gram when it consists of (1) both the JDK and its
application code) and (2) its application code only,
respectively. For half of the 12 benchmarks evaluated,
such percentage increases are slightly higher in their
application codes than in their entire programs.
In general, the speedups of T-kOBJ+M over T-kOBJ
are not expected to be linearly proportional to such
percentage increases, as some context-insensitive
variables/objects affect the analysis time of a pointer
analysis algorithm more significantly than others
(Section 2.2). However, TURNER

m is more effective
than TURNER in accelerating kOBJ across the 12 pro-
grams while introducing no or little loss of precision.

Table 4 gives the numbers of context-sensitive facts es-
tablished by kOBJ, E-kOBJ, Z-kOBJ, T-kOBJ, and T-kOBJ+M
with #cs-gpts, #cs-pts and #cs-fpts representing the numbers
of context-sensitive objects pointed by global variables (i.e.,
static fields), local variables and instance fields, respectively,
and #cs-calls representing the number of context-sensitive
call edges. In general, the speedups of a pointer analysis
over a baseline come from a significant reduction in the
number of context-sensitive facts computed by the baseline.
For example, Z-3OBJ is significantly faster than E-3OBJ, T-
3OBJ and T-3OBJ+M for chart as its number of context-

sensitive facts is significantly less than the other three.
Similarly, T-3OBJ+M and T-3OBJ are much faster than E-
3OBJ and Z-3OBJ for bloat. However, as is well-known,
the analysis time of a pointer analysis is correlated with but
not linearly proportional to the number of context-sensitive
facts computed [13]. For example, T-3OBJ+M (T-3OBJ) is
faster than 3OBJ by 3.6x (3.2x) for antlr but achieves a
percentage time reduction of 50.3% (49.7%) only.

Table 5 gives the times spent by SPARK [30] (an imple-
mentation of context-insensitive Andersen’s analysis [21])
and the four pre-analyses, EAGLE, ZIPPER, TURNER and
TURNER

m. As discussed earlier, each pre-analysis relies on
the points-to information computed by SPARK to make
its context selection decisions. TURNER

m, which is as
lightweight as TURNER, is significantly faster than EAGLE
and ZIPPER across all the 12 programs evaluated. On aver-
age, the pre-analysis times of the five tools are 1.1 seconds
(TURNER), 1.2 seconds (TURNER

m), 8.9 seconds (EAGLE),
12.2 seconds (ZIPPER), and 14.8 seconds (SPARK), respec-
tively. Note that ZIPPER is multi-threaded (with 16 threads
used in our experiments), but SPARK, EAGLE, TURNER and
TURNER

m are all currently single-threaded. Without any
parallelization, TURNER

m, like TURNER, exhibits already
negligible analysis times as it runs linearly in terms of the
number of statements in a program (Section 4.4).

5.3 RQ3: Effectiveness
We evaluate the effectiveness of TURNER

m by examining
how its two stages contribute in terms of the performance
speedups achieved by kOBJ and the number of context-
insensitive objects selected, and why Observation 1 causes
some small precision loss for #avg-pts but no or little preci-
sion loss for #call-edges, #may-fail-casts, and #poly-calls.

TURNER
m relies on object containment and object

reachability to make its context selections. In order to
understand roughly their percentage contributions to
the speedups achieved by T-kOBJ+M over kOBJ, let us
consider two versions of T-kOBJ+M: (1) T-kOBJ+MC ,
where only object containment is exploited, i.e., the
objects in CIOBS

TURNER
m are context-insensitive and all the

rest (the variables/objects in (V ∪ G ∪ H) \ CIOBS
TURNER

m) are

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 20

TABLE 4: Context-sensitive facts (in millions). For all the metrics, smaller is better.

Metrics 2OBJ E-2OBJ Z-2OBJ T-2OBJ T-2o+M 3OBJ E-3OBJ Z-3OBJ T-3OBJ T-3o+M
#cs-gpts 4.0K 3.8K 4.8K 2.2K 2.2K 6.6K 6.0K 12.2K 2.8K 2.8K
#cs-pts 8.7M 4.9M 8.8M 1.5M 1.3M 83.4M 63.4M 72.4M 33.3M 32.9M
#cs-fpts 0.4M 0.3M 0.4M 0.2M 0.2M 10.2M 9.9M 10.3M 8.0M 8.0M
#cs-calls 2.4M 1.8M 1.0M 0.7M 0.6M 38.5M 33.5M 6.8M 25.1M 24.7Man

tl
r

Total 11.5M 7.1M 10.2M 2.4M 2.1M 132.1M 106.7M 89.6M 66.4M 65.6M
#cs-gpts 3.2K 3.0K 4.0K 2.2K 2.2K 5.1K 4.3K 11.3K 3.1K 3.1K
#cs-pts 120.4M 82.4M 111.1M 36.9M 35.6M 1196.0M 856.5M 1137.5M 230.8M 225.7M
#cs-fpts 4.0M 4.0M 5.1M 3.7M 3.6M 35.8M 35.4M 51.3M 30.6M 30.3M
#cs-calls 35.5M 32.1M 29.5M 15.0M 14.7M 371.7M 340.5M 298.2M 109.9M 107.9Mbl

oa
t

Total 159.9M 118.4M 145.7M 55.6M 53.9M 1603.6M 1232.5M 1487.0M 371.3M 363.8M
#cs-gpts 14.3K 13.0K 10.8K 8.2K 8.2K - 34.5K 26.3K 22.0K 21.9K
#cs-pts 64.3M 36.7M 17.0M 19.9M 18.0M - 1378.0M 171.2M 1005.7M 628.2M
#cs-fpts 1.5M 1.1M 0.8M 1.0M 1.0M - 55.4M 24.8M 48.8M 48.1M
#cs-calls 20.5M 12.2M 2.5M 8.7M 7.6M - 356.0M 23.9M 260.8M 240.9Mch

ar
t

Total 86.4M 49.9M 20.4M 29.7M 26.6M - 1789.4M 220.0M 1315.3M 917.2M
#cs-gpts 40.6K 39.9K 28.8K 10.0K 10.0K - - - - -
#cs-pts 991.9M 742.7M 744.5M 565.5M 518.9M - - - - -
#cs-fpts 21.8M 21.4M 20.4M 16.2M 16.2M - - - - -
#cs-calls 609.1M 342.7M 188.6M 296.5M 292.2M - - - - -ec

lip
se

Total 1622.8M 1106.8M 953.6M 878.2M 827.3M - - - - -
#cs-gpts 3.1K 2.9K 3.7K 2.1K 2.1K 4.5K 3.8K 9.8K 2.7K 2.7K
#cs-pts 3.7M 2.1M 3.6M 1.0M 0.9M 70.3M 56.1M 48.8M 33.5M 33.2M
#cs-fpts 0.2M 0.2M 0.2M 0.2M 0.2M 9.7M 9.4M 9.4M 7.9M 7.9M
#cs-calls 1.1M 0.9M 0.5M 0.5M 0.4M 33.7M 29.8M 4.2M 25.0M 24.6M

fo
p

Total 5.0M 3.2M 4.2M 1.6M 1.4M 113.7M 95.3M 62.5M 66.4M 65.7M
#cs-gpts 2.8K 2.6K 3.8K 1.9K 1.9K 4.5K 3.9K 11.0K 2.7K 2.7K
#cs-pts 3.8M 2.2M 4.2M 1.1M 0.9M 67.6M 54.2M 56.5M 33.2M 32.9M
#cs-fpts 0.2M 0.2M 0.2M 0.2M 0.2M 9.7M 9.4M 10.8M 8.0M 8.0M
#cs-calls 1.1M 0.9M 0.5M 0.5M 0.4M 33.1M 29.6M 4.7M 25.1M 24.7Mlu

in
de

x

Total 5.2M 3.3M 4.9M 1.7M 1.5M 110.4M 93.2M 72.0M 66.3M 65.6M
#cs-gpts 3.0K 2.7K 3.8K 1.9K 1.9K 4.2K 3.5K 10.3K 2.5K 2.5K
#cs-pts 5.8M 3.9M 5.1M 2.2M 2.0M 167.7M 151.6M 115.3M 92.2M 91.4M
#cs-fpts 0.3M 0.2M 0.2M 0.2M 0.2M 11.2M 11.0M 11.0M 9.4M 9.4M
#cs-calls 2.3M 1.9M 1.0M 1.4M 1.3M 108.1M 94.9M 40.5M 80.8M 80.1Mlu

se
ar

ch

Total 8.4M 6.0M 6.4M 3.8M 3.5M 287.1M 257.5M 166.9M 182.4M 180.9M
#cs-gpts 3.9K 3.6K 5.9K 2.5K 2.5K 5.6K 4.9K 23.8K 3.4K 3.4K
#cs-pts 12.2M 7.6M 15.1M 4.1M 3.9M 144.6M 108.8M 184.5M 45.5M 44.9M
#cs-fpts 1.1M 1.0M 1.1M 0.9M 0.9M 15.9M 15.3M 19.0M 11.7M 11.7M
#cs-calls 3.6M 2.6M 2.1M 1.7M 1.6M 58.5M 49.0M 17.0M 33.3M 32.9Mpm

d

Total 16.9M 11.1M 18.4M 6.7M 6.3M 219.0M 173.1M 220.5M 90.6M 89.5M
#cs-gpts 3.9K 3.6K 3.6K 2.4K 2.4K 15.5K 13.5K 10.3K 6.1K 6.1K
#cs-pts 99.1M 45.9M 20.1M 14.3M 12.7M 1795.3M 987.3M 253.0M 104.5M 92.9M
#cs-fpts 2.5M 2.4M 1.8M 1.9M 1.9M 70.9M 63.6M 18.8M 27.0M 27.0M
#cs-calls 26.0M 19.3M 4.7M 17.2M 17.0M 432.4M 300.8M 35.3M 168.1M 167.5Mxa

la
n

Total 127.6M 67.6M 26.6M 33.3M 31.6M 2298.6M 1351.7M 307.1M 299.6M 287.4M
#cs-gpts 7.8K 7.5K 11.5K 3.9K 3.9K - - - - -
#cs-pts 145.0M 107.2M 118.2M 38.0M 30.1M - - - - -
#cs-fpts 2.5M 2.3M 3.0M 1.6M 1.6M - - - - -
#cs-calls 78.6M 34.5M 23.2M 21.1M 19.6M - - - - -

ch
ec

ks
ty

le

Total 226.1M 144.0M 144.4M 60.7M 51.4M - - - - -
#cs-gpts 7.9K 7.1K 7.7K 5.7K 5.7K 22.1K 19.5K 17.5K 10.2K 10.2K
#cs-pts 28.7M 18.8M 13.9M 12.1M 11.1M 618.1M 319.8M 68.6M 69.1M 66.1M
#cs-fpts 1.2M 0.9M 1.0M 0.9M 0.9M 22.8M 20.0M 13.0M 13.0M 13.0M
#cs-calls 9.6M 7.1M 2.7M 5.8M 5.0M 95.2M 61.4M 7.2M 38.4M 36.9M

JP
C

Total 39.6M 26.9M 17.6M 18.8M 17.0M 736.1M 401.3M 88.8M 120.5M 116.0M
#cs-gpts 33.5K 32.9K 10.7K 4.0K 4.0K - - 45.6K 6.0K 6.0K
#cs-pts 326.4M 245.0M 57.2M 37.8M 19.3M - - 545.9M 183.3M 170.3M
#cs-fpts 15.7M 15.5M 4.7M 1.1M 1.1M - - 59.4M 26.6M 26.6M
#cs-calls 120.0M 58.3M 11.9M 9.6M 7.4M - - 96.4M 138.5M 134.1Mfin

db
ug

s

Total 462.0M 318.9M 73.8M 48.5M 27.8M - - 701.7M 348.5M 331.0M

handled as in kOBJ, and (2) T-kOBJ+MR, where only object
reachability is exploited by assuming CIOBS

TURNER
m = ∅.

Let T-kOBJ+MS
Speedup be the speedup obtained by

T-kOBJ+MS over kOBJ, where S ∈ {C,R, ϵ}, for a
program. Certainly, T-kOBJ+MC

Speedup+T-kOBJ+MR
Speedup =

T-kOBJ+MSpeedup is not expected for a program,
as the common contribution made by T-kOBJ+MC

and T-kOBJ+MR towards T-kOBJ+MSpeedup cannot
be meaningfully isolated. Instead, we consider
T-kOBJ+MS

Speedup/(T-kOBJ+MC
Speedup + T-kOBJ+MR

Speedup),

where S ∈ {C,R}, as the relative percentage contribution
made by T-kOBJ+MS towards T-kOBJ+MSpeedup in order
to gain a rough understanding about whether both
stages are indispensable. Figure 16 illustrates the case
for accelerating 2OBJ by T-2OBJ+M, demonstrating that
both object containment and object reachability are indeed
exploited beneficially for real-world programs.

In this paper, our research is driven by three insights,
stated in Observation 1, Theorem 1, Theorem 4, respectively.
Therefore, TURNER

m is designed to exploit both object
containment and object reachability modularly to classify

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 21

TABLE 5: Times spent by SPARK and the four pre-analyses in seconds.

antlr bloat chart eclipse fop luindex lusearch pmd xalan checkstyle JPC findbugs Avg
SPARK 9.0 10.7 17.2 38.6 8.1 7.4 7.9 13.5 9.5 16.8 19.3 19.8 14.8
EAGLE 3.5 3.8 9.9 34.6 2.8 2.7 3.0 9.3 6.1 9.2 9.6 12.1 8.9
ZIPPER 5.4 6.5 17.1 38.9 4.4 4.2 4.6 9.5 9.0 17.9 11.5 17.4 12.2

TURNER 0.8 0.9 1.4 2.4 0.5 0.5 0.5 1.1 0.8 1.2 1.2 1.3 1.1
TURNER

m 0.8 1.1 1.3 3.2 0.7 0.6 0.6 1.3 0.8 1.5 1.4 1.6 1.2

antlr bloat
chart

eclipse fop
luindex

lusearch
pmd

xalan

checkstyleJPC
findbugs Avg

0%

20%

40%

60%

80%

100%

56
.2

%

53
.4

%

42
.1

%

34
.4

% 51
.0

%

45
.0

%

49
.4

%

47
.5

%

42
.6

% 61
.2

%

46
.9

%

58
.0

%

49
.0

%

43
.8

%

46
.6

%

57
.9

%

65
.6

% 49
.0

%

55
.0

%

50
.6

%

52
.5

%

57
.4

% 38
.8

%

53
.1

%

42
.0

%

51
.0

%

Object Containment Object Reachability

Fig. 16: Percentage contributions made by TURNER
m’s two

analysis stages for the speedups of T-2OBJ+M over 2OBJ.

TopCon∩BotCon
TopCon

BotCon

CSTURNER
m

CI
DFA
TURNER

m

Fig. 17: The Venn diagram of the objects in a program, where
CIOBS

TURNER
m = TopCon ∪ BotCon according to (5).

the objects, and consequently, the variables in a program as
context-sensitive or context-insensitive.

Figure 17 gives a Venn diagram showing how TURNER
m

classifies the containers, i.e., objects in a program. Based on
object containment (Observation 1), CIOBS

TURNER
m = TopCon ∪

BotCon gives the set of precision-uncritical, i.e., context-
insensitive objects identified. Based on object reachabil-
ity (performed by our DFA), CIDFA

TURNER
m ⊆ H \ CIOBS

TURNER
m

gives an additional set of context-insensitive sets found.
Thus, CSTURNER

m = H \ (CIOBS
TURNER

m ∪ CIDFA
TURNER

m) represents
the set of context-sensitive objects identified. On average,
across the 12 programs evaluated, the ratios of ∣CIOBS

TURNER
m∣,

∣CIDFA
TURNER

m∣ and ∣CSTURNER
m∣ over ∣H∣ are 61.3%, 5.5%, and

33.2%, respectively. As the performance benefits of making
different objects context-insensitive can be drastically differ-
ent (which are hard to measure individually), these ratios,
together with Figure 16, demonstrate again the effectiveness

of TURNER
m’s two analysis stages.

Finally, we give two examples abstracted from the JDK li-
brary to explain why TURNER

m causes kOBJ to suffer from a
small loss of precision in #avg-pts but no or a negligible loss
of precision in #call-edges, #may-fail-casts, and #poly-calls
across the 12 programs evaluated. TURNER

m can render
some points-to sets imprecise when some top/bottom con-
tainers that are classified as precision-uncritical in CIOBS

TURNER
m

should have been analyzed context-sensitively.
Figure 18 illustrates a case in which whether the ob-

ject P created in line 4 (a top container according to Ob-
servation 1) is analyzed context-sensitively or not affects
pts(str) obtained in line 23. Consider 2OBJ, which will
analyze P context-sensitively. When analyzing lines 19–22,
we find that pts(ui, []) = {(Ui, [])} ∧ pts(Ui.file, []) =

pts(P.path, [Ui]) = {(Si, [])}, where 1 ⩽ i ⩽ 2. When
analyzing line 23, we find that pts(str, []) = {(S1, [])}.
Context-insensitively, 2OBJ thus obtains pts(str) = {S1}. In
the case of T-2OBJ+M, however, P ∈ CIOBS

TURNER
m will be an-

alyzed context-insensitively instead. When analyzing lines
19–22, we have pts(ui, []) = {(Ui, [])}∧pts(Ui.file, []) =
pts(P.path, []) = {(S1, []), (S2, [])}, where 1 ⩽ i ⩽ 2. As
P is context-insensitive, analyzing line 23 this time will give
rise to pts(str, []) = {(S1, []), (S2, [])}. Thus, context-
insensitively, T-2OBJ+M yields pts(str) = {S1,S2}, which
contains a spurious target S2 introduced for str. Despite
this loss of precision in #avg-pts, however, T-2OBJ+M (just
like T-2OBJ) does not lose any precision in #may-fail-casts,
#call-edges, and #poly-calls, as both S1 and S2 have exactly
the same type, java.lang.String.

Figure 19 illustrates another case in which whether
the object D created in line 14 (a bottom container ac-
cording to Observation 1) is analyzed context-sensitively
or not affects pts(t) obtained in line 7. Consider 2OBJ,
which will analyze D context-sensitively. When analyz-
ing lines 17–20, we find that pts(vi, []) = {(Vi, [])} ∧
pts(Vi.buffer, []) = {(D, [Vi])} ∧ pts(D.buf, [Vi]) =

{(Bi, [])}, where 1 ⩽ i ⩽ 2. When analyzing line 7, we
find that pts(t, [D,V1]) = {(B1, [])}. Context-insensitively,
2OBJ thus obtains pts(t) = {B1}. In the case of T-
2OBJ+M, however, D ∈ CIOBS

TURNER
m will be analyzed context-

insensitively instead. When analyzing lines 17–20, we have
pts(vi, []) = {(Vi, [])} ∧ pts(Vi.buffer, []) = {(D, [])} ∧
pts(D.buf, []) = {(Bi, [])}, where 1 ⩽ i ⩽ 2. As t
is context-insensitive, analyzing line 7 will give rise to
pts(t, []) = {(B1, []), (B2, [])}. Thus, context-insensitively,
T-2OBJ+M yields pts(t) = {B1,B2}, which contains a spuri-
ous target B2 introduced for t. Despite this loss of precision
in #avg-pts, T-2OBJ+M (just like T-2OBJ) loses no precision
in #may-fail-casts, #call-edges, and #poly-calls, as both B1
and B2 have exactly the same type, java.lang.byte[],
and in addition, each array object pointed by t is used in

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 22

 1. class URL {
 2. String file;
 3. URL(String s) {
 4. Parts parts = new Parts(s); // P
 5. this.file = parts.getPath();
 6. }
 7. String getFile() {
 8. return this.file;
 9. }}
10. class Parts {
11. String path;
12. Parts(String p) {
13. this.path = p;
14. }

15. String getPath() {
16. return this.path;
17. }}

18. void main() {
19. String s1 = new String(); // S1
20. String s2 = new String(); // S2
21. URL u1 = new URL(s1); // U1
22. URL u2 = new URL(s2); // U2
23. String str = u1.getFile();
24. InputStream in = new FileInputStream(str);
25. // parse content of the Stream.
26. in.close();
27. }

Fig. 18: An example with imprecise points-to information computed by T-2OBJ+M (and T-2OBJ) for a top container P.

 1. class DerInputBuffer {
 2. byte[] buf;
 3. DerInputBuffer (byte[] p) {
 4. this.buf = p;
 5. }

 6. Date getTime() {
 7. byte[] t = this.buf;
 8. long l = t[0];
 9. return new Date(l);
10. }}

11. class DerValue {
12. DerInputBuffer buffer;
13. DerValue(byte[] buf) {
14. this.buffer = new DerInputBuffer(buf); // D
15. }}
16. void main() {
17. byte[] b1 = new byte[10]; // B1
18. byte[] b2 = new byte[10]; // B2
19. DerValue v1 = new DerValue(b1); // V1
20. DerValue v2 = new DerValue(b2); // V2
21. Date d1 = v1.buffer.getTime();
22. }

Fig. 19: An example with imprecise points-to information computed by T-2OBJ+M (and T-2OBJ) for a bottom container D.

line 8 for obtaining a long integer only.

6 RELATED WORK

We review only existing pre-analysis techniques developed
for accelerating whole-program context-sensitive pointer
analysis algorithms that represent calling contexts by con-
text strings such as object-sensitivity and callsite-sensitivity.
There are other types of approaches for conducting pointer
analysis. Thiessen and Lhoták [13] propose to use context
transformations rather than context strings as a new context
abstraction for kOBJ, making it theoretically possible for
kOBJ to run more efficiently with better precision. Instead
of solving kOBJ as a whole-program analysis [10], [30], [32],
[38], [39], demand-driven pointer analyses [23], [26], [27],
[40], [41], [42] typically compute the points-to information
for particular variables of interest, with call-site-sensitivity
instead of object-sensitivity being often used.

There are two approaches for developing pre-analyses
for improving the efficiency and scalability of object-
sensitive pointer analysis (kOBJ) for Java: the precision-
preserving approach [15] and non-precision-preserving ap-
proach [17], [18], [19], [20]. EAGLE [15] aims to improve
the efficiency of kOBJ while preserving its precision by
reasoning about all the four value-flow patterns in Figure 2
implicitly via CFL reachability to make its context selections
conservatively, thereby limiting the speedups achieved. In
this paper, TURNER

m addresses its limitation by trading a

slight loss of precision for greater performance speedups.
On the other hand, ZIPPER [20], as a representative non-
precision-preserving pre-analysis [17], [18], [19], [20], aims
to trade precision for efficiency by examining the first two
value-flow patterns in Figure 2 heuristically to make its
context selections, achieving sometimes greater speedups
than EAGLE but at a substantial loss of precision for some
programs. In this paper, TURNER

m addresses its limitation
by trading possibly a slight loss of efficiency for greater
precision. TURNER

m achieves this by exploiting object con-
tainment (Observation 1) and reasoning about all the four
value-flow patterns in Figure 2 implicitly via an a new
modular object reachability analysis (Theorems 1, 3 and 4).

In comparison with our earlier conference paper [22],
where TURNER is introduced, we have made a number of
significant contributions in introducing TURNER

m in this
journal paper. First, TURNER

m differs from TURNER by
performing a novel modular object reachability analysis in a
program according to a reverse topological order of its call
graph, boosting the performance of kOBJ more substantially
(especially for large programs) while introducing no or little
precision loss. Their key difference is also illustrated by a
motivating example given in Section 2. Second, we have
now formalized our new pre-analysis precisely in terms of
an algorithm presented in Algorithm 1. Third, we provide
a theoretical justification for the superiority of TURNER

m

over TURNER (Theorems 3 and 4), providing insights for

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 23

developing better pre-analyses in future work. Fourth, we
recognize that TURNER

m may be slightly less precise than
TURNER due to type-filtering that happens during the
pointer analysis (Figure 14), suggesting that some new type-
aware pointer analysis algorithms may be developed to
eliminate such type-filtering-induced imprecision (although
this can be non-trivial (Section 4.3)). Finally, we have open-
sourced our TURNER

m analysis framework to enable other
researchers to leverage it to develop new pointer analyses
and other down-stream client analysis tools.

There are other types of pre-analyses for kOBJ.
MAHJONG [12] sacrifices the precision of alias analysis (by
merging objects of the same dynamic type) in order to
improve the efficiency of kOBJ at a small loss of precision
for a class of so-called type-dependent clients, such as call
graph construction, may-fail casting, and polymorphic call
detection. In contrast, TURNER

m is designed to be a general-
purpose pointer analysis to support all possible applications
that rely on points-to information, including not only type-
dependent clients but also alias analysis. Jeong et al. [18]
apply machine learning to select the lengths of calling con-
texts for different methods analyzed by kOBJ for a particular
client (e.g., may-fail-casting). In contrast, TURNER

m makes
its context selections by exploiting object containment and
modularity-enabled object reachability.

There are also research efforts for developing pre-
analyses for other programming languages. For exam-
ple, Wei and Ryder [43] present an adaptive context-
sensitive analysis for JavaScript. They extract user-specific
function characteristics from an inexpensive pre-analysis
and then apply a decision-tree-based machine learning
technique to correlate these features with different types
of context-sensitivity, e.g., 1-callsite, 1-object and i-th-
parameter, achieving better precision and efficiency than
any single context-sensitive analysis evaluated.

Elsewhere [14], [36], [44], pre-analyses are applied to
improve the precision of kOBJ at the cost of its efficiency.
This line of research is orthogonal to ours considered here.

In some recent CFL-reachability-guided pre-analyses
[15], [22], CFLs are approximated by regular languages
in order to make such pre-analyses lightweight. Mohri
and Nederhof [45] introduce an approach for over-
approximating a context-free grammar (CFG) by a non-
deterministic finite automaton (NFA). Prasanna et al. [46]
adopt this approach to compute the liveness information
required by a garbage collector for functional programs.
For object-oriented pointer analysis, however, our work is
the first for introducing an intra-procedural pre-analysis
for determining selective context-sensitivity in a program,
based on a DFA over-approximated from a CFG that defines
pointer analysis inter-procedurally.

7 CONCLUSION

We have introduced TURNER
m, a simple, lightweight yet

effective pre-analysis that can accelerate object-sensitive
pointer analysis for Java programs with negligible preci-
sion loss. We exploit a key insight that many precision-
uncritical objects in the program can be identified based
on a pre-computed object containment relationship. Lever-
aging this approximation, we rely on a modular object

reachability analysis to determine whether the remaining
objects, together with all the variables, in the program
are precision-critical or not. As a result, we obtain a new
pre-analysis (already open-sourced) that can improve the
efficiency of object-sensitive pointer analysis significantly
while introducing only some small precision loss into the
points-to information produced. In addition, there is no or
little precision loss observed for three important clients, call
graph construction, may-fail casting, and polymorphic call
detection, over a set of 12 popular Java programs evaluated.

This research can be extended in several directions.
First, we can incorporate the object allocation relationship
(exploited earlier [36]) into our framework to mitigate some
precision loss incurred in the scenarios illustrated in Fig-
ures 18 and 19. Second, we can explore with sharpening
the precision of CIOBS

TURNER
m with a more precise yet faster

algorithm than Anderson’s analysis [21]. Finally, we can try
to generalize TURNER

m to work for other types of context-
sensitivity, such as call-site-based context-sensitivity.

ACKNOWLEDGMENTS

Thanks to all the reviewers for their constructive comments.
This research is supported by ARC Grants DP180104069 and
DP210102409.

REFERENCES

[1] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein,
Y. Le Traon, D. Octeau, and P. McDaniel, “FlowDroid: Precise
context, flow, field, object-sensitive and lifecycle-aware taint anal-
ysis for Android apps,” in Proceedings of the 35th ACM SIGPLAN
Conference on Programming Language Design and Implementation.
New York, NY, USA: Association for Computing Machinery, 2014,
p. 259–269.

[2] D. He, H. Li, L. Wang, H. Meng, H. Zheng, J. Liu, S. Hu, L. Li, and
J. Xue, “Performance-boosting sparsification of the IFDS algorithm
with applications to taint analysis,” in 2019 34th IEEE/ACM Inter-
national Conference on Automated Software Engineering (ASE). San
Diego, CA, USA: IEEE, 2019, pp. 267–279.

[3] S. J. Fink, E. Yahav, N. Dor, G. Ramalingam, and E. Geay, “Effective
typestate verification in the presence of aliasing,” ACM Transac-
tions on Software Engineering and Methodology, vol. 17, no. 2, pp.
1–34, 2008.

[4] M. Weiser, “Program slicing,” IEEE Transactions on software engi-
neering, no. 4, pp. 352–357, 1984.

[5] M. Sridharan, S. J. Fink, and R. Bodik, “Thin slicing,” in Proceedings
of the 28th ACM SIGPLAN Conference on Programming Language
Design and Implementation. New York, NY, USA: Association for
Computing Machinery, 2007, pp. 112–122.

[6] Y. Li, T. Tan, Y. Zhang, and J. Xue, “Program tailoring: Slicing by
sequential criteria,” in 30th European Conference on Object-Oriented
Programming. Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik, 2016, pp. 15:1–15:27.

[7] M. Naik, A. Aiken, and J. Whaley, “Effective static race detection
for Java,” in Proceedings of the 27th ACM SIGPLAN Conference on
Programming Language Design and Implementation. New York, NY,
USA: Association for Computing Machinery, 2006, pp. 308–319.

[8] D. He, L. Li, L. Wang, H. Zheng, G. Li, and J. Xue, “Under-
standing and detecting evolution-induced compatibility issues in
Android apps,” in 2018 33rd IEEE/ACM International Conference
on Automated Software Engineering (ASE). New York, NY, USA:
Association for Computing Machinery, 2018, pp. 167–177.

[9] M. Sharir and A. Pnueli, Two approaches to interprocedural data flow
analysis. New York University. Courant Institute of Mathematical
Sciences , 1978.

[10] A. Milanova, A. Rountev, and B. G. Ryder, “Parameterized object
sensitivity for points-to analysis for Java,” ACM Transactions on
Software Engineering and Methodology, vol. 14, no. 1, pp. 1–41, 2005.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 24

[11] Y. Smaragdakis, M. Bravenboer, and O. Lhoták, “Pick your con-
texts well: understanding object-sensitivity,” in Proceedings of the
38th annual ACM SIGPLAN-SIGACT symposium on Principles of
programming languages. New York, NY, USA: Association for
Computing Machinery, 2011, pp. 17–30.

[12] T. Tan, Y. Li and J. Xue, “Efficient and precise points-to analysis:
modeling the heap by merging equivalent automata,” in Proceed-
ings of the 38th ACM SIGPLAN Conference on Programming Language
Design and Implementation. New York, NY, USA: Association for
Computing Machinery, 2017, pp. 278–291.

[13] R. Thiessen and O. Lhoták, “Context transformations for pointer
analysis,” in Proceedings of the 38th ACM SIGPLAN Conference on
Programming Language Design and Implementation. New York, NY,
USA: Association for Computing Machinery, 2017, p. 263–277.

[14] M. Jeon, S. Jeong, and H. Oh, “Precise and scalable points-to
analysis via data-driven context tunneling,” Proceedings of the ACM
on Programming Languages, vol. 2, no. OOPSLA, pp. 1–29, 2018.

[15] J. Lu, D. He, and J. Xue, “Eagle: CFL-reachability-based precision-
preserving acceleration of object-sensitive pointer analysis with
partial context sensitivity,” ACM Transactions on Software Engineer-
ing and Methodology, 2021, to appear.

[16] T. Reps, “Undecidability of context-sensitive data-dependence
analysis,” ACM Transactions on Programming Languages and Sys-
tems, vol. 22, no. 1, pp. 162–186, 2000.

[17] Y. Smaragdakis, G. Kastrinis, and G. Balatsouras, “Introspective
analysis: context-sensitivity, across the board,” in Proceedings of the
35th ACM SIGPLAN Conference on Programming Language Design
and Implementation. New York, NY, USA: Association for Com-
puting Machinery, 2014, pp. 485–495.

[18] S. Jeong, M. Jeon, S. Cha, and H. Oh, “Data-driven context-
sensitivity for points-to analysis,” Proceedings of the ACM on Pro-
gramming Languages, vol. 1, no. OOPSLA, p. 100, 2017.

[19] B. Hassanshahi, R. K. Ramesh, P. Krishnan, B. Scholz, and Y. Lu,
“An efficient tunable selective points-to analysis for large code-
bases,” in Proceedings of the 6th ACM SIGPLAN International Work-
shop on State Of the Art in Program Analysis. New York, NY, USA:
Association for Computing Machinery, 2017, p. 13–18.

[20] Y. Li, T. Tan, A. Møller, and Y. Smaragdakis, “Precision-guided
context sensitivity for pointer analysis,” Proceedings of the ACM on
Programming Languages, vol. 2, no. OOPSLA, pp. 1–29, 2018.

[21] L. O. Andersen, “Program analysis and specialization for the c pro-
gramming language,” Ph.D. dissertation, University of Cophen-
hagen, 1994.

[22] D. He, J. Lu, Y. Gao, and J. Xue, “Accelerating object-sensitive
pointer analysis by exploiting object containment and reachabil-
ity,” in 35th European Conference on Object-Oriented Programming,
ECOOP 2021, July 11-17, 2021, Aarhus, Denmark (Virtual Conference),
ser. LIPIcs, A. Møller and M. Sridharan, Eds., vol. 194. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2021, pp. 16:1–16:31.

[23] M. Sridharan and R. Bodı́k, “Refinement-based context-sensitive
points-to analysis for Java,” in Proceedings of the 27th ACM SIG-
PLAN Conference on Programming Language Design and Implementa-
tion. New York, NY, USA: Association for Computing Machinery,
2006, p. 387–400.

[24] J. Kodumal and A. Aiken, “The set constraint/cfl reachability
connection in practice,” in Proceedings of the ACM SIGPLAN 2004
Conference on Programming Language Design and Implementation.
New York, NY, USA: ACM, 2004, pp. 207–218.

[25] M. Sridharan, S. Chandra, J. Dolby, S. J. Fink, and E. Yahav,
“Alias analysis for object-oriented programs,” in Aliasing in Object-
Oriented Programming. Types, Analysis and Verification. Berlin,
Heidelberg: Springer, 2013, pp. 196–232.

[26] M. Sridharan, D. Gopan, L. Shan, and R. Bodı́k, “Demand-driven
points-to analysis for Java,” in Proceedings of the 20th Annual ACM
SIGPLAN Conference on Object-Oriented Programming, Systems, Lan-
guages, and Applications. New York, NY, USA: Association for
Computing Machinery, 2005, p. 59–76.

[27] L. Shang, X. Xie, and J. Xue, “On-demand dynamic summary-
based points-to analysis,” in Proceedings of the Tenth International
Symposium on Code Generation and Optimization. New York, NY,
USA: Association for Computing Machinery, 2012, pp. 264–274.

[28] T. Reps, “Program analysis via graph reachability,” Information and
software technology, vol. 40, no. 11-12, pp. 701–726, 1998.

[29] R. Vallée-Rai, P. Co, E. Gagnon, L. Hendren, P. Lam, and V. Sun-
daresan, “Soot: A Java bytecode optimization framework,” in
CASCON First Decade High Impact Papers. USA: IBM Corp., 2010,
pp. 214–224.

[30] O. Lhoták and L. Hendren, “Scaling Java points-to analysis using
spark,” in International Conference on Compiler Construction. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2003, pp. 153–169.

[31] Y. Smaragdakis, “Doop-framework for Java pointer and taint
analysis (using p/taint),” 2021.

[32] M. Bravenboer and Y. Smaragdakis, “Strictly declarative specifica-
tion of sophisticated points-to analyses,” in Proceedings of the 24th
ACM SIGPLAN conference on Object oriented programming systems
languages and applications. New York, NY, USA: Association for
Computing Machinery, 2009, pp. 243–262.

[33] I. T. W. R. Center, “WALA: T.J. Watson Libraries for Analysis,”
2020. [Online]. Available: http://wala.sourceforge.net/

[34] M. Bravenboer and Y. Smaragdakis, “Exception analysis and
points-to analysis: Better together,” in Proceedings of the 18th In-
ternational Symposium on Software Testing and Analysis. New York,
NY, USA: Association for Computing Machinery, 2009, p. 1–12.

[35] S. M. Blackburn, R. Garner, C. Hoffmann, A. M. Khang, K. S.
McKinley, R. Bentzur, A. Diwan, D. Feinberg, D. Frampton, S. Z.
Guyer, M. Hirzel, A. Hosking, M. Jump, H. Lee, J. E. B. Moss,
A. Phansalkar, D. Stefanović, T. VanDrunen, D. von Dincklage,
and B. Wiedermann, “The DaCapobenchmarks: Java benchmark-
ing development and analysis,” in Proceedings of the 21st annual
ACM SIGPLAN conference on Object-oriented programming systems,
languages, and applications. New York, NY, USA: Association for
Computing Machinery, 2006, pp. 169–190.

[36] T. Tan, Y. Li, and J. Xue, “Making k-object-sensitive pointer anal-
ysis more precise with still k-limiting,” in International Static Anal-
ysis Symposium. Berlin, Heidelberg: Springer Berlin Heidelberg,
2016, pp. 489–510.

[37] E. Bodden, A. Sewe, J. Sinschek, H. Oueslati, and M. Mezini, “Tam-
ing reflection: Aiding static analysis in the presence of reflection
and custom class loaders,” in Proceedings of the 33rd International
Conference on Software Engineering. Honolulu, HI, USA: IEEE,
2011, pp. 241–250.

[38] J. Whaley and M. S. Lam, “Cloning-based context-sensitive pointer
alias analysis using binary decision diagrams,” in Proceedings of the
ACM SIGPLAN 2004 conference on Programming language design and
implementation. New York, NY, USA: Association for Computing
Machinery, 2004, pp. 131–144.

[39] L. Li, C. Cifuentes, and N. Keynes, “Boosting the performance of
flow-sensitive points-to analysis using value flow,” in Proceedings
of the 19th ACM SIGSOFT symposium and the 13th European confer-
ence on Foundations of software engineering. New York, NY, USA:
Association for Computing Machinery, 2011, pp. 343–353.

[40] D. Yan, G. Xu, and A. Rountev, “Demand-driven context-sensitive
alias analysis for Java,” in Proceedings of the 2011 International
Symposium on Software Testing and Analysis. New York, NY, USA:
Association for Computing Machinery, 2011, pp. 155–165.

[41] Y. Sui and J. Xue, “On-demand strong update analysis via value-
flow refinement,” in Proceedings of the 2016 24th ACM SIGSOFT
international symposium on foundations of software engineering. New
York, NY, USA: Association for Computing Machinery, 2016, pp.
460–473.

[42] J. Späth, L. Nguyen Quang Do, K. Ali, and E. Bodden,
“Boomerang: Demand-driven flow-and context-sensitive pointer
analysis for Java,” in 30th European Conference on Object-Oriented
Programming. Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik, 2016, pp. 22:1–22:26.

[43] S. Wei and B. G. Ryder, “Adaptive context-sensitive analysis for
JavaScript,” in 29th European Conference on Object-Oriented Program-
ming. Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-Zentrum
fuer Informatik, 2015, pp. 712–734.

[44] G. Kastrinis and Y. Smaragdakis, “Hybrid context-sensitivity for
points-to analysis,” in Proceedings of the 34th ACM SIGPLAN Con-
ference on Programming Language Design and Implementation. New
York, NY, USA: Association for Computing Machinery, 2013, p.
423–434.

[45] M. Mohri and M.-J. Nederhof, “Regular approximation of context-
free grammars through transformation,” in Robustness in Language
and Speech Technology, J.-C. Junqua and G. van Noord, Eds. Dor-
drecht: Springer Netherlands, 2001, pp. 153–163.

[46] P. Kumar K., A. Sanyal, and A. Karkare, “Liveness-based garbage
collection for lazy languages,” in Proceedings of the 2016 ACM
SIGPLAN International Symposium on Memory Management, ser.
ISMM 2016. New York, NY, USA: Association for Computing
Machinery, 2016, p. 122–133.

http://wala.sourceforge.net/

	Introduction
	Motivation
	Background
	Challenges
	Example
	Our Approach
	Determining the Precision-Criticality of Objects in a Program based on Object Containment
	Conducting Object Reachability for a Method
	Conducting Object Reachability for a Program

	Preliminaries
	A Simplified Object-Oriented Language
	Selective Object-Sensitive Pointer Analysis

	Turnerm: Our Approach
	Determining the Precision-Criticality of Objects in a Program based on Object Containment
	Conducting Object Reachability for a Method
	Standard CFL-Reachability-based Pointer Analysis
	Turnerm's Object Reachability Analysis

	Conducting Object Reachability for a Program
	Time Complexity

	Evaluation
	RQ1: Precision
	RQ2: Efficiency
	RQ3: Effectiveness

	Related Work
	Conclusion
	References

