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IFDS-based Context Debloating for Object-Sensitive Pointer

Analysis

DONGJIE HE, JINGBO LU, and JINGLING XUE, UNSW Sydney, Australia

Object-sensitive pointer analysis, which separates the calling contexts of a method by its receiver objects,

is known to achieve highly useful precision for object-oriented languages such as Java. Despite recent ad-

vances, all object-sensitive pointer analysis algorithms still suffer from the scalability problem due to the

combinatorial explosion of contexts in large programs. In this article, we introduce a new approach, Conch,

that can be applied to debloat contexts for all object-sensitive pointer analysis algorithms, thereby improving

significantly their efficiency while incurring a negligible loss of precision. Our key insight is to approximate

a recently proposed set of two necessary conditions for an object in a program to be context-sensitive, i.e.,

context-dependent (whose precise verification is undecidable) with a set of three linearly verifiable conditions

in terms of the number of edges in the pointer assignment graph (PAG) representation of the program. These

three linearly verifiable conditions, which turn out to be almost always necessary in practice, are synthesized

from three key observations regarding context-dependability for the objects created and used in real-world

object-oriented programs. To develop a practical implementation for Conch, we introduce an IFDS-based

algorithm for reasoning about object reachability in the PAG of a program, which runs linearly in terms of

the number of edges in the PAG. By debloating contexts for three representative object-sensitive pointer anal-

ysis algorithms, which are applied to a set of representative Java programs, Conch can speed up these three

baseline algorithms substantially at only a negligible loss of precision (less than 0.1%) with respect to several

commonly used precision metrics. In addition, Conch also improves their scalability by enabling them to

analyze substantially more programs to completion than before (under a time budget of 12 hours). Conch

has been open-sourced (http://www.cse.unsw.edu.au/~corg/tools/conch), opening up new opportunities for

other researchers and practitioners to further improve this research. To demonstrate this, we introduce one

extension of Conch to accelerate further the three baselines without losing any precision, providing further

insights on extending Conch to make precision-efficiency tradeoffs in future research.
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1 INTRODUCTION

A wide range of software engineering tasks such as call graph construction [21], program slic-
ing [47, 57], program understanding [27], symbolic execution [54], fuzz testing [56], bug detec-
tion [2, 12, 28, 36, 60], and security analysis [19, 29] often require precise points-to/alias informa-
tion about the program under consideration. The quality of a pointer analysis directly determines
the effectiveness and usefulness of the tools developed for accomplishing these tasks.

For object-oriented languages such as Java, object-sensitive pointer analysis, which distin-
guishes the (calling) contexts of a method by its receiver objects, is regarded as providing highly
useful precision [16, 32, 44, 52, 53] and thus widely adopted in a number of pointer analysis frame-
works for Java, such as Soot [55], Doop [43], Wala [7], and Qilin [15]. Under k-object-sensitivity
(i.e., a k-object-sensitive analysis with a (k − 1)-context-sensitive heap) [34, 35], denoted kobj,
a context used for analyzing a method m and all variables declared therein is represented by a
sequence of k context elements (under k limiting), [o1, . . . ,ok ], where o1 is the receiver object
of m and oi is the receiver object of a method in which oi−1 is allocated [44]. Therefore, oi is
known as an allocator of oi−1. For a heap object (created at an allocation site) in method m mod-
eled with heap cloning in [37], its context (often referred to as its heap context [20, 44]) is rep-
resented by [o1, . . . ,ok−1] (under k − 1 limiting). Currently, kobj does not scale well for reason-
ably large object-oriented programs when k � 3 and is often time-consuming when it is scal-
able [16, 44, 52, 53]. As k increases, the number of contexts that are analyzed for a method often
blows up exponentially without improving precision much. To alleviate this issue, several recent
research efforts [11, 18, 24, 32] focus on applying selective context-sensitivity to a program by first
conducting a pre-analysis on the program and then instructing kobj to apply context-sensitivity
only to some selected methods in the program. A number of attempts have recently been made,
including client-specific machine learning techniques [18] (guided by improving the precision of a
specific client, e.g., may-fail-casting) and general-purpose techniques, such as user-supplied hints
[11], pattern matching [24], and Context-Free Language (CFL) reachability [13, 30, 32]. Despite
some performance improvements obtained (at either no or a noticeable loss of precision), these
existing selective context-sensitive pointer analysis algorithms still suffer from an unreasonable
explosion of contexts.

In this article, we introduce a new approach, Conch, for debloating contexts for all object-
sensitive pointer analysis algorithms, including kobj and its various incarnations for performing
selective context-sensitivity, by boosting their performance significantly while incurring only a
negligible loss in precision. In real-world object-oriented programs, we observe that a large num-
ber of objects that are allocated in a method are often used independently of its calling contexts.
These objects are either used locally such as the ones created in fooi, j () and bari, j () in Figure 4
(introduced shortly) or designed to encapsulate only primitive data such as java.lang.Integer.
Distinguishing these objects context-sensitively, as often done in the current object-sensitive
pointer analysis algorithms, serves to increase only the number of calling contexts analyzed for
the methods invoked on these objects (as their receivers) without delivering any precision im-
provement. Therefore, our key insight in developing Conch is to approximate a recently proposed
set of two necessary conditions for an object in a program to be context-sensitive, i.e., context-

dependent [30, 32] (whose precise verification is undecidable [39]) with a set of three linearly veri-
fiable necessary conditions (in terms of the number of edges in the Pointer Assignment Graph

(PAG) of the program), based on three key observations regarding context-dependability for the
objects created and used in real-world object-oriented programs. To develop a practical imple-
mentation for Conch, we introduce a lightweight IFDS-based algorithm [40] for verifying these
three conditions, which govern essentially object reachability in the program. To the best of our
knowledge, this is the first IFDS-based algorithm that operates on the PAG instead of the CFG of
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a program, and in addition, this algorithm solves the context-debloating problem elegantly and
efficiently as it runs linearly in terms of the number of PAG edges in the program. By instructing
any given object-sensitive pointer analysis algorithm to analyze all context-independent objects
context-insensitively if it is not designed to do so, Conch can enable it to limit effectively the
explosive growth of the number of contexts, thereby achieving substantially improved efficiency
and scalability at a negligible loss of precision.

We have implemented Conch in Soot [55], a program analysis and optimization framework for
Java. We have evaluated Conch by applying it to boost the performance of kobj [35], Eagle [32] (a
representative precision-preserving selective context-sensitive pointer analysis), and Zipper [24]
(a representative non-precision-preserving selective context-sensitive pointer analysis) using a set
of popular Java benchmarks and applications. Conch can speed up all three baseline algorithms
substantially at no or little loss of precision (less than 0.1%). In addition, Conch can also improve
their scalability by enabling them to analyze substantially more programs under more configura-
tions to completion than before (under a time budget of 12 hours).

In summary, this article makes the following contributions:

— We present context debloating, a new approach for accelerating all object-sensitive pointer
analysis algorithms while incurring only a negligible loss of precision.

— We give a set of three conditions (which are usually necessary in real code) for determin-
ing an object’s context-dependability and propose a lightweight IFDS-based algorithm for
verifying these conditions (linearly in terms of the number of PAG edges in a program).

— We have extensively evaluated the effectiveness of Conch (using a number of popular met-
rics) and demonstrated its practical significance for real-world programs.

— We have implemented Conch in the Soot framework [55] and open-sourced it at http:
//www.cse.unsw.edu.au/~corg/tools/conch. We hope this will open up new opportunities for
other researchers and practitioners to further improve this research. To demonstrate this, we
introduce one extension of Conch to boost the performance of object-sensitive pointer anal-
ysis algorithms further without losing any precision, providing further insights on extending
Conch to make various precision-efficiency tradeoffs in future research.

The rest of this article is organized as follows. Section 2 motivates the need for context de-
bloating. Section 3 gives a version of kobj that supports context debloating. Section 4 presents
our Conch approach. In Section 5, we evaluate the effectiveness of Conch achieved by context
debloating. Section 6 discusses the related work. Finally, Section 7 concludes the article.

2 MOTIVATION

We first review the IFDS framework (Section 2.1). We then discuss the context explosion prob-
lem in existing object-sensitive pointer analysis algorithms (Section 2.2). Finally, we motivate our
context-debloating approach, by describing its basic idea, examining the main challenges faced
in realizing it efficiently and effectively, and discussing our solution for addressing these chal-
lenges (Section 2.3).

2.1 The IFDS Framework

The IFDS framework introduced by Reps et al. [40] aims to solve a special kind of data-flow prob-
lem, called the inter-procedural, finite, distributive subset problem, in a flow-sensitive, fully context-
sensitive manner, by operating on a supergraph representation of a given program.

Definition 1 (Supergraph). The supergraphG∗ = (N ∗,E∗) of a program consists of a set of control-
flow graphs (CFGs),G1,G2, . . . (one for each method and one of which,Gmain , represents the main
method of the program), which are connected by inter-procedural edges:
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— N ∗ is the set of nodes representing program points. For a methodm, its CFGGm has a unique
start-node sm ∈ N ∗ (exit-node em ∈ N ∗). A callsite is represented by a call-node c ∈ N ∗ and a
return-node r ∈ N ∗. The other nodes (i.e., normal nodes) represent the statements as usual.

— E∗ is the set of control-flow edges classified into four kinds: call edges (connecting a call-node
to a start-node), return edges (connecting an exit-node to a return-node), call-to-return edges

(connecting a call-node to a return-node), and normal edges (connecting normal nodes).

An IFDS problem that operates on the supergraph of a program can be formally defined.

Definition 2 (IFDS Problem). An IFDS problem IP for a program is a quintuple IP = (G∗,D, F ,M,
�), whereG∗ is the supergraph of the program, D is a finite set of data-flow facts, F ⊆ 2D → 2D is
a set of distributive functions, M : E∗ �→ F is a map from E∗ to data-flow functions, and the meet
operator � is either union or intersection (depending on the problem modeled).

Reps et al. [40] propose an efficient tabulation algorithm to solve an IFDS problem precisely by
transforming it into a special kind of graph-reachability problem on an exploded supergraph.

Definition 3 (Exploded Supergraph). Let IP = (G∗,D, F ,M,�) be an IFDS problem. The corre-
sponding exploded supergraph G#

I P = (N #,E#) is defined as follows:

— N # = N ∗ × (D∪0), where 0 signifies an empty set of data-flow facts (allowing new data-flow
facts to be generated at a program point).

— E# = {〈n1,d1〉 → 〈n2,d2〉 | (n1,n2) ∈ E∗ ∧ d2 ∈ f (d1)}, where f = M (n1,n2) is the flow
function associated with the edge (n1,n2) ∈ E∗.

For a program, an exploded supergraph is, therefore, a graph extended from its supergraph
with the flow functions being explicitly represented. As a result, the problem of checking whether
a data-flow fact d ∈ D is available at a given program point n ∈ N ∗ in a method m is equivalent
to one of checking whether 〈n,d〉 ∈ N # is reachable from 〈smain , 0〉. This is represented by a so-
called path edge 〈sm ,d

′〉 → 〈n,d〉, with the understanding that a realizable path from 〈smain , 0〉 to
〈sm ,d

′〉 always exists. A program path is realizable if its method returns always match with their
corresponding calls. Due to the distributivity of flow functions, the IFDS algorithm can summarize
and reuse the effects of methods, thereby boosting significantly its efficiency. The time complexity
of the IFDS algorithm is O ( |E∗ | · |D |3). In practice, the IFDS algorithm usually makes use of a
pre-built call graph, with the aliasing information discovered either beforehand or on the fly [2].

Figure 1 illustrates how the IFDS algorithm performs a non-null value analysis for a program
by answering the query regarding the non-null (data-flow) facts available at program point 5 (i.e.,
at the end of the program). In main(), the facts o1, o2, and a start being non-null after program
points 1, 2, and 3, respectively, and will be available at program point 5. The fact a.f becomes
non-null after program point 4 due to a.f = o2. Subsequently, a is passed into foo() (via its
parameter q), making q.f non-null immediately. However, due to q.f = null, q.f becomes null
after program point 7. As a result, a.f is no longer available at program point 5. In contrast, o1
is passed into foo() (via its parameter p) and then returned to v. Thus, v is available at program
point 5.

In this example, answering the given query at program point 5 amounts to checking whether
the data flow facts in {o1, o2, a, a.f, v} are reachable from 〈smain , 0〉 in its exploded supergraph.
We can see clearly that all these facts except a.f are available at program point 5, since, for each
d ∈ {o1, o2, a, v}, the path edge 〈smain , 0〉 → 〈5,d〉 exists. It is important to point out that one
summary edge, 〈4, o1〉 → 〈5,v〉, has been added to the callsite v = foo(o1, a) (as depicted). If
there were another callsite, say, v′ = foo(o1′, a′) made between program points n and n + 1 in
the program (if any), a summary edge, 〈n, o1′〉 → 〈n + 1,v ′〉 would also be added so that the same
reachability information for a method is discovered only once and reused across its callsites.
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Fig. 1. An illustration of how the IFDS algorithm performs a non-null value analysis for a program given in

(a) and (c) on its exploded supergraph (with only its visited edges generated (on the fly)).

2.2 Existing Object-Sensitive Pointer Analysis Algorithms: Context Explosion

We first describe briefly how object-sensitive pointer analysis models context-sensitivity in terms
of object-sensitivity (Section 2.2.1). We then use an example to highlight the context explosion
problem inherent in all existing object-sensitive pointer analysis algorithms (Section 2.2.2).

2.2.1 Object Sensitivity. We use a simple example given in Figure 2 to explain how the (calling)
contexts of a method are modeled object-sensitively for now and how our context-debloating ap-
proach works later. In lines 7–11, we define class A, which has a field f and its setter and getter
methods. In lines 12–37, we define class B, which has a field g, a constructor, and three regular
methods (createA(), foo() and bar()). The constructor allocates an instance of A, denoted A2, and
initializes g to point to A1, which is allocated also as an instance of A in createA() and made to
point to A2 (via its field f). In foo() (bar()) of class B, an instance of java.lang.Object, denoted
O1 (O2), is created. Later, O1 (O2) is first stored into A2.f and then loaded into v1 (v2) via setF()
and getF(), respectively. In main(), two instances of B, denoted B1 and B2, are created and used
as the receivers to invoke foo() and bar(), respectively.

In a context-insensitive Andersen’s analysis [1, 21], every method is analyzed only once under
an empty context, [ ]. In this article, we write pts(v ) to represent the points-to set of a variable v
thus computed. As illustrated in Figure 3(a), O1 and O2 are merged at o (line 9) and will later flow
spuriously to v2 and v1, respectively. As a result, we have pts(v1) = pts(v2) = {O1, O2}.

In a k-object-sensitive pointer analysis (kobj), denoted PTA, the calling contexts of a method
are distinguished by its receiver objects, with each being abstracted by its k-most-recent allocation
sites [34, 35]. We write ptsPT A (v, c ) to represent the points-to set of a variable v thus computed
under a given context c . In the case of 2obj (i.e.,kobj with k = 2), setF() (getF()) will be analyzed
differently for its two invocations in lines 28 and 35 (lines 29 and 36) under two different contexts,
[A2, B1] and [A2, B2]. As a result, O1 (created under context [B1]) and O2 (created under context [B2])
will flow along two separate paths to v1 and v2, respectively, as shown in Figure 3(b). This time,
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Fig. 2. An example for illustrating object sensitivity as a context abstraction.

Fig. 3. Computing the points-to information for v1 and v2 in the program given in Figure 2 by applying

(context-insensitive) Andersen’s pointer analysis and 2obj (2-object-sensitive pointer analysis).

pts2obj (v1, [B1]) = {(O1, [B1])} and pts2obj (v2, [B2]) = {(O2, [B2])}, without the spurious points-to
information introduced by Andersen’s analysis previously.

In general, when a method m is analyzed under a (calling or method) context [o1, . . . ,ok ], o1

is a receiver object ofm, and oi is a receiver object of a method where oi−1 is allocated, and thus
known as an allocator (object) of oi−1, where 1 < i � k . Therefore, any object o0 that is allo-
cated in m is identified as (o0, [o1, . . . ,ok−1]), where [o1, . . . ,ok−1] is known as the heap context

of o0.
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Fig. 4. An example program for motivating our context-debloating approach, Conch, where 1 � i � n and

0 � j < 2i , by reusing classes A and B defined in lines 7–37 in the program given in Figure 2.

2.2.2 Context Explosion. We now use an example given in Figure 4, which reuses classes A
and B from Figure 2 (duplicated in lines 1–31 for improving readability), to highlight the context
explosion problem in existing object-sensitive pointer analysis algorithms, including kobj [34, 35]
and recent approaches for enabling kobj to adopt selective context-sensitivity [11, 18, 24, 32], in
analyzing real-world programs. In line 32, we define class D as an empty class. In lines 33–51, we
define class C as containing a total of 2n+1 methods. In lines 34–42, where 0 � j < 2i−1 (2i−1 �
j < 2i ), a method, fooi, j () (bari, j ()), is defined, in which an object, Ci, j , is created and used as the
receiver to invoke fooi−1, j

2
() (bari−1, j

2
()). In lines 43–51, we define foo0,0() (bar0,0()), where an

instance of class B, denoted B3 (B4), is created and used to invoke foo() (bar()). In main() (lines
52–64), a total of 2n instances of class C, denoted Cn, j , where 0 � j < 2n , are created and used as
the receiver objects to call foon−1, j

2
() when j < 2n−1 and barn−1, j

2
() when j ≥ 2n−1.

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 4, Article 101. Pub. date: May 2023.
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Fig. 5. The OAG for Figure 4, where only the four edges in red will remain after context debloating (so that

only A1 and A2 need to be analyzed context-sensitively under [B3] and [B4]).

Figure 5 depicts the object allocation graph (OAG) [50], where a node represents an object
and an edge O → O ′ signifies that O is an allocator of O ′. For kobj [35, 44], the contexts of
a method can be directly read off from this graph by starting from its receiver object and then
retrieving the next k −1 objects backward. For example, the sets of contexts of foo() and bar() are
{[B3,C1,

j

2k−2
, . . . ,Ck−2, j

2
,Ck−1, j ] | 0 � j < 2k−2} and {[B4,C1,

j

2k−2
, . . . ,Ck−2, j

2
,Ck−1, j ] | 2k−2 � j <

2k−1}, respectively. Let Cj (X ) = [A,X ,C1,
j

2k−3
, . . . ,Ck−3, j

2
,Ck−2, j ]. Both setF() and getF() share

the same set of contexts: {Cj (B3) | 0 � j < 2k−3} ∪ {Cj (B4) | 2k−3 � j < 2k−2}. In practice, the
number of contexts for analyzing a method can be exponential. For example, there are a total of
2k−2 contexts for each of the four methods, foo(), bar(), setF() and getF(), contained in classes A
and B defined in lines 1–31. As k increases, each of such methods becomes exponentially expensive
to analyze, consuming increasingly more memory and more analysis time.

Existing approaches for selective context-sensitivity [11, 18, 24, 32] can improve the efficiency
and scalability of kobj. For example, Zipper [24], which does not preserve the precision of kobj,

will instruct kobj to analyze main(), B(), foo(), bar(), and fooi, j () (where j < r i

2 ) context-
insensitively but the remaining methods context-sensitively. As a result, the context explosion
problem still remains for bari, j(), setF() and getF(). On the other hand, Eagle [30, 32], which
preserves the precision of kobj, is more conservative here, as it will also instruct kobj to analyze
B(), foo() and bar() partially context-sensitively (i.e., some of their variables/objects context-
sensitively).

2.3 Conch: Context Debloating

We first explain the basic idea behind context debloating, then discuss some challenges faced for
achieving it efficiently and effectively, and finally, describe our IFDS-based solution.

2.3.1 Basic Idea. We introduce a new approach to mitigating the context explosion problem.
As illustrated in Figure 6, our approach, named CONtext-dependability CHecking (CONCH),
aims to debloat contexts for any given object-sensitive analysis algorithm, say, PTA to boost its per-
formance significantly while causing it to incur only a negligible loss in precision. The debloated
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Fig. 6. The workflow of Conch in debloating contexts for an object-sensitive pointer analysis (PTA).

version of PTA is referred to as PTA+D. PTA can be kobj or any of its incarnations developed for
supporting selective context-sensitivity, such as Ekobj configured by Eagle [32] or Zkobj config-
ured by Zipper [24], guided often by Andersen’s context-insensitive pointer analysis [1]. Due to
context debloating, the debloated counterparts of kobj, Ekobj and Zkobj are obtained as kobj+D,
Ekobj+D and Zkobj+D, respectively. Therefore, our work is both orthogonal and complementary
to the prior work on selective context-sensitivity, including Eagle [32], Zipper [24], and others
[11, 18]. To debloat contexts for PTA and thus obtain PTA+D, Conch will divide the objects in
a program into context-dependent and context-independent objects, based also on the points-to
information computed by Andersen’s pointer analysis. Then Conch will alleviate the context ex-
plosion problem suffered by PTA by instructing PTA+D to proceed exactly the same as PTA except
that PTA+D will now analyze all the identified context-independent objects context-insensitively
if PTA has not been designed to do so. We will discuss all the analysis phases used in Conch in
Section 4.

Let us apply Conch to kobj with respect to our motivating example given Figure 4. By its design,
kobj will analyze all its objects context-sensitively. However, as A1 and A2 are the only two context-
dependent objects, analyzing any other object context-sensitively will cost an exponential increase
in analysis timewithout achieving any precision benefit. For all these objects, we can apply context
debloating to kobj by instructing it to analyze only A1 and A2 context-sensitively. To illustrate this
with respect to the OAG given in Figure 5, we will end up removing effectively all the allocators
of every context-independent object so that the exponential growth of contexts for the object is
avoided completely. In the end, the four edges highlighted in red will remain, as A1 and A2 are
the only two context-dependent objects. This implies that kobj will now analyze only createA()
context-sensitively (under [B3] and [B4]) and setF() and getF() context-sensitively (under [A2,
B3] and [A2, B4]), but all the other methods are context-insensitively. For this particular example,
debloating contexts can helpkobj (and also all its variants) reduce their analysis times andmemory
consumption significantly without losing any precision.

In practice, Conch can be deployed straightforwardly to improve the efficiency and scalability
of object-sensitive pointer analysis tools. Let there be a set of n such tools, PTA1, . . . , PTAn , which
may include kobj or its incarnations for supporting selective context-sensitivity prescribed by
pre-analyses such as Eagle and Zipper. Suppose that the developer has decided to select PTAi

(for some i) to analyze a particular set of programs, P , since it satisfies some particular efficiency-
precision tradeoff required. Let PTAi +D be the debloated version of PTAi obtained by Conch. By
design, PTAi +D is expected to run much faster than PTAi while offering nearly the same precision.
Therefore, the developer can always use PTAi + D as a better alternative to PTAi in analyzing P .

2.3.2 Challenges. To debloat contexts for object-sensitive pointer analysis, we must find
context-dependent (or equivalently, context-independent) objects in a given program. Recently, the
following two necessary conditions, denoted C1 and C2 (rephrased from the two field-sensitive
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Fig. 7. Two necessary conditions C1 and C2 for an objectO allocated in methodm to be context-dependent.

conditions, FS1 and FS2, given in [32]), which are practically but not theoretically sufficient for
real-world programs, have been proposed for determining the context-dependability of an object
O allocated in a methodm based on CFL reachability. These two conditions, which are illustrated
in Figure 7, require us to check the existence of a write into and a read from the same access
path O . f1. · · · . fn context-sensitively (with the write and read accesses happening frequently out-
sidem) [30–32]:

C1. A
(c−→ O . f1. · · · . fn : there exists an objectA that flows intom from outside and ends up being

stored later into O . f1. · · · . fn under a calling context c ofm, and

C2. O . f1. · · · . fn
)c−→ v : there exists a load of O . f1. · · · . fn flowing into a variable v outside m

under also the same calling context c .

where fi may be either a real Java field or a special field (which is a parameter or the return
variable of a method modeled conceptually as a field of its receiver object on which the method is
called) [30, 32]. For C1 and C2, context matching, which is indicated by “(c ” and “)c ”, is formulated
by solving the standard balanced parentheses problem [40]. IfO is context-dependent, then C1∧C2

must hold, which implies the existence of both a context-sensitive value flow from an object A
outsidem intoO . f1. · · · . fn and of a context-sensitive value flow fromO . f1. · · · . fn into a variable
v outsidem (as illustrated graphically in Figure 7). Conversely, if C1∧C2 holds, thenO is usually
context-dependent in real-world programs (even though C1 ∧ C2 is not sufficient). In this case,
if O is considered as being context-independent, then different objects A (if they exist) that flow
intoO . f1. · · · . fn under different calling contexts ofm will be conflated, causing them to flow into
different variables v (if they exist) spuriously. Therefore, for all practical purposes (by assuming
that a method is usually called more than once in the program),O can be regarded as being context-
independent if and only if ¬(C1 ∧ C2) holds.

Suppose we want to apply context debloating to kobj. Unfortunately, checking whether O is
context-dependent or not by verifying C1∧C2 precisely is undecidable [38], as this ideal approach
will require us to solve kobj fully context-sensitively (with k = ∞) for a program. In addition,
weakening C1 ∧ C2, i.e., strengthening ¬(C1 ∧ C2), as done by Eagle [30, 32] directly, will make
many of the value-flows like those depicted in Figure 7 spurious, thereby over-approximating
unduly the number of context-dependent objects, i.e., under-approximating unduly the number of
context-independent objects found in a program, even though such a conservative approach will
always preserve the precision of kobj. On the other hand, approximating C1 ∧ C2 heuristically,
as done by Zipper [24] indirectly (as C1 and C2 were introduced one year later), may cause many
context-dependent objects to be mis-classified as being context-independent, and vice versa, even
though such a heuristic approach may speed up kobj at often a noticeable precision loss (e.g., an
average loss of 10.1% for the #fail-cast client in our evaluation discussed in Section 5.1).

2.3.3 Our Solution. To identify context-dependent objects efficiently and effectively, our guid-
ing principles are to approximate the two aforementioned necessary conditions, C1 and C2, with
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Fig. 8. Approximating C1 ∧ C2 in the ideal case by Conch-P1 ∧ Conch-P2 ∧ Conch-P3 in Conch.

a set of three conditions, Conch-P1, Conch-P2 and Conch-P3, so that these three conditions are
efficiently verifiable and mostly necessary in practice. In order for these three conditions to be veri-
fied efficiently for a program (as described in Section 4), we will see that Conch-P1 can be checked
linearly in terms of the number of objects in the program according to pts. In order for each of
the remaining two conditions (Conch-P2 and Conch-P3) to be checked efficiently, we will intro-
duce an IFDS-based solution, which runs linearly in terms of the number of PAG edges [21] in the
program. To ensure that Conch-P1∧Conch-P2∧Conch-P3 approximates C1∧C2 reasonably ac-
curately (by avoiding many spurious C1∧C2-satisfying value flows introduced by Eagle [30, 32]),
as illustrated in Figure 8, our key insight is to develop these three conditions based on three key
observations governing how objects are used in real-world object-oriented programs, with one
condition per observation. In Figure 8(a), CI I and CDI represent the sets of context-independent
and context-dependent objects found for a program, respectively, according to C1∧C2 in the ideal
situation. In Figure 8(b), CIC and CDC represent their counterparts found by Conch according
to Conch-P1 ∧ Conch-P2 ∧ Conch-P3. To ensure that Conch-P1 ∧ Conch-P2 ∧ Conch-P3 ap-
proximates C1 ∧ C2 reasonably accurately (i.e., enable Conch to accelerate kobj at a little loss of
precision), as illustrated in Figure 8(c), we will aim at minimizing both (1) |CDC \ CDI | (in order
to boost its performance by minimizing the number of context-independent objects in CI I that
are mis-classified as being context-dependent) and (2) |CIC \ CI I | (in order to reduce its preci-
sion loss by minimizing the number of context-dependent objects in CDI that are mis-classified
as being context-independent). It should be pointed out that different objects in a program, once
analyzed context-sensitively or context-insensitively, may impact the efficiency and/or precision
of the program differently, but how to quantify this is an open problem [32].

Like the prior work on selective context-sensitivity [11, 18, 24], Conch also relies on the points-
to information, pts, pre-computed (context-insensitively) by Andersen’s analysis.

We are now ready to introduce Conch-P1, Conch-P2, and Conch-P3. For each condition, wewill
describe what the condition is, explain the intuition behind it, and illustrate it with some examples.
Note that Conch-P3 is a disjunct of two sub-conditions: Conch-P3 := Conch-P3a ∨ Conch-P3b.

Observation 1 (Conch-P1). A context-dependent objectO often has at least one pointer fieldO . f
that is both written into (via a store x . f = · · · ) and read from ( via a load · · · = y. f ) in the program,

where O ∈ pts(x ) and O ∈ pts(y), i.e., x and y are aliases according to pts.

Intuitively, ifO is context-dependent, then there will be a pair of load and store statements into
one ofO’s pointer fields. If such a pair is absent, C1 ∧C2 will usually fail to hold, since one of the
two value flows needed for establishing C1 and C2, as illustrated in Figure 7, will likely be absent.

Figure 9 gives an example where O, an array object created in constructor ArrayList() in
line 5, is context-dependent. As described in Section 3, an array object is modeled monolithically
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Fig. 9. A context-dependent object satisfying Conch-P1 in a code snippet abstracted from JDK.

Fig. 10. A context-dependent object B violating Conch-P1.

(i.e., element-insensitively) so that all its element accesses are interpreted as happening to a special
field, denoted arr . For the array object O with its allocating methodm = ArrayList, we will see
that C1 ∧C2, as illustrated in Figure 7, holds. It is easy to see that O satisfies Conch-P1 due to the
store this.data.arr = elem, i.e., O.arr = elem in line 8 and the load from this.data.arr, i.e.,
O.arr in line 11. When O is analyzed context-sensitively under [Li] based on CFL reachability, Ai
will flow into O.arr due to this store (so that C1 is satisfied) and O.arrwill flow into vi due to this
load (so that C2 is satisfied), where 1 � i � 2. As a result, v1 will point to A1 and v2 will point to
A2, as expected. If O is analyzed context-insensitively, v1 (v2) will also point to A2 (A1) spuriously.

There can be rare cases, as illustrated in Figure 10, where Conch-P1 does not hold for some
context-dependent objects, such as the object B allocated in line 12. Under object-sensitivity [34,
35], the object O that is pointed to by p in line 11 is first written into B.q due to the call to id() in
line 13 and then returned and stored into v in line 4. As discussed in Section 2.3.2, q is therefore
considered as a special field of B. Such cases are rare, as Conch is observed to lose little precision in
real-world object-oriented programs during our extensive evaluation described later in Section 5.

Observation 2 (Conch-P2). A context-dependent object O , pointed to by a variable or a pointer

field of some object according to pts, usually flows out of its allocating method (where O is created).

Intuitively, once created in such a factory-like allocating method, O will likely be subject to
different field accesses (to O . f1. · · · . fn) under different calling contexts. If O does not flow out of
its allocating method, then C2 will usually fail to hold, i.e., its corresponding value-flow illustrated
in Figure 7 will likely be absent in real-world object-oriented programs. For the program given in
Figure 9, the array object O allocated in line 5 obviously satisfies Conch-P2. As discussed earlier,
O is context-dependent, since Ai will flow into this.data[0], i.e., O.arr due to the store in line 8
(so that C1 is satisfied) and this.data[0], i.e., O.arr will flow into vi due to the load in line 11
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Fig. 11. Four common cases abstracted from JDK for satisfying Conch-P2.

(so that C2 is satisfied), where 1 � i � 2. In rare cases, such as the one illustrated in Figure 10, B,
which violates Conch-P2, is still context-dependent for the reasons explained earlier.

Figure 11 gives four representative cases abstracted from the JDK where Conch-P2 holds. In
Figure 11(a), the array object created flows out of the constructor via a store into its this vari-
able. In Figure 11(b), the Entry object created flows out of reconstitutionPut() via its pa-
rameter entries. In Figure 11(c), the KeyIterator object created flows out of iterator() di-
rectly via a return statement. Finally, in Figure 11(d), we have a slightly more complex case. The
BufferedInputStream object created flows out of its allocating method, SunJCE_e_a(), as it is
stored into the input field of a StreamTokenizer object, which flows out of the allocating method
via a store into its this variable. In general, the objects that do not flow out of their allocating
methods are usually context-independent as they are often created and used locally.

Observation 3 (Conch-P3 := Conch-P3a∨Conch-P3b). A context-dependent object O tends to

be involved in a store statement x . f = y contained in a method m′, where O ∈ pts(x ). Let m be the

method that allocates O if m′ happens to be a constructor (i.e., the constructor called for creating O)

and m′ otherwise. Then, for the following two sub-conditions given, at least one tends to hold:

Conch-P3a. y is data-dependent on a formal parameter ofm.

Conch-P3b. y points to a context-dependent object.

Conch-P3a says that an object flows into methodm directly (via one of its parameters) and ends
up being stored intoO . f .д. · · · . Conch-P3b says that an object flows into methodm indirectly (via
another context-dependent object) and ends up being stored intoO . f .д. · · · . Intuitively, if neither
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Fig. 12. Three common cases abstracted from JDK for satisfying Conch-P3.

Conch-P3a nor Conch-P3b holds, then C1 will usually fail to hold, i.e., its corresponding value-
flow illustrated in Figure 7 will likely be absent in real-world object-oriented programs. Note that
O is allocated inm whenm � m′ but may or may not be allocated inm whenm = m′. Therefore,
we can distinguish two cases, depending on whether O is allocated inm or not:

— Case A. O is Allocated in m. This happens whenm � m′ (implying that O is allocated in
m by the definition ofm) orm =m′ with O happening to be allocated inm.

— Case B. O Is Not Allocated inm. This happens whenm =m′ with O happening not to be
allocated inm, i.e., O being allocated in a method that is different fromm.

In Case A, C1 will likely hold, i.e., its corresponding value-flow illustrated in Figure 7 will likely
exist when either Conch-P3a or Conch-P3b is true. In Case B, wherem contains x . f = y, such a
value-flow that reachesO . f .д. · · · contained inm will likely also reachO . f .д. · · · contained in its
allocating method (based on CFL reachability) since x points to O, so that C1 will also likely hold.

Figure 12 gives three representative cases abstracted from the JDK where Conch-P3 holds. In
Figure 12(a), O is the Object[] object allocated in line 2, and x . f = y is this.elems[idx] = e
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Fig. 13. An IFDS-based object reachability analysis performed by Conch on the PAG of the motivating ex-

ample given in Figure 4 to verify Conch-P2 for its objects (with only A1 and A2 shown to avoid cluttering).

contained in method m′ = set() in line 5, which is modeled as this.elems.arr = e, where
arr is a special field introduced to represent all the elements of an array (Section 3). Here, x is
this.elems, f is arr , and y is e. As set() is not a constructor, we havem = m′ = set(). In this
first case, y, i.e., e satisfies Conch-P3a trivially. In Figure 12(b), O is the Entry object allocated in
line 2 (with addEntry() as its allocating method) and x . f = y can be considered as representing
either this.key = k (line 5) or this.value = v (line 6). As Entry() is a constructor, we have
m′ = Entry() and m = addEntry(). In this second case, y, which can be either k or v, satisfies
Conch-P3a trivially. Finally, in Figure 12(c), we consider a slightly more complex case, where O
is the HashMap object allocated in HashSet() (line 2), x . f = y is this.table = new Entry[10],
m′ = HashMap(), and m = HashSet() (since HashMap() is a constructor). We find that y, i.e.,
new Entry[10] is context-dependent since (1) Conch-P1 holds (due to the store in line 12 and
the load in line 8), (2) Conch-P2 holds (due to line 5), and (3) Conch-P3a holds (due to line 12,
where entries is a parameter of transfer()). As a result, the HashMap object allocated in line 2
is also considered as being context-dependent by Conch-P3b. In our context-debloating approach
(Section 4), the circular dependencies on context-dependability are solved iteratively.

To verify these three conditions for a program efficiently (as described in Section 4), we will see
that Conch-P1 can be checked linearly in terms of the number of objects in the program according
to pts. To check each of the remaining two conditions (Conch-P2 and Conch-P3), we introduce an
IFDS-based solution, which runs linearly in terms of the number of PAG edges [21] in the program.

Finally, let us apply context debloating to kobj in analyzing our motivating example given in
Figure 4. For Conch-P1, we will see below how to check it directly according to pts. For Conch-P2,
we will check it by performing an IFDS-based object reachability analysis on the PAG of the exam-
ple program, as illustrated in Figure 13. For Conch-P3, we will check Conch-P3a by performing
an IFDS-based object reachability analysis on the same PAG, as illustrated in Figure 14. We will
revisit Figures 13 and 14 when we introduce our Conch approach in Section 4.

For this example, Conch will identify A1 and A2 as the only two context-dependent objects.
As shown in Figure 4, A1 is allocated in line 14 when createA() is called and A2 is allocated
in line 9 when the constructor B() is called. A1 is found to be context-dependent as it satisfies
Conch-P1 ∧ Conch-P2 ∧ Conch-P3: (1) A1 has a pointer field f, which has a write in line 15 and
two reads in lines 21 and 28 (Conch-P1), (2) A1 can flow out of createA() via its return statement
in line 16 (Conch-P2), captured by 〈A1,H 〉 → 〈retcreateA,E〉 in Figure 13, and (3) p is stored into
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Fig. 14. An IFDS-based object reachability analysis performed by Conch on the PAG of the motivating ex-

ample given in Figure 4 to verify Conch-P3a for its objects (with only the four method parameters relevant

to A1 and A2, i.e., o and thissetF of setF() and thiscreateA and p of createA(), being shown).

A1.f in line 15, where p points is a parameter by itself (Conch-P3a), captured by 〈p, F 〉 → 〈p, F 〉 in
Figure 14. Similarly, A2 is context-dependent as it also satisfies Conch-P1∧Conch-P2∧Conch-P3:
(1) A2 has a pointer field f, which has a write and a read in lines 3 and 4, respectively (Conch-P1),
(2) A2 can flow out of B() via the store statement in line 11 indirectly (Conch-P2), captured by
〈A2,H 〉 → 〈thisB,E〉 in Figure 13, and (3) o is stored into A2.f in line 3, where o is a parameter of
setF() (Conch-P3a), captured by 〈o, F 〉 → 〈o, F 〉 in Figure 14.

Let us now consider B3 and B4 allocated in Figure 4. Both are context-independent as they both
satisfy Conch-P1 (due to a store into B3.g and B4.g in B() (line 11) as well as a load from B3.g
in foo() (line 20) and a load from B4.g in bar() (line 27) in Figure 2) and Conch-P3 (due to the
existence of this.g = a3 in line 11, where a3 points to A1, which is context-dependent) but
violate Conch-P2 (as B3/B4 does not flow out of its allocating method foo0,0()/bar0,0(), where
B3/B4 is allocated). Finally, all the other objects are context-independent as they do not contain
any pointer fields and are used only locally, failing to satisfy any of the three conditions stated.

3 CONTEXT DEBLOATING FOR OBJECT-SENSITIVE POINTER ANALYSIS

As illustrated in Figure 6, Conch can be used to debloat contexts for any object-sensitive pointer
analysis algorithm PTA by simply instructing it to analyze every context-independent object
identified by Conch context-insensitively if it is not designed to do so. We formalize context de-
bloating for kobj (i.e., by assuming that PTA = kobj). Note that kobj is context-sensitive, with
field-sensitivity assumed by default in modern pointer analysis frameworks. Conch can be used
similarly to debloat contexts for any variant of kobj. In this section, we first review the classic
algorithm for kobj (Section 3.1) and then adapt it to support context debloating (Section 3.2).

3.1 kobj

We describe kobj [34, 35, 44] by considering a simplified subset of Java, with five types of labeled
statements listed in Table 1. Note that “x = new T (. . .)” is modeled as “x = new T ; x.〈init〉(. . .)”,
where 〈init〉(. . .) is the corresponding constructor invoked. The control flow statements are irrel-
evant since kobj is context-sensitive but flow-insensitive. As kobj is array-insensitive, loads and
stores to the elements of an array are modeled by collapsing all the elements into a special field
arr of the array. Every method is assumed to have one return statement “return ret”, where ret
is known as its return variable. Section 5 discusses how to handle static method calls and other
complex language features such as exceptions, reflection, and native code.
kobj makes use of a few domains, V, H, M, F, and L, which represent the sets of program

variables, heap objects (identified by their labels), methods, field names, and statements (identified
also by their labels), respectively. We use C = H∗ as the universe of contexts. Given a context
ctx = [e1, . . . , en] ∈ C and a context element e ∈ H, we write e :: ctx for [e, e1, . . . , en] and �ctx�k
for [e1, . . . , ek ]. Given these notations, the following auxiliary functions are defined:
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Table 1. Five Types of Statements Analyzed by kobj

Kind Statement Kind Statement

new l : x = new T assign l : x = y
store l : x . f = y load l : x = y. f
call l : x = a0. f (a1, . . . ,ar )

— methodOf : L→ M
— methodCtx : M→ ℘(C)
— dispatch : L × H→ M
— pts : (V ∪ H × F) × C→ ℘(H × C)

where methodOf gives the containing method of a statement, methodCtx maintains the contexts
used for analyzing a method, dispatch resolves a virtual call to a target method, and pts records the
points-to information found context-sensitively for a variable or an object’s field.

Figure 15 gives the five rules used by kobj for analyzing the five kinds of statements listed in
Table 1. In [New],Ol ∈ H is an abstract heap object created from the allocation site at l , identified
by its heap context hctx . Rules [Assign], [Store], and [Load] are applied to handle assignments,
stores, and loads, respectively, in the standard manner. In [Call], a call to an instance method

x = a0. f (a1, . . . ,ar ) is analyzed. In this article, wewrite thism′ ,pm′
i and retm′ for the “this” variable,

ith parameter and return variable of m′, respectively, where m′ is a target method dispatched.

Frequently, we also write pm′
0 for thism′ . In the conclusion of this rule, ctx ′ ∈ methodCtx(m′)

reveals how the contexts of a method are maintained. Initially, methodCtx(“main") = {[ ]}.

3.2 Context Debloating

To debloat contexts for kobj or any other variant of kobj, we assume that I represents the set
of context-independent objects found by Conch. Therefore, the objects in H \ I are context-
dependent. To modify kobj to support context debloating, we simply need to replace [New] given
in Figure 15 by [New+D] given in Figure 16. For a context-dependent object, we proceed identically
as before. For a context-independent object, wewill instructkobj to analyze it context-insensitively
now since kobj would otherwise analyze it context-sensitively. This means that we will no longer
distinguish it under its different allocators by setting its heap context as hctx = [ ], thereby elim-
inating completely the context explosion problem that would otherwise have occurred when it is
used as a receiver object of an invoked method, as illustrated in Figure 5 for our motivating ex-
ample. To debloat contexts for all incarnations of kobj such as those supporting selective context-
sensitivity prescribed by Eagle [30, 32] and Zipper [24], we can make similar modifications.

Conch is conceptually simple and algorithmically easy to plug into any existing object-sensitive
pointer analysis, and practically effective as validated during our extensive evaluation.

4 CONCH: DETERMINING THE CONTEXT-DEPENDENCIES OF OBJECTS

Conch, with its IFDS-based algorithm given in Algorithm 1 and its workflow given earlier in
Figure 6, is designed to verify Conch-P1 ∧ Conch-P2 ∧ Conch-P3 efficiently in separating the
context-dependent objects from the context-independent objects in a given program, by leverag-
ing the points-to information pts pre-computed by Andersen’s analysis [1] (the context-insensitive
version of Figure 15). According to our algorithm, an object is classified as being context-dependent
(context-independent) if and only if Conch-P1∧Conch-P2∧Conch-P3 (¬(Conch-P1∧Conch-P2∧
Conch-P3)) holds. To check Conch-P1, we only require pts. To check both Conch-P2 and Conch-

P3a, we solve an IFDS-based object reachability problem for each. To check Conch-P3b, we
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Fig. 15. Rules for kobj.

Fig. 16. Adapting [New] to support context debloating for kobj.

exploit the transitivity of context-dependability across the objects in the program based on their
field points-to information. As Conch-P1 ∧ Conch-P2 ∧ Conch-P3 are constructed to determine
the context-dependability of an object necessarily but not sufficiently, we may mis-classify some
context-independent objects as being context-dependent (by erring on the side of preserving pre-
cision). As Conch-P1∧Conch-P2∧Conch-P3 are mostly but not strictly necessary in real-world
object-oriented programs (Figure 10), we may occasionally mis-classify some context-dependent
objects as being context-independent (at a small loss of precision), as illustrated in Figure 8.

We first give a high-level overview of Algorithm 1 and then discuss how to verify the three con-
ditions in Conch-P1∧Conch-P2∧Conch-P3 individually. Conch takes a program P as input and
returns I as the set of context-independent objects in P for context-debloating (lines 27 and 28).
Some additional notations used are in order. For a given objectO , fieldsOf(O ) denotes the set of the
fields of O . In addition, hasLoad(O, f ) (hasStore(O, f )) holds if P contains a load · · · = x . f (store
x . f = · · · ) such that O ∈ pts(x ). In main(), CI and CD, which are initialized to be ∅ (line 29),
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ALGORITHM 1: Conch: finding context-independent objects in P for context debloating.

1 Function Is_Conch-P1_Valid(Ol )
2 return ∃ f ∈ fieldsOf(Ol ) : hasLoad(Ol , f ) ∧ hasStore(Ol , f )

3 Function Is_Conch-P2_Valid(Ol )
4 return Ol ∈ leakedObjects

5 Function Is_Conch-P3a_Valid(Ol )
6 R (Ol ) = {l ′ : x . f = y in P | Ol ∈ pts(x )}
7 for l ′ : x . f = y ∈ R (Ol ) do
8 if methodOf (l ′) is a constructor of Ol then
9 m = methodOf (l )

10 else
11 m = methodOf (l ′)

12 if depOnParam(y,m) then
13 return true

14 return false

15 Function Check_Validity_Of_Conch-P3b(CI,CD)
16 Unknown← H \ (CI ∪CD)

17 R (Ol ) = {l ′ : x . f = y in P | Ol ∈ pts(x )}
18 changed ← true

19 while changed do
20 changed ← false

21 for Ol ∈ Unknown do

22 if ∃ l ′ : x . f = y ∈ R (Ol ) : pts(Ol . f ) ∩ CD � ∅ then
23 CD = CD ∪ {Ol }
24 changed ← true

25 return CI ∪ (Unknown \ CD)

26 Procedure main()
2727 Input: P // Input program
2828 Output: I // Set of Context-independent Objects
29 CI← CD← ∅

/* Stage 1: Verifying Conch-P1, Conch-P2 and Conch-P3a */
30 for Ol ∈ H do
31 if ¬Is_Conch-P1_Valid(Ol ) then
32 CI = CI ∪ {Ol }
33 else if ¬Is_Conch-P2_Valid(Ol ) then
34 CI = CI ∪ {Ol }
35 else if Is_Conch-P3a_Valid(Ol ) then
36 CD = CD ∪ {Ol }

/* Stage 2: Verifying Conch-P3b */
37 I = Check_Validity_Of_Conch-P3b(CI,CD)
38 return I

represent the sets of context-independent and context-dependent objects found so far, respec-
tively, during the course of our analysis. According to Observation 3, Conch-P3 = Conch-P3a ∨
Conch-P3b. Our algorithm verifies Conch-P1 ∧ Conch-P2 ∧ Conch-P3 in two stages, with the
first stage devoted to Conch-P1, Conch-P2, and Conch-P3a (lines 30–36) and the second stage to
Conch-P3b (line 37).
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Fig. 17. Constructing the PAG edges for a method with no parameters/returns/calls.

4.1 Verifying Conch-P1

According to [New] given in Figure 15,H contains the set of objects in P , withOl ∈ H representing
an object allocated in line l . Consider Algorithm 1 now. In lines 31 and 32, an objectOl is classified
as being context-independent and thus inserted into CI if it does not satisfy Conch-P1, i.e., if
Is_Conch-P1_Valid(Ol ) (given in lines 1 and 2) fails to hold. Otherwise, we will proceed to verify
Conch-P2 as described in Section 4.2 and Conch-P3 as described in Section 4.3.

4.2 Verifying Conch-P2

In lines 33 and 34, an objectOl is classified as being context-independent and thus inserted into CI

if it does not satisfy Conch-P2, i.e., if Is_Conch-P2_Valid(Ol ) (given in lines 3 and 4) fails to hold,
or equivalently, if Ol � leakedObjects holds, where leakedObjects contains the set of objects that
may flow out of their allocating methods according to Observation 2. Otherwise, we will proceed
to verify Conch-P3. To compute leakedObjects for P , we introduce an IFDS-based algorithm in
Figure 22 that operates on its PAG [21] context-sensitively, based on the Deterministic Finite

Automaton (DFA) given in Figure 20. Computing leakedObjects requires reasoning about object
reachability in P . We describe our algorithm incrementally below.

Initially, we start with a parameterless method containing no calls. Its PAG can be built by
applying the standard rules given in Figure 17 [21]. In the PAG, every non-call statement in the

method is represented by two edges: a regular edge of the form u
�−→ v (where the label � indicates

the kind of statement represented (Table 1) and its inversev
�−→ u, so that the same statement (edge)

can be traversed forwards and backwards, respectively. Our object reachability analysis is designed
to be field-insensitive, as reflected in [P-Load] and [P-Store], since we are only concerned with
whether an object may leak out of its containing method rather than the specific field access path
causing it to be leaked. Note that global loads x = T.f and global stores T.f = y, where T.f
is a static field in class T , are ignored in the PAG, since static fields are always analyzed context-
insensitively by kobj. Figure 19(a) gives a DFA for tracing approximately how an objectO allocated
in a method flows over the PAG. There are four states: H (starting at a heap object), F (moving
forward in the PAG), B (moving backward in the PAG), and E (exiting from the allocating method).
Due to the absence of parameters and returns, no object can flow out of a method, once it is
allocated inside, as indicated by the lack of transitions into the final state E.

Let us explain the object reachability analysis, supported by this DFA (Figure 19(a)), on the PAG
of a parameterless method. If the DFA starts with an objectO under state H and transits to a node
x under state F by following a sequence of PAG edges, then eitherO flows directly to x (via a new

edge and possibly some assign edges) orO first flows into an access pathO ′. f1. · · · . fn = O , where
O ′, which is a locally allocated object, flows to x . If the DFA starts with an objectO under state H
and transits to a node y under state B, then eitherO is stored directly into an access path of y, i.e.,
y. f1. · · · . fn = O , orO is first stored into an access path of some locally allocated objectO ′ and then
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Fig. 18. Constructing the PAG edges for parameters and return variables.

Fig. 19. Two intermediate DFAs for the DFA in Figure 20.

O ′ is stored into an access path of y, i.e., y. f1. · · · . fn = O ′. In this DFA, the load edges in the PAG
are ignored as we track where O rather than its pointed-to objects flow to. In addition, the DFA
also ignores the store edges in the PAG, as we assume that a method rarely contains a store and a
load operating on the same field of an object (which is often accessed via its getter and setter).
In the rare cases where this assumption fails to hold, leakedObjects may miss some objects that
satisfy Conch-P2. As a result, this may cause Conch to mis-classify a context-dependent object
as being context-independent, causing the underlying pointer analysis to lose some precision.

To support a method with parameters and a return variable but containing no calls, we add
their self-loop edges using the rules given in Figure 18 and transform the DFA in Figure 19(a) into
the one in Figure 19(b). Once an object allocated in a method flows to a parameter (suggested by
param) or the return variable (suggested by return) under state E, it is known to have leaked.

We now explain why we ignore the store edges in the PAG by using a small example in Figure 21.
For the code given in Figure 21(a), object B is first stored into A.f (line 8) and then loaded into b1
(line 9), implying that b and b1 are aliases. Due to lines 10 and 11, object C will be leaked out of

foo() via b.g and thus satisfies Conch-P2. However, leakedObjects will miss C since a
store−−−→ b is

ignored in the PAG for foo() depicted in Figure 21(b) and will thus not be handled by the DFA
in Figure 19(b). It is easy to see that starting from the initial state H on C, the DFA cannot transit
to the final state E. Note that we could have designed a more complex DFA that can handle the
store edges, but doing so would cause many objects to be identified as being leaked spuriously. In
practice, programmers will rarely write such code. As b and b1 are aliases, a simpler solution that
achieves the same functionality consists of deleting line 9 and replacing line 10 by b.g = c. For
the thus modified code, leakedObjects will recognize C as being leaked as desired, since the DFA,
when starting from the initial stateH on C, will transit to the final state E by processing line 7 (c =
new C()), line 10 (b.g = c), line 6 (b = new B()), and line 11 (return b) in that order.

Based on the two DFAs given in Figure 19, we obtain our final DFA given in Figure 20 for a
whole program, where the three-dotted state transitions are added for handling call statements.
For a given program, each method has its own PAG, but some summary edges can be added to its
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Fig. 20. The DFA used for verifying Conch-P2 for a whole program.

Fig. 21. An example program for explaining why the store edges in its PAG are ignored.

PAG for its call sites during the analysis in order to capture the effects of inter-procedural value-
flows across these call sites context-sensitively (as reviewed in Section 2.1), along the three-dotted
state transitions. The PAG of the program consists of simply the PAGs for all its methods, with
the call graph built according to the points-to information recorded in pts. As discussed above, our
object leak analysis is field-insensitive but context-sensitive operating on the PAG of the program.

Given a call statement l : x = a0. f (a1, . . . ,ar ) contained in methodm, letm′ be a target method

dispatched (with pm′
i being its ith parameter and retm′ being its return variable). Let n1 and n2 be

two PAG nodes. We write 〈n1, S1〉 → 〈n2, S2〉 (as a path edge [40] in our setting) to indicate that
node n1 at state S1 can reach node n2 at state S2. Let us write Gm to represent the PAG of method
m. There are four cases considered when the callee methodm′ is analyzed:
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— 〈pm′
i , F 〉 → 〈pm′

j ,E〉: pm′
i is saved into some access path of pm′

j , i.e., pm′
j . f1. · · · . fn = pm′

i ,

where each fi represents some field. Then, we need to add a summary edge, ai
interStore−−−−−−−→ aj

(i.e., aj . f = ai for some field f ), toGm to propagate this reachability fact inter-procedurally.

— 〈pm′
i , F 〉 → 〈retm′,E〉: pm′

i is saved into some access path of a locally allocated object O in

m′, i.e., O . f1. · · · . fn = pm′
i , and then O flows out ofm′ via its return. Then, we need to add

a summary edge, ai

interAssign
−−−−−−−−→ x , to Gm to reflect this reachability fact inter-procedurally.

— 〈retm′,B〉 → 〈pm′
i ,E〉: retm′ is loaded from some access path of pm′

i , i.e., retm′ =

pm′
i . f1. · · · . fn . Then, we need to add a summary edge, x

interLoad−−−−−−−→ ai (i.e., x = ai . f ), to
Gm to propagate this reachability fact inter-procedurally.

— 〈O,H 〉 → 〈retm′,E〉: O , which is allocated in m′, flows out of m′ via its return statement.
Then, we need to introduce a symbolic object Syml to abstract all the objects returned from
the call site l by treating it effectively as an object allocation site that allocates Syml . We
add two summary edges, which are actually the two PAG edges (one regular and one as its
inverse) to represent the fact that x is assigned a new object Syml allocated at l .

Figure 22 gives our IFDS-based algorithm [40] for computing leakedObjects, operating on the
PAG instead of the CFG of a program (for the first time). The rules in [Seeds] inject three kinds of
path edges, where the first one is for tracingwhich objects may leak out of their allocatingmethods
and the other two are for finding summary edges.We have done one optimization to this algorithm.
Traditionally [40], [Seeds] will be applied to a method on-demand when it is found to be reachable
from main() during the analysis. To improve parallelism in a parallel implementation, we inject
the rules in [Seeds] for all the methods in the call graph of the program at the beginning of our
analysis in order to speed up the analysis at the cost of some redundant fact propagation. The rules
in [Propagate] perform the reachability analysis according to the DFA in Figure 20. Note that the
three-dotted state transitions in the DFA are handled implicitly by the summary edges generated
by [Summary]. Finally, we collect the objects that can reach the final state, E, by using [Collect],
indicating that these objects have leaked out of their allocating methods.

Let us illustrate the rules in Figure 22 by computing leakedObjects = {A1, A2} for our motivating
example in Figure 4 (which reuses classes A and B from Figure 2). We focus on detecting A1 and
A2 as two leaked objects, as illustrated in Figure 13, by deducing 〈A1,H 〉 → 〈retcreateA,E〉 and
〈A2,H 〉 → 〈thisB,E〉. All the other objects are not leaked, as explained in Section 2.3.3.

We perform our IFDS-based object reachability analysis on all the methods simultaneously.
Let us consider createA() given in (Figure 2) first. According to [Seeds], we inject 〈A1,H 〉 →
〈A1,H 〉. Subsequently, we obtain 〈A1,H 〉 → 〈a1, F 〉, 〈A1,H 〉 → 〈retcreateA, F 〉, and 〈A1,H 〉 →
〈retcreateA,E〉 successively by applying the first, second, and seventh rules in [Propagate] to pro-
cess “a1 = new A() // A1” (line 20), retcreateA = a1, and return retcreateA in that order. This
enables us to conclude immediately that A1 is leaked (from its allocating method) due to the sec-
ond rule in [Collect]. According to [Seeds] again, we also inject 〈p, F 〉 → 〈p, F 〉. Subsequently,
we obtain 〈p, F 〉 → 〈a1,B〉 and 〈p, F 〉 → 〈A1,H 〉 successively by applying the third and fifth rules
in [Propagate] to process a1.f = p (line 21) and “a1 = new A() // A1” (line 20) in that order.
By noting that 〈A1,H 〉 → 〈retcreateA,E〉, we can apply the sixth rule in [Propagate] to obtain
〈p, F 〉 → 〈retcreateA,E〉, which enables a new summary edge, 〈a2, F 〉 → 〈a3, F 〉, to be added to the
callsite a3 = this.createA(a2) in line 16 according to the second rule in [Summary]. Meanwhile,
the two summary edges, 〈a3,B〉 → 〈Sym16,H 〉 and 〈Sym16,H 〉 → 〈a3, F 〉, are also added to this
callsite, where Sym16 represents symbolically all the objects returned by createA(), according to
the fourth rule in [Summary]. If some field operations were made directly on a3 in our example,
then they would be analyzed as the field accesses operating directly on Sym16.
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Fig. 22. Rules for computing leakedObjects to verify Conch-P2. To avoid duplicating rules unnecessarily, each

rule that contains Si (where i ∈ {1, 2, 3}) represents a set of rules in which Si ∈ {H , F ,B}, i.e., Si can be either

H or F or B. Syml is a symbolic object abstracting all the objects returned from call site l .

Let us now consider B() given in Figure 4. According to [Seeds], we inject 〈A2,H 〉 → 〈A2,H 〉.
Due to “a2 = new A() // A2” (line 9), we find that 〈A2,H 〉 → 〈a2, F 〉 holds by applying the
first rule in [Propagate]. Due to the presence of the summary edge 〈a2, F 〉 → 〈a3, F 〉 obtained
earlier, we can establish 〈A2,H 〉 → 〈a3, F 〉 by applying the sixth rule in [Propagate]. Afterward,
we obtain 〈A2,H 〉 → 〈thisB,B〉 and 〈A2,H 〉 → 〈thisB,E〉 successively by applying the third and
eighth rules in [Propagate] to process this.g = a3 and the parameter this in that order. Finally,
we conclude that A2 is also leaked due to the first rule in [Collect].

4.3 Verifying Conch-P3

According to Observation 3, we have Conch-P3 := Conch-P3a ∨ Conch-P3b. In lines 35 and 36
of Algorithm 1, we verify if an objectOl satisfies Conch-P3a by calling Is_Conch-P3a_Valid(Ol )
(lines 5–14). If this is true, Ol is considered immediately as being context-dependent (and thus
inserted into CD), sinceOl has already satisfied both Conch-P1 and Conch-P2 at this point in our
algorithm. Otherwise, we will proceed to verify Conch-P3b in line 37.

Let us examine Is_Conch-P3a_Valid(Ol ). Given a store statement x . f = y, the key to verifying
Conch-P3a (in determining the context-dependability of Ol ∈ pts(x )) lies in the development
of depOnParam(y,m), which returns true if y is data-dependent on any parameter of the given
method m. We introduce also an IFDS-based algorithm for computing depOnParam, in a similar
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Fig. 23. The DFA used for computing depOnParam.

manner as how we have applied an IFDS-based algorithm for computing leakedObjects, by using
a simpler DFA given in Figure 23 (than the DFA given in Figure 20).

This DFA has only two states, F and E, recognizing only four types of PAG edges, where in-

terAssign is a summary edge introduced for supporting call statements exactly as in Figure 22.
Given a call statement l : x = a0. f (a1, . . . ,ar ) in method m, let m′ be a target method in-

voked. When 〈pm′
i , F 〉 → 〈retm′,E〉 happens, retm′ is recognized to be data-dependent on pm′

i

(i.e., retm′ = pm′
i . f1. · · · . fn). Thus, we add a summary edge, ai

interAssign
−−−−−−−−→ x , to the PAG of method

m to propagate this reachability fact inter-procedurally from the calleem′ to the callerm.
Our IFDS-based parameter dependency analysis algorithm, given in Figure 24, for computing

depOnParam by proceeding forward from method parameters across the PAG of a program, is
a simplified version of the one given in Figure 22. For [Seeds], only the parameters need to be
injected (again simultaneously for all the methods in the call graph of the program to maximize
parallelism in a parallel implementation). The rules for [Propagate] are similar. For [Summary],
we use the summary edges added as discussed above. Finally, let dps(v,mv ) = {pmv

i | 〈pmv

i , F 〉 →
〈v, F 〉} (with 〈pmv

i , F 〉 → 〈v, F 〉 indicating that v is data-dependent on the parameter pmv

i ofmv ),
where v is a variable defined in its containing methodmv and pmv

i is some (ith) parameter ofmv .
Then depOnParam(y,m) can be defined recursively (by taking care of chained constructors that
are often used in practice, as illustrated by an example shortly) as follows:

depOnParam(y,m) =
⎧⎪⎨
⎪
⎩

dps(y,my ) � ∅ ifm =my
∨

p
my
i ∈dps(y,my ) depOnParam(ai ,m) otherwise

, (1)

where ai is the corresponding argument of p
my

i in a callsite tomy .
Let us illustrate the rules given in Figure 24 by using two examples. For our motivating program

given in Figure 4, it is straightforward to check that both A1 and A2 satisfy Conch-P3a, as shown
in Figure 14. For A1 accessed in a1.f = p (line 15), where A1 ∈ pts(a1), p is a parameter ofm =
createA(), established by 〈p, F 〉 → 〈p, F 〉, which is injected directly by [Seeds]. By Equation (1),
depOnParam(p, createA) = (dps(p, createA) � ∅) = ({p} � ∅) = true. Similarly, for A2 accessed
in this.f = o (line 9), where A2 ∈ pts(this), o is a parameter of m = setF(), established by
〈o, F 〉 → 〈o, F 〉, which is also injected directly by [Seeds]. By Equation (1), depOnParam(o, setF) =
(dps(o, setF) � ∅) = ({o} � ∅) = true. As A1 and A2 satisfy also Conch-P1 and Conch-P2, these
two objects are found to be context-dependent.

Let us consider a more complex example in Figure 25 by verifying that the object B created in
line 18 satisfies Conch-P3a, as illustrated in Figure 26. Given the store statement this.g = r
in line 5 contained in the constructor A() (where l ′ = 5 in Algorithm 1), we find that the object
B pointed to by this.f is allocated in the constructor C() (where m = C in Algorithm 1). To
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Fig. 24. Rules for computing depOnParam by means of computing dps.

Fig. 25. An example for illustrating our IFDS-based analysis in verifying Conch-P3a.

show that B satisfies Conch-P3a, we need to show that depOnParam(r, C) = true. We are therefore
required to show that (D1) o ∈ dps(r,A) and (D2) depOnParam(p,C ) = true. To establish D2, we
are required to show that (D3) p ∈ dps(p,B) and (D4) depOnParam(t,C ) = (dps(t,C ) � ∅) = true.
As D3 and D4 hold trivially (due to 〈p, F 〉 → 〈p, F 〉 and 〈t, F 〉 → 〈t, F 〉 injected by [Seeds]), D2 is
thus established. Below we show that D1 holds by applying the rules in Figure 24, as illustrated in
Figure 26. As x is a parameter of id(), 〈x, F 〉 → 〈x, F 〉 holds according to [Seeds]. Subsequently,
we obtain 〈x, F 〉 → 〈y, F 〉 and 〈x, F 〉 → 〈y,E〉 successively by applying the first and the third
rules in [Propagate] to process y = x (line 8) and return y (line 9) in that order. By applying
[Summary], we add a summary edge, 〈o, F 〉 → 〈r, F 〉 to the callsite in line 4. As o is a parameter
of A(), 〈o, F 〉 → 〈o, F 〉 holds according to [Seeds]. This enables us to obtain 〈o, F 〉 → 〈r, F 〉 by
applying the second rule in [Propagate]. According to [Collect], we can now conclude that
o ∈ dps(r,A) and thus establish D1. Note that the object B is actually context-dependent as it
also satisfies Conch-P1 (due to “this.g = r” (line 5) and “v1 = t1.g/v2 = t2.g” (line 27)) and
Conch-P2 (due to “this.f = new B(t)“ (line 18), causing B to leak out of C()).
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Fig. 26. An IFDS-based parameter dependency analysis performed by Conch on the PAG of the program

given in Figure 25 to verify Conch-P3a for the object B created in line 18.

In the second stage of our Conch approach (line 37), Conch-P3b can be verified straightfor-
wardly by calling Check_Validity_Of_Conch-P3b(CI,CD) (lines 15–25). At this point, CI and
CD contain the sets of context-independent and context-dependent objects found so far during
the course of our analysis. Let O ∈ Unknown, where Unknown = H \ (CI ∪ CD) (line 16). Then
O is found to be context-dependent if one of its fields can point to any context-dependent object
(found so far) transitively and context-independent otherwise (lines 17–25).

4.4 Soundness and Precision

To place this research in a formal setting, we discuss the soundness and precision of Conch in
two separate theorems below, even though their proofs are reasonably straightforward.

Theorem 1 (Soundness). Let Conch be used to debloat contexts for an object-sensitive pointer

analysis algorithm PTA with respect to a program. If PTA is sound (by never under-approximating

the points-to information), then its context-debloated version, PTAConch, is also sound for the program.

Proof. For a given pointer analysis algorithm PTA, its context-debloated version PTAConch for
a program is obtained by applying Conch to PTA as shown in Figure 6. If PTA is sound, then
PTAConch must also be sound for the program. This is because PTAConch differs from PTA only
in that PTAConch may analyze potentially more objects in the program context-insensitively than
PTA does, causing PTAConch to be no more precise than PTA, and consequently, sound. �

Theorem 2 (Precision). Let Conch be used to debloat contexts for an object-sensitive pointer

analysis algorithm PTA with respect to a program. If ¬(C1∧C2) holds for every context-independent

object in the program that satisfies ¬(Conch-P1 ∧ Conch-P2 ∧ Conch-P3) and is thus included in

CI by Conch, then its context-debloated version achieves the same precision as PTA for the program.

Proof. As discussed in Section 2.3.2, C1 ∧ C2 is a necessary condition for kobj to ana-
lyze an object O in a program context-sensitively without losing any precision [32]. Thus, If
¬(C1 ∧ C2) holds for every context-independent object in CI found in the program by Conch
(where ¬(Conch-P1 ∧ Conch-P2 ∧ Conch-P3) holds according to Algorithm 1), then its context-
debloated version must achieve exactly the same precision as PTA for the program. �

As motivated in Section 2.3.3, Conch-P1 ∧ Conch-P2 ∧ Conch-P3 is developed to approximate
C1∧C2 reasonably accurately according to Observation 1–Observation 3, as illustrated in Figure 8.
The effectiveness of Conch for handling real-world programs will be demonstrated in Section 5.

4.5 Time Complexity

The worst-case time complexity of Conch in applying Algorithm 1 to separate the context-
dependent and context-independent objects in a program P is linear in terms of the number of
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its statements (or equivalently, the number of its PAG edges). Algorithm 1 proceeds in two stages,
with the first stage devoted to verifying Conch-P1, Conch-P2 and Conch-P3a (lines 30–36) and
the second stage devoted to verifying Conch-P3b (line 37).

The first stage is dominated by the process for verifying Conch-P2, i.e., computing leakedObjects

for P according to an IFDS-based algorithm in Figure 22, since Conch-P1 can be verified inO ( |H|)
and the IFDS-based algorithm for verifying Conch-P3a has the same time complexity in the worst
case. As reviewed in Section 2.1, Conch-P2 can be checked in O ( |E∗ | · |D |3) [40], where |E∗ | is
the number of PAG edges in P , which are constructed linearly to the number of statements in P
according to Figures 17 and 18, and D = 4 is the number of states of the DFA in Figure 20. Thus,
the first stage of Algorithm 1 runs in O ( |L|), where L is the set of statements in P .

The second stage of Algorithm 1 (for checking the condition in line 22 by calling
Check_Validity_Of_Conch-P3b () in lines 15–25) can be implemented by leveraging a reverse
topological order of the field points-to graph of P [53]) and thus be done inO ( |H|), where H is the
set of heap objects in P . As |H| < |L|, the time complexity of Algorithm 1 is O ( |L|).

5 EVALUATION

We demonstrate the effectiveness of our Conch approach by addressing five research questions:

— RQ1. Is Conch precise (measured in terms of the precision loss of an object-sensitive pointer
analysis due to context debloating) and efficient (measured in terms of the time taken for
separating the context-dependent from context-independent objects in a program)?

— RQ2. Can Conch speed up existing object-sensitive analysis algorithms significantly?
— RQ3. How effective are Observations 1–3 individually in helping Conch separate the

context-dependent objects from context-independent objects in a program?
— RQ4. Can Conch be extended easily to make precision-efficiency tradeoffs?
— RQ5. Is the effectiveness of Conch sensitive to benchmark selections?

Implementation. We have implemented Conch in Soot [55], a program analysis and op-
timization framework for Java, on top of its context-insensitive Andersen’s pointer analysis,
Spark [21] (for computing pts). Conch is implemented in Java and has been open-sourced at
http://www.cse.unsw.edu.au/~corg/tools/conch. As described in Section 2, Conch aims to boost
the performance of all object-sensitive pointer analysis algorithms at no or little loss of preci-
sion. We report and analyze our results by applying Conch to debloat three representative base-
line algorithms, kobj (an object-sensitive version of Spark), Eagle [30, 32] (which is the only
precision-preserving algorithm for accelerating kobj by supporting selective context-sensitivity)
and Zipper [24] (the latest version b83b038, which can deliver the arguably best speedups for
kobj among all the non-precision-preserving algorithms proposed for supporting selective context-
sensitivity [11, 13, 18, 24]).

Experimental Setting. kobj is a standard implementation of Spark in Soot [10]. For Zipper
[24, 26], a pre-analysis developed initially in Soot but released later in Doop [43], we will use it
here to accelerate kobj in Soot. To reproduce its performance fairly, we have used an analysis
setting that is as close as possible to the one used by the Zipper authors [24, 26] in several ma-
jor aspects. First, we perform an exception analysis on the fly with kobj as in Doop by handling
exceptions along the so-called exception-catch links [5]. Second, we use the declared type of an ar-
ray element instead of java.lang.Object to filter type-incompatible points-to objects. Third, we
handle native code by using the summaries provided in Soot. Fourth, we analyze a static method
m by using the contexts ofm’s closest callers that are instance methods (on the call stack) and re-
solve Java reflection by using the reflection log generated by Tamiflex [4] as is often done in the
pointer analysis literature [24, 44, 53]. Finally, objects that are instantiated from StringBuilder
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and StringBuffer, as well as Throwable (including its subtypes), are distinguished per dynamic
type and then analyzed context-insensitively as is done in Doop [6] and WALA [7]. Note that
turning these manual heuristics on aims to challenge Conch to demonstrate its performance ben-
efits over faster baselines by debloating the contexts for the faster baselines (already debloated
manually). Otherwise, the speedups achieved by context debloating will be even more impressive.

To evaluate RQ1–RQ4, we have selected a set of 13 popular Java programs, including 10 bench-
marks from DaCapo (consisting of 11 benchmarks released in 2006) [3], and 3 Java applications
(checkstyle, JPC, and findbugs). These are the standard Java programs that are frequently used
for evaluating pointer analysis algorithms [24, 44, 53]. For each program, its default reflection
log that comes with it is used for resolving reflective calls. We have excluded jython from this
DaCapo benchmark suite since its context sensitive analyses do not scale due to overly conserva-
tive handling of Java reflection [52]. The Java library used is jre1.6.0_45.

To evaluate RQ5, we have selected nine benchmarks from a more recent version of DaCapo
(DaCapo-9.12) downloaded from Doop Benchmarks (consisting of also 11 benchmarks in total),
representing relatively larger and more complex Java programs used in practice. We have excluded
eclipse and jython since neither can be analyzed to completion by any of the three baseline
pointer analysis algorithms under our time budget even when k = 2. For each benchmark, the
reflection log used is its default version (with the suffix -tamiflex-default.log). For these nine
newDaCapo benchmarks, a relatively larger andmore complex Java library, jre1.8.0_121_debug,
is used.

We have conducted our experiments on an Intel(R) Xeon(R) CPU E5-1660 3.2 GHz machine with
256 GB of RAM. The time budget used for running each pointer analysis on a program is set as
12 hours. For each pointer analysis, the analysis time of a program is an average of three runs.

5.1 RQ1: Is Conch Precise and Efficient?

Overall, Conch can speed up all the three baseline algorithms together substantially for the set
of 13 programs evaluated (achieving 2.9× on average with a maximum of 15.9×), at no loss of
precision for 11 programs and only a negligible loss of precision (less than 0.1%) for the remaining
two programs. In addition, Conch can also improve the scalability of the three baseline algorithms
substantially by enabling them to analyze 6 more programs under 11 configurations to completion
than before (under a time budget of 12 hours), in a total of 8.3 hours.

Given Base (a baseline pointer analysis) and Base+D (Base with its contexts debloated by
Conch), we measure the precision of Conch in terms of precision loss incurred with respect to a
given metric (Metric) when both Base and Base+D are applied to analyze the same program:

Metric(Base+D) − Metric(Base)

Metric(Base)
, (2)

where Metric(Base) and Metric(Base+D) are themetric numbers obtained by Base and Base+D, re-
spectively. We use a set of four common metrics for measuring the precision of a context-sensitive
pointer analysis [24, 32, 44, 52]: (1) #fail-cast: the number of type casts that may fail, (2) #call-

edges: the number of call graph edges discovered, (3) #poly-calls: the number of polymorphic calls
discovered, and (4) #reach-mtds: the number of reachable methods.

Table 2 gives ourmain results. Forkobj, Ekobj (Zkobj) denotes the version of kobjwith selective
context-sensitivity provided by Eagle (Zipper). All these baselines (where k ∈ {2, 3}) and their
debloated counterparts are compared by using the 13 Java programs considered.

Conch is very precise in terms of supporting context debloating while losing negligible preci-
sion. Our approach preserves the precision of all the baselines for 11 programs consisting of the
10 DaCapo benchmarks and findbugs. For checkstyle and JPC, our approach suffers from an
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Table 2. Main Results

Classic kobj Eagle-guided kobj Zipper-guided kobj
Prog Metrics 2OBJ 2OBJ+D 3OBJ 3OBJ+D E2OBJ E2OBJ+D E3OBJ E3OBJ+D Z2OBJ Z2OBJ+D Z3OBJ Z3OBJ+D

Time (s) 45.4 13.9(3.3x) 1049.3 185.4(5.7x) 28.5 12.3(2.3x) 732.7 167.8(4.4x) 20.8 7.8(2.7x) 337.9 32.1(10.5x)
#fail-cast 509 509 449 449 509 509 449 449 559 559 507 507
#call-edges 51176 51176 51149 51149 51176 51176 51149 51149 51394 51394 51367 51367
#poly-calls 1622 1622 1615 1615 1622 1622 1615 1615 1643 1643 1636 1636

antlr

#reach-mtds 7804 7804 7803 7803 7804 7804 7803 7803 7842 7842 7841 7841

Time (s) 743.8 359.5(2.1x) >12h 4093.7 528.9 233.7(2.3x) OoM 2059.8 532.4 279.2(1.9x) OoM 2771.2
#fail-cast 1314 1314 - 1221 1314 1314 - 1221 1368 1368 - 1279
#call-edges 56699 56699 - 56464 56699 56699 - 56464 57192 57192 - 57036
#poly-calls 1695 1695 - 1675 1695 1695 - 1675 1732 1732 - 1716

bloat

#reach-mtds 9021 9021 - 9005 9021 9021 - 9005 9093 9093 - 9085

Time (s) 253.0 85.5(3.0x) OoM 4215.9 128.4 67.1(1.9x) OoM 2723.3 34.6 20.3(1.7x) 573.6 178.3(3.2x)
#fail-cast 1348 1348 - 1241 1348 1348 - 1241 1418 1418 1323 1323
#call-edges 72457 72457 - 72023 72457 72457 - 72023 73123 73123 72738 72738
#poly-calls 2032 2032 - 2008 2032 2032 - 2008 2060 2060 2040 2040

chart

#reach-mtds 15143 15143 - 15113 15143 15143 - 15113 15269 15269 15247 15247

Time (s) >12h 4097.5 OoM OoM 4377.0 3317.7(1.3x) OoM OoM 3118.1 2732.4(1.1x) OoM OoM
#fail-cast - 3215 - - 3215 3215 - - 3357 3357 - -
#call-edges - 145763 - - 145763 145763 - - 146492 146492 - -
#poly-calls - 8720 - - 8720 8720 - - 8737 8737 - -

eclipse

#reach-mtds - 19916 - - 19916 19916 - - 19985 19985 - -

Time (s) 18.6 10.5(1.8x) 572.3 177.8(3.2x) 12.5 7.3(1.7x) 519.0 144.6(3.6x) 9.2 5.1(1.8x) 113.3 28.1(4.0x)
#fail-cast 395 395 336 336 395 395 336 336 444 444 400 400
#call-edges 34120 34120 34100 34100 34120 34120 34100 34100 34343 34343 34323 34323
#poly-calls 808 808 802 802 808 808 802 802 832 832 826 826

fop

#reach-mtds 7582 7582 7582 7582 7582 7582 7582 7582 7620 7620 7620 7620

Time (s) 21.9 10.3(2.1x) 825.2 260.4(3.2x) 13.4 6.8(2.0x) 751.3 241.3(3.1x) 9.3 5.4(1.7x) 143.7 37.9(3.8x)
#fail-cast 406 406 354 354 406 406 354 354 457 457 413 413
#call-edges 34767 34767 34740 34740 34767 34767 34740 34740 35002 35002 34975 34975
#poly-calls 830 830 823 823 830 830 823 823 853 853 846 846

hsqldb

#reach-mtds 6980 6980 6979 6979 6980 6980 6979 6979 7022 7022 7021 7021

Time (s) 19.4 9.1(2.1x) 555.3 197.7(2.8x) 12.6 6.2(2.0x) 504.5 178.3(2.8x) 9.4 4.9(1.9x) 129.5 31.0(4.2x)
#fail-cast 394 394 340 340 394 394 340 340 448 448 398 398
#call-edges 33495 33495 33468 33468 33495 33495 33468 33468 33728 33728 33701 33701
#poly-calls 918 918 911 911 918 918 911 911 944 944 937 937

luindex

#reach-mtds 7017 7017 7016 7016 7017 7017 7016 7016 7057 7057 7056 7056

Time (s) 30.4 11.8(2.6x) 2225.7 252.1(8.8x) 22.1 8.2(2.7x) 2067.6 224.2(9.2x) 13.2 5.2(2.5x) 622.7 39.2(15.9x)
#fail-cast 409 409 357 357 409 409 357 357 466 466 418 418
#call-edges 36377 36377 36350 36350 36377 36377 36350 36350 36605 36605 36578 36578
#poly-calls 1116 1116 1109 1109 1116 1116 1109 1109 1143 1143 1136 1136

lusearch

#reach-mtds 7669 7669 7668 7668 7669 7669 7668 7668 7707 7707 7706 7706

Time (s) 41.6 24.2(1.7x) 1236.1 257.0(4.8x) 29.7 17.7(1.7x) 1082.7 238.1(4.5x) 23.9 14.9(1.6x) 344.7 52.5(6.6x)
#fail-cast 1432 1432 1367 1367 1432 1432 1367 1367 1514 1514 1461 1461
#call-edges 59864 59864 59805 59805 59864 59864 59805 59805 60029 60029 59970 59970
#poly-calls 2357 2357 2351 2351 2357 2357 2351 2351 2382 2382 2376 2376

pmd

#reach-mtds 11841 11841 11841 11841 11841 11841 11841 11841 11880 11880 11880 11880

Time (s) 565.3 298.2(1.9x) OoM 1632.1 308.8 196.6(1.6x) OoM 1377.6 223.6 222.5(1.0x) 2487.7 1125.6(2.2x)
#fail-cast 600 600 - 546 600 600 - 546 657 657 609 609
#call-edges 46653 46653 - 46621 46653 46653 - 46621 46842 46842 46815 46815
#poly-calls 1613 1613 - 1606 1613 1613 - 1606 1636 1636 1629 1629

xalan

#reach-mtds 9659 9659 - 9657 9659 9659 - 9657 9701 9701 9700 9700

Time (s) 1014.6 349.1(2.9x) >12h OoM 608.7 309.3(2.0x) OoM OoM 404.4 226.5(1.8x) OoM 4887.4
#fail-cast 1130 1130 - - 1130 1130 - - 1206 1206 - 1117
#call-edges 67039 67041 - - 67039 67041 - - 67854 67854 - 66892
#poly-calls 2210 2210 - - 2210 2210 - - 2268 2268 - 2211

checkstyle

#reach-mtds 12314 12314 - - 12314 12314 - - 12383 12383 - 12342

Time (s) 106.1 54.6(1.9x) 2163.3 240.6(9.0x) 71.7 42.3(1.7x) 1309.1 210.9(6.2x) 34.4 26.3(1.3x) 181.0 44.8(4.0x)
#fail-cast 1356 1356 1206 1206 1356 1356 1206 1206 1431 1431 1278 1278
#call-edges 80965 80978 79297 79310 80965 80978 79297 79310 81616 81629 79932 79945
#poly-calls 4263 4264 4127 4128 4263 4264 4127 4128 4324 4325 4187 4188

JPC

#reach-mtds 15508 15508 15161 15161 15508 15508 15161 15161 15582 15582 15232 15232

Time (s) 1629.6 180.1(9.0x) OoM 936.3 873.6 152.5(5.7x) OoM 938.4 131.3 50.3(2.6x) 1890.0 186.8(10.1x)
#fail-cast 2072 2072 - 1696 2072 2072 - 1696 2144 2144 1956 1956
#call-edges 87915 87915 - 86993 87915 87915 - 86993 88567 88567 87741 87741
#poly-calls 3655 3655 - 3621 3655 3655 - 3621 3670 3670 3643 3643

findbugs

#reach-mtds 16266 16266 - 16219 16266 16266 - 16219 16315 16315 16287 16287

In all metrics (except for speedups), smaller is better. Given a pointer analysis Base, Base+D is its debloated version by

Conch. OoM stands for “Out of Memory”. For each precision metric, the result obtained by Base+D is highlighted in

red if it is different from the result obtained by Base.

average precision loss of only less than 0.1% (across all the four metrics). Figure 27 gives a
real-world code snippet abstracted from JDK that causes a context-debloated pointer analysis
to lose precision in analyzing JPC. For the two invocations made in lines 22 and 23, where
firePropertyChange() is invoked on the receiver object P1 with its argument pointing to A
in line 22 and the receiver object P2 with its argument pointing to B in line 23, the method
firePropertyChange() defined in lines 7–9 is first called in both cases. Then the method
firePropertyChange() defined in line 10 is called for the first invocation (made in line 22) and the
method firePropertyChange() defined in lines 13–16 is called for the second invocation (made
in line 23). Therefore, the variable o1 declared in line 14 can only point to the object B under 2obj.
According to Conch, however, the object E (created in line 8) is context-independent as it does not
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Fig. 27. An example abstracted from JPC (with the non-main code abstracted from JDK) to illustrate why a

context-debloated pointer analysis loses precision, where the definitions of classes A and B are irrelevant.

satisfy Conch-P2. By analyzing E context-insensitively, 2obj+D will conflate A and B in oldValue
in line 2, causing it to conclude imprecisely that o1 in line 14 may point to both A and B, and conse-
quently, the call in line 15 is polymorphic. As for checkstyle, a context-debloated pointer analysis
loses precision similarly, where a LineReader object created in method load(InputStream) of
class java.util.Properties is misclassified as being context-independent by Conch since it fails
to satisfy Conch-P2.

Conch is also highly efficient (as a pre-analysis). For each benchmark, Table 3 gives the pre-
analysis times of Eagle [30, 32], Zipper [24], and Conch. To allow their efficiency to be compared,
we have given separately the analysis time of Spark [21] (shared by all the three). Note that both
Zipper and Conch are designed to be multi-threaded (with 8 threads used in our experiments).
Conch is slightly faster than Zipper, Eagle, and Spark across all the 13 programs. On average,
their analysis times are 2.2 seconds (Conch), 8.2 seconds (Zipper), 14.6 seconds (Eagle), and
11.0 seconds (Spark). Thus, Conch is efficient enough for supporting context debloating in
practice.

5.2 RQ2: Can Conch Speed Up Baseline Analyses?

Table 2 also gives the analysis times of all the pointer analyses evaluated. Conch delivers signif-
icant speedups (geometric means) over all the baselines. For kobj, the speedups of 2obj+D over
2obj range from 1.7× (for pmd) to 9.0× (for findbugs) with an average of 2.5×. When k = 3, the
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Table 3. Times Spent by All the Pre-analyses in Seconds

antlr bloat chart eclipse fop hsqldb luindex lusearch pmd xalan checkstyle JPC findbugs

Spark 8.6 8.9 15.6 24.7 7.6 7.1 6.9 7.8 11.7 9.0 13.6 17.4 16.7
Eagle 8.2 9.1 26.0 76.7 6.5 9.5 6.3 6.9 21.2 8.7 23.6 25.9 31.0
Zipper 4.6 6.5 16.4 25.7 4.0 4.2 3.7 4.3 9.5 10.1 14.5 9.8 16.2
Conch 1.7 1.9 3.2 6.4 1.5 1.4 1.4 1.4 2.2 2.7 2.8 2.6 3.1

For each benchmark, the analysis time of Spark shared by Eagle, Zipper, and Conch is given separately, together with

their respective analysis times.

speedups of 3obj+D over 3obj are more impressive, ranging from 2.8× (for luindex) to 9.0× (for
JPC) with an average of 4.8×. For Eagle, the speedups of E2obj+D over E2obj range from 1.3× (for
eclipse) to 5.7× (for findbugs) with an average of 2.1×. When k = 3, the speedups of E3obj+D
over E3obj range from 2.8× (for luindex) to 9.2× (for lusearch) with an average of 4.5×. For
Zipper, the speedups of Z2obj+D over Z2obj range from 1.0× (for xalan) to 2.7× (for antlr) with
an average of 1.8×. When k = 3, the speedups of Z3obj+D over Z3obj are also more impressive,
ranging from 2.2× (for xalan) to 15.9× (for lusearch) with an average of 5.4×.

In accelerating kobj, Eagle [32] is precision-preserving (so that Ekobj always achieves the same
precision as kobj) but Zipper [24] is not precision-preserving (so that Zkobj) is usually less precise
than kobj). Note that for the four precision metrics considered in Table 2, #fail-cast, #call-edges,
#poly-calls, and #reach-mtds, Ekobj yields the same results as kobj and Ekobj+D yields the same
results as kobj+D in theory. For all the three baselines, kobj, Ekobj and Zkobj, Conch can make
them run significantly faster at no or little loss of precision (as motivated in Section 2.3.1).

These results suggest that the speedups delivered by Conch increase as k increases, imply-
ing that Conch can help a variety of object-sensitive pointer analysis algorithms improve their
scalability as well. During our evaluation, we find that 2obj+D scales one more benchmark, i.e.,
eclipse than 2obj, 3obj+D can scale four more benchmarks (bloat, chart, xalan, and findbugs)
than 3obj, E3obj scales four more benchmarks, bloat, chart, xalan, and findbugs than E3obj,
and Z3obj+D can scale two more benchmarks (bloat and checkstyle) than Z3Obj. In general,
an analysis may be unscalable due to running either out of memory (“OoM”) or the time budget
(“>12h”).

Therefore, Conch can accelerate existing object-sensitive pointer analyses significantly with
negligible loss in precision. These include not only kobj (the standard algorithm) but also its vari-
ants enabled by, e.g., Zipper [24] and Eagle [30, 32] (the two recent attempts on applying selective
context-sensitivity to improve the performance of kobj).

Below we analyze in detail why context debloating can enable baseline analyses, kobj, Ekobj,
and Zkobj, to improve their efficiency and scalability (as reported in Table 2).

Figure 28 depicts the percentage distribution of context-dependent and context-independent
objects classified by Conch. Conch has successfully identified a large percentage of context-
independent objects in all the programs, ranging from 65.6% (in eclipse) to 78.7% (in fop) with an
average of 72.6%. Therefore, a large number of precision-irrelevant contexts have been eliminated
via context debloating (as motivated in Figure 5).

Table 4 compares the three baseline pointer analyses (kobj, Ekobj, and Zkobj) and their context-
debloated counterparts (kobj+D, Ekobj+D, and Zkobj+D) in terms of the average number of con-
texts analyzed for a method, where k ∈ {2, 3}. The debloated pointer analyses have achieved a
substantial reduction in terms of this important metric across all the programs, providing the rea-
sons behind the improved efficiency and scalability via context debloating.

Finally, we can also understand the effectiveness of Conch from the substantial reduction it has
achieved in the number of context-sensitive facts inferred. In Table 5, #cs-gpts, #cs-pts, and #cs-fpts
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Fig. 28. Percentage distribution of the two types of objects.

Table 4. Average Number of Contexts Analyzed for a Method by the Three Baselines and their

Context-Debloated Versions, kobj, kobj+D, Ekobj, Ekobj+D, Zkobj, and Zkobj+D, where k ∈ {2, 3}

antlr bloat chart eclipse fop hsqldb luindex lusearch pmd xalan checkstyle JPC findbugs

2OBJ 27.1 30.3 36.5 - 15.6 19.4 17.1 20.0 17.3 50.8 66.4 24.7 37.9
2OBJ+D 13.1 18.3 20.8 31.1 9.2 10.5 9.9 10.3 10.3 31.6 41.4 16.0 18.8

E2OBJ 19.0 21.6 26.2 30.8 11.1 13.7 12.2 14.2 12.0 35.6 45.4 17.7 26.1
E2OBJ+D 9.5 12.7 15.4 20.7 6.7 7.6 7.2 7.4 7.3 22.5 28.9 11.8 13.2

Z2OBJ 8.1 14.3 6.9 14.9 4.9 5.8 5.6 6.0 6.1 15.3 18.7 7.4 9.6
Z2OBJ+D 4.8 8.7 5.2 12.3 3.6 4.1 4.0 4.0 4.4 11.8 14.4 6.1 7.3

3OBJ 99.8 - - - 53.0 65.0 58.1 91.5 53.5 - - 87.2 -
3OBJ+D 24.6 39.0 78.9 - 19.1 22.5 21.3 22.2 18.7 61.6 - 26.1 29.5

E3OBJ 68.8 - - - 36.7 44.7 40.4 63.9 37.2 - - 58.5 -
E3OBJ+D 17.5 26.8 57.0 - 13.5 15.8 15.0 15.7 13.1 43.5 - 18.5 20.5

Z3OBJ 26.5 - 21.7 - 14.3 16.6 16.7 23.5 17.6 60.7 - 14.5 25.7
Z3OBJ+D 8.2 17.3 12.5 - 6.4 7.4 7.1 7.3 7.1 22.6 57.5 7.7 10.8

represent the numbers of context-sensitive objects pointed by global variables (i.e., static fields),
local variables and instance fields, respectively, and #cs-calls represent the number of context-
sensitive call edges. In general, the speedups of a pointer analysis over a baseline come from a
significant reduction in the number of context-sensitive facts computed by the baseline. For exam-
ple, 2obj+D is significantly faster than 2obj for findbugs as its number of context-sensitive facts
are significantly less than 2obj. Similarly, E3obj+D is also much faster than E3obj for antlr and
Z3obj+D is also much faster than Z3obj for lusearch. However, the analysis time of a pointer
analysis is known to be not linearly proportional to the number of context-sensitive facts com-
puted [52]. Consider xalan. Z2obj+D has achieved a reduction of 16.2% over Z2obj in terms of the
number of facts inferred but their analysis times are comparable.

5.3 RQ3: How Effective Are Observations 1–3 Individually?

We investigate the individual effectiveness of Observations 1–3, i.e., the effectiveness of each of
their three induced conditions, Conch-P1, Conch-P2, and Conch-P3, in context debloating. We
write ConchPi to represent a version of Conch in which only condition Conch-Pi is activated
and the other two are ignored in Algorithm 1, where 1 � i � 3. Thus, ConchPi will classify
an object in a program as being context-dependent if Conch-Pi holds and context-independent
otherwise.
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Table 5. Context-Sensitive Facts

Classic kobj Eagle-guided kobj Zipper-guided kobj
Prog Metrics 2OBJ 2OBJ+D 3OBJ 3OBJ+D E2OBJ E2OBJ+D E3OBJ E3OBJ+D Z2OBJ Z2OBJ+D Z3OBJ Z3OBJ+D

#cs-gpts 4.9K 2.1K 12.1K 2.5K 4.9K 2.1K 12.0K 2.5K 5.7K 2.3K 17.6K 2.7K
#cs-pts 19.8M 3.6M 228.8M 32.1M 10.8M 2.2M 152.9M 28.4M 18.6M 3.3M 205.1M 10.4M
#cs-fpts 0.6M 0.1M 13.6M 6.3M 0.6M 0.1M 13.6M 6.3M 0.6M 0.1M 13.7M 6.3M
#cs-calls 5.4M 1.3M 87.5M 22.7M 4.0M 1.1M 67.8M 21.5M 1.9M 0.5M 22.7M 1.1M

antlr

Total 25.8M 5.1M 329.8M 61.1M 15.4M 3.4M 234.3M 56.2M 21.1M 3.9M 241.6M 17.8M

#cs-gpts 3.1K 1.9K - 2.3K 3.0K 1.9K - 2.3K 3.9K 2.0K - 2.4K
#cs-pts 159.8M 68.0M - 325.0M 109.7M 46.4M - 229.3M 140.9M 53.6M - 235.0M
#cs-fpts 5.7M 4.6M - 28.8M 5.7M 4.6M - 28.8M 6.9M 4.6M - 28.0M
#cs-calls 47.1M 20.9M - 112.0M 43.0M 19.6M - 108.5M 38.2M 16.4M - 74.0M

bloat

Total 212.7M 93.5M - 465.8M 158.3M 70.7M - 366.5M 186.0M 74.5M - 336.9M

#cs-gpts 12.5K 6.9K - 11.3K 12.4K 6.9K - 11.3K 10.1K 5.5K 24.6K 6.9K
#cs-pts 56.9M 20.8M - 944.2M 33.8M 15.0M - 653.7M 16.2M 6.9M 166.8M 55.1M
#cs-fpts 1.1M 0.4M - 19.6M 1.0M 0.4M - 19.6M 0.7M 0.3M 21.7M 14.0M
#cs-calls 20.0M 8.5M - 332.8M 14.1M 6.3M - 122.0M 2.5M 1.4M 26.7M 10.1M

chart

Total 78.0M 29.7M - 1296.6M 48.9M 21.7M - 795.4M 19.5M 8.6M 215.3M 79.1M

#cs-gpts - 7.8K - - 27.9K 7.8K - - 21.9K 8.0K - -
#cs-pts - 585.7M - - 562.6M 439.0M - - 601.9M 512.5M - -
#cs-fpts - 12.8M - - 17.2M 12.8M - - 16.7M 13.5M - -
#cs-calls - 345.2M - - 288.0M 242.6M - - 161.3M 147.3M - -

eclipse

Total - 943.7M - - 867.9M 694.5M - - 779.9M 673.4M - -

#cs-gpts 2.9K 1.8K 4.3K 2.0K 2.9K 1.8K 4.2K 2.0K 3.4K 1.9K 9.1K 2.2K
#cs-pts 4.1M 1.2M 67.8M 27.5M 2.4M 0.9M 52.4M 25.0M 3.7M 1.1M 47.0M 7.9M
#cs-fpts 0.2M 71.4K 8.0M 5.8M 0.2M 70.6K 8.0M 5.8M 0.2M 76.4K 8.2M 6.2M
#cs-calls 1.3M 0.5M 31.0M 20.0M 1.0M 0.5M 26.9M 19.4M 0.5M 0.2M 5.1M 0.7M

fop

Total 5.6M 1.8M 106.7M 53.2M 3.6M 1.4M 87.3M 50.1M 4.4M 1.4M 60.4M 14.8M

#cs-gpts 3.0K 1.6K 4.4K 1.8K 3.0K 1.6K 4.2K 1.8K 3.7K 1.8K 10.0K 2.0K
#cs-pts 5.6M 1.5M 90.5M 39.5M 3.3M 1.1M 71.5M 36.1M 4.7M 1.4M 55.9M 10.2M
#cs-fpts 0.2M 75.3K 11.2M 8.4M 0.2M 74.9K 11.2M 8.4M 0.2M 85.4K 10.9M 8.4M
#cs-calls 1.7M 0.6M 41.8M 29.0M 1.3M 0.5M 36.5M 28.2M 0.7M 0.3M 5.8M 0.8M

hsqldb

Total 7.5M 2.2M 143.5M 76.9M 4.8M 1.7M 119.2M 72.7M 5.6M 1.8M 72.6M 19.4M

#cs-gpts 2.8K 1.6K 4.5K 2.0K 2.7K 1.6K 4.3K 2.0K 3.7K 1.8K 10.6K 2.2K
#cs-pts 4.4M 1.4M 72.6M 31.4M 2.7M 1.0M 56.4M 28.6M 4.1M 1.2M 53.0M 8.5M
#cs-fpts 0.2M 73.0K 9.0M 6.6M 0.2M 72.5K 9.0M 6.6M 0.2M 77.3K 9.0M 6.6M
#cs-calls 1.4M 0.6M 34.1M 22.9M 1.0M 0.5M 30.0M 22.2M 0.6M 0.3M 5.6M 0.8M

luindex

Total 6.0M 2.0M 115.6M 60.9M 3.9M 1.6M 95.4M 57.4M 4.9M 1.6M 67.7M 15.9M

#cs-gpts 2.9K 1.6K 4.2K 1.8K 2.8K 1.6K 4.0K 1.8K 3.7K 1.8K 10.3K 2.1K
#cs-pts 6.8M 1.6M 193.6M 37.8M 4.6M 1.2M 172.8M 34.6M 5.4M 1.4M 116.5M 10.1M
#cs-fpts 0.2M 77.4K 11.0M 7.9M 0.2M 77.1K 11.0M 7.9M 0.2M 82.7K 10.3M 7.9M
#cs-calls 3.1M 0.7M 149.3M 27.8M 2.5M 0.6M 129.5M 27.0M 1.1M 0.3M 41.8M 1.0M

lusearch

Total 10.1M 2.4M 353.9M 73.6M 7.4M 1.9M 313.3M 69.5M 6.7M 1.8M 168.6M 19.0M

#cs-gpts 3.4K 1.9K 5.1K 2.1K 3.4K 1.9K 4.9K 2.1K 5.3K 2.1K 21.3K 2.4K
#cs-pts 12.7M 5.1M 142.9M 42.0M 8.1M 4.0M 106.7M 38.0M 14.9M 4.8M 171.1M 14.8M
#cs-fpts 0.6M 0.3M 13.1M 8.4M 0.6M 0.3M 13.1M 8.4M 1.1M 0.4M 17.0M 9.0M
#cs-calls 3.9M 2.0M 56.8M 29.1M 2.8M 1.5M 47.0M 27.8M 2.2M 1.0M 17.4M 1.9M

pmd

Total 17.2M 7.3M 212.8M 79.6M 11.4M 5.8M 166.8M 74.3M 18.2M 6.2M 205.5M 25.7M

#cs-gpts 4.9K 2.9K - 3.2K 4.9K 2.9K - 3.2K 4.2K 2.8K 10.0K 3.2K
#cs-pts 160.4M 49.0M - 161.0M 84.3M 35.2M - 138.3M 51.1M 41.5M 517.5M 123.6M
#cs-fpts 6.3M 4.3M - 15.7M 6.3M 4.3M - 15.7M 5.4M 4.5M 33.1M 16.0M
#cs-calls 49.6M 21.6M - 103.4M 35.9M 17.2M - 85.9M 14.6M 13.7M 86.0M 52.8M

xalan

Total 216.3M 74.9M - 280.2M 126.5M 56.7M - 239.9M 71.2M 59.7M 636.6M 192.3M

#cs-gpts 7.7K 3.5K - - 7.7K 3.5K - - 10.8K 4.3K - 5.2K
#cs-pts 166.2M 44.7M - - 119.8M 29.0M - - 130.8M 38.3M - 353.9M
#cs-fpts 1.5M 0.4M - - 1.5M 0.4M - - 2.8M 0.6M - 141.6M
#cs-calls 86.5M 23.2M - - 39.9M 13.5M - - 24.1M 9.0M - 79.8M

checkstyle

Total 254.2M 68.3M - - 161.2M 42.9M - - 157.6M 47.9M - 575.3M

#cs-gpts 7.3K 4.1K 21.3K 5.7K 7.2K 4.1K 20.8K 5.7K 7.0K 3.8K 16.4K 4.3K
#cs-pts 27.8M 11.9M 606.3M 48.0M 18.7M 8.9M 324.3M 38.3M 13.2M 7.0M 67.3M 12.2M
#cs-fpts 0.9M 0.3M 19.3M 7.2M 0.8M 0.3M 19.0M 7.2M 0.8M 0.3M 11.2M 6.7M
#cs-calls 9.8M 5.5M 93.8M 28.8M 7.5M 4.6M 66.2M 26.3M 2.8M 2.0M 8.2M 2.0M

JPC

Total 38.5M 17.7M 719.5M 84.1M 27.0M 13.8M 409.5M 71.9M 16.8M 9.4M 86.7M 20.8M

#cs-gpts 34.1K 4.5K - 6.0K 33.8K 4.5K - 6.0K 11.0K 4.5K 43.8K 5.9K
#cs-pts 358.2M 41.2M - 126.9M 273.4M 36.3M - 114.2M 58.6M 19.5M 553.2M 38.6M
#cs-fpts 18.0M 1.0M - 23.1M 17.9M 1.0M - 23.1M 5.0M 1.0M 61.1M 23.9M
#cs-calls 147.2M 13.3M - 84.9M 72.0M 9.0M - 80.0M 13.2M 5.8M 101.5M 5.9M

findbugs

Total 523.5M 55.5M - 234.8M 363.4M 46.3M - 217.2M 76.8M 26.2M 715.9M 68.4M

Figure 29 gives the number of context-independent objects identified by Conch and its three
variants, ConchP1, ConchP2, and ConchP3. By definition, the set of context-independent objects
selected by Conch is the union of the sets of context-independent objects selected by its three vari-
ants individually. Thus, Conch has successfully identified more context-independent objects than
each variant alone for all 13 programs. Let us examine these three variants themselves. ConchP1
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Fig. 29. Number of context-independent objects selected by ConchP1, ConchP2, ConchP3 and Conch.

is less effective than both ConchP2 and ConchP3 in identifying context-independent objects for all
the 13 benchmarks except for chart and fop, where ConchP1 can find more context-independent
objects than ConchP2 but still less than ConchP3. Note that an object that contains no pointer
fields will not satisfy Conch-P1. ConchP2 is more effective than ConchP3 in four benchmarks, i.e.,
bloat, pmd, checkstyle, and findbugs. For the other nine benchmarks, ConchP3 is more effective
than ConchP2. Note that Conch-P1, Conch-P2, and Conch-P3 are not mutually exclusive, as they
can identify a common set of objects as context-independent in each benchmark.

We have selected Z2obj as the baseline to evaluate the individual contributions of Observa-
tions 1–3 toward the speedups achieved by context debloating for the 13 programs. Figure 30
depicts the speedups of ConchP1, ConchP2, ConchP3, and Conch over this baseline. Note that, for
each benchmark, the speedup achieved by Conch is not simply the sum of the speedups achieved
by its three variants, since these variants may identify a common set of context-independent ob-
jects in the program (as mentioned above). Given this caveat, three conclusions can be made below.
First, Conch achieves the best performance improvements than its three variants for all the 13 pro-
grams. Second, ConchP3 is more effective than both ConchP1 and ConchP2 in boosting the perfor-
mance of Z2obj for all the 13 programs (except for bloatwhere ConchP3 underperforms ConchP2

substantially, hsqldb where ConchP3 underperforms ConchP1 visibly, and xalan where ConchP3

underperforms both ConchP1 and ConchP2 slightly), as it can generally identify more context-
independent objects (as shown in Figure 29). Finally, ConchP1 is more effective than ConchP2 in the
majority of the 13 programs despite the fact that ConchP1 usually finds fewer context-independent
objects than ConchP2 (Figure 29). This is because many context-independent objects identified by
ConchP1 are allocated in the JDK for encapsulating non-pointer primitive data and used univer-
sally in a range of real-world Java applications, where the JDK is used as a library.

5.4 RQ4: Can Conch be Extended Easily to Support Precision-Efficiency Tradeoffs?

As explained in Section 2.3, the key challenges faced in debloating an object-sensitive pointer
analysis algorithm are to separate context-independent objects from context-dependent objects in
a given program accurately and efficiently and enable the debloated pointer analysis algorithm to
run substantially faster at no or little loss of precision. In developing Conch, our key insights are to
identify a set of three conditions stated in Observations 1–3, Conch-P1, Conch-P2, and Conch-P3,
that can separate context-dependent from context-independent objects reasonably accurately in
real-world applications (Figure 8) and verify them efficiently by using an IFDS-based algorithm.

Given an object-sensitive pointer algorithm, Conch can be easily extended to achieve different
precision-efficiency tradeoffs for its debloated counterparts.We demonstrate this by strengthening
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Fig. 30. The performance improvements by debloating Z2obj with ConchP1, ConchP2, ConchP3 and Conch.

Fig. 31. An example abstracted from xalan for illustrating why an object leaked out of its allocating method

via a non-this parameter is often context-independent.

Conch-P2 to evolve Conch into a new version, Conch∗, so that Conch∗ can deliver better per-
formance improvements for some programs without losing any precision for the four metrics con-
sidered. According to Conch-P2 (i.e., its corresponding rules given in Figure 22), an object is re-
garded as being context-dependent if it can leak out of its allocating method via its this parameter
or one of its other parameters (the first rule in [Collect]) or its return variable (the second rule
in [Collect]). However, we observe that in real-world object-oriented programs (at least in our
experiments), almost all the objects that leak out of their allocating methods via their non-this
parameters are usually context-independent. This is possible because the concept of context de-
pendability is used to capture the relation between an object and its allocator (pointed by this)
while the non-this parameters are often not related to the allocator at all. Based on this observa-
tion, we can extend Conch into Conch∗ by strengthening the first rule in [Collect] in Figure 22
into the following version (while keeping the other rules unchanged):

〈Ol ,H 〉 → 〈thism ,E〉
Ol ∈ leakedObjects

Figure 31 illustrates one representative scenario abstracted from xalan. The object E created
in line 4 leaks out of its allocating method startElement() as it is stored into a field of the non-
this parameter, handler, in the call to appendChild() in line 5. However, analyzing E context-
insensitively does not affect the precision of kobj since handler points to a singleton object.

Table 6 gives the more context-independent objects identified by Conch∗ over Conch in both
absolute and relative terms across the 13 programs. On average, Conch∗ has successfully identified
324.4 (4.8%) more context-independent objects than Conch.
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Table 6. More Context-Independent (CI) Objects Identified by Conch∗ over Conch

More CI
Objects

antlr bloat chart eclipse fop hsqldb luindex lusearch pmd xalan checkstyle JPC findbugs

Abs. 298 396 322 368 298 297 297 302 331 335 318 322 333
Rel. 5.68% 6.65% 2.83% 2.55% 5.48% 6.26% 6.25% 6.02% 4.48% 5.28% 3.68% 3.71% 3.20%

Fig. 32. The average performance improvement of Conch∗ over Conch.

Conch∗ achieves exactly the same precision as Conch (as given in Table 2) measured by all the
four metrics for all the baselines across all the 13 programs. Therefore, we focus on comparing only
the performance improvements achieved by Conch∗ and Conch. Figure 32 plots the speedups of
Conch∗ over Conch for all the 13 programs (with the speedup for each program being computed
as the average of the speedups achieved by Conch∗ over Conch for all the three baseline pointer
analyses considered, i.e., kobj, Ekobj, and Zkobj, given in Table 2). Conch∗ outperforms Conch
substantially for xalan (at 2.48x) and bloat and chart visibly (at 1.06x and 1.16x, respectively),
but performs no worse for the remaining 10 benchmarks. For all the 13 programs, the average
performance improvement achieved by Conch∗ over Conch is 1.11x.

We have investigated why xalan benefits so significantly performance-wise from Conch∗. In
method startElement() of class org.apache.xalan.processor.ProcessorTemplateElem, a to-
tal of 119 objects, which are created via Class::newInstance and resolved by Tamiflex log, are
identified as being context-dependent by Conch but context-independent by Conch∗. As a result,
the number of context-sensitive methods that are analyzed with these objects as their receivers has
been significantly reduced (e.g., from 17,703 for 2obj debloated by Conch to 649 for 2obj debloated
by Conch∗). In general, the speedups achieved by Conch∗ over Conch are not proportional to the
number of additional context-independent objects discovered by Conch∗ over Conch (Table 6). It
is well-known that in kobj, different objects in a program affect its analysis time differently, de-
pending on, for example, the number of methods invokedwith these objects as receivers andwhere
these objects appear in the OAG of the program (Figure 5). Given that Conch is open-sourced,
Conch can be extended along the line suggested to make various precision-efficiency tradeoffs
(by possibly trading precision for efficiency for some clients). In particular, how to extend Conch
by accounting for the relative importance of different objects in determining the precision and
efficient of a debloated pointer analysis algorithm will be a challenging future topic.

5.5 RQ5: Is the Effectiveness of Conch Sensitive to Benchmark Selections?

We have evaluated Conch further by using nine benchmarks from a more recent version of
DaCapo (DaCapo-9.12) with a more recent version of the Java library (jre1.8.0_121_debug).
Conch remains to be effective in boosting the performance of the three baseline pointer analysis
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Table 7. Main Results for DaCapo-9.12

Classic kobj Eagle-guided kobj Zipper-guided kobj

Prog Metrics 2OBJ 2OBJ+D 3OBJ 3OBJ+D E2OBJ E2OBJ+D E3OBJ E3OBJ+D Z2OBJ Z2OBJ+D Z3OBJ Z3OBJ+D

Time (s) 384.3 18.3(21.0x) OoM 1097.4 367.0 15.7(23.4x) OoM 1115.5 85.9 10.7(8.0x) OoM 182.8
#fail-cast 659 663 - 584 659 663 - 584 732 732 - 663
#call-edges 53403 53403 - 53281 53403 53403 - 53281 53933 53933 - 53774
#poly-calls 1236 1236 - 1208 1236 1236 - 1208 1277 1277 - 1262

avrora

#reach-mtds 11822 11822 - 11811 11822 11822 - 11811 11873 11873 - 11859

Time (s) 2422.9 624.5(3.9x) OoM OoM 1990.3 452.0(4.4x) OoM OoM 779.7 449.4(1.7x) OoM 3013.3
#fail-cast 2419 2421 - - 2419 2421 - - 2517 2517 - 2353
#call-edges 122510 122510 - - 122510 122510 - - 123591 123591 - 121202
#poly-calls 5658 5658 - - 5658 5658 - - 5709 5709 - 5650

batik

#reach-mtds 22766 22766 - - 22766 22766 - - 22843 22843 - 22793

Time (s) 3680.6 556.2(6.6x) OoM OoM 2887.3 483.3(6.0x) OoM OoM 1112.2 296.6(3.7x) OoM OoM
#fail-cast 1436 1448 - - 1436 1448 - - 1518 1518 - -
#call-edges 97021 97021 - - 97021 97021 - - 97910 97910 - -
#poly-calls 4025 4025 - - 4025 4025 - - 4080 4080 - -

h2

#reach-mtds 15245 15245 - - 15245 15245 - - 15301 15301 - -

Time (s) 391.2 16.5(23.7x) OoM 912.8 366.7 15.1(24.3x) OoM 893.0 87.5 10.0(8.8x) OoM 142.6
#fail-cast 553 557 - 459 553 557 - 459 636 636 - 557
#call-edges 45314 45314 - 45124 45314 45314 - 45124 45858 45858 - 45669
#poly-calls 1294 1294 - 1257 1294 1294 - 1257 1337 1337 - 1298

luindex

#reach-mtds 9253 9253 - 9234 9253 9253 - 9234 9306 9306 - 9290

Time (s) 391.8 16.5(23.7x) OoM 941.5 373.9 14.6(25.6x) OoM 966.9 87.8 9.5(9.2x) OoM 147.6
#fail-cast 499 505 - 425 499 505 - 425 577 577 - 509
#call-edges 44056 44056 - 43966 44056 44056 - 43966 44639 44639 - 44521
#poly-calls 1417 1417 - 1405 1417 1417 - 1405 1472 1472 - 1459

lusearch

#reach-mtds 9054 9054 - 9048 9054 9054 - 9048 9111 9111 - 9104

Time (s) 408.5 55.6(7.3x) OoM 1488.3 399.0 45.7(8.7x) OoM 1506.0 110.4 31.8(3.5x) OoM 260.5
#fail-cast 1055 1055 - 962 1055 1055 - 962 1140 1140 - 1056
#call-edges 52680 52680 - 52562 52680 52680 - 52562 53523 53523 - 53334
#poly-calls 1517 1517 - 1499 1517 1517 - 1499 1581 1581 - 1559

pmd

#reach-mtds 11047 11047 - 11042 11047 11047 - 11042 11119 11119 - 11109

Time (s) 1043.3 24.4(42.8x) OoM 934.5 962.5 21.6(44.6x) OoM 988.2 707.9 15.2(46.6x) OoM 151.7
#fail-cast 1377 1381 - 1285 1377 1381 - 1285 1507 1507 - 1410
#call-edges 69450 69451 - 69115 69450 69451 - 69115 70145 70146 - 69772
#poly-calls 2342 2342 - 2317 2342 2342 - 2317 2415 2415 - 2390

sunflow

#reach-mtds 15273 15273 - 15256 15273 15273 - 15256 15355 15355 - 15337

Time (s) 1197.7 22.1(54.2x) OoM 3233.5 1111.1 18.5(60.1x) OoM 3561.4 801.5 13.6(58.9x) OoM 620.5
#fail-cast 638 642 - 552 638 642 - 552 725 725 - 638
#call-edges 48738 48738 - 48322 48738 48738 - 48322 49273 49273 - 48992
#poly-calls 1396 1396 - 1373 1396 1396 - 1373 1442 1442 - 1417

tradebeans

#reach-mtds 9920 9920 - 9893 9920 9920 - 9893 9963 9963 - 9952

Time (s) 683.7 252.8(2.7x) OoM 2757.2 645.4 225.4(2.9x) OoM 2705.4 1835.9 1758.4(1.0x) OoM 3302.8
#fail-cast 1162 1166 - 1085 1162 1166 - 1085 1290 1290 - 1220
#call-edges 71396 71396 - 71249 71396 71396 - 71249 72206 72206 - 72015
#poly-calls 3330 3330 - 3311 3330 3330 - 3311 3455 3455 - 3432

xalan

#reach-mtds 13802 13802 - 13794 13802 13802 - 13794 13871 13871 - 13857

In all metrics (except for speedups), smaller is better. Given a pointer analysis Base, Base+D is its debloated version by

Conch. OoM stands for “Out of Memory”. For each precision metric, the result obtained by Base+D is highlighted in

red if it is different from the result obtained by Base.

algorithms (kobj, Ekobj, and Zkobj) considered while nearly preserving their precision. In fact,
as these newer DaCapo benchmarks are relatively larger and more complex (causing the three
baselines to suffer more severely from the context explosion problem (Figure 5)) than before, the
speedups achieved by the debloated baselines, kobj+D, Zkobj+D, and Zkobj+D, are substantially
more pronounced.

Below we discuss the results presented in Table 7.

5.5.1 Efficiency. Let us see how Conch improves the efficiency and scalability of the three
baselines:

— k = 2. In this case, the three baselines, 2obj, E2obj, and Z2obj, and their respective debloated
versions, 2obj+D, E2obj+D, and Z2obj+D, are all scalable (i.e., analyzed to completion un-
der our time budget of 12 hours per benchmark). Figure 33 gives the speedups achieved
by debloating each baseline across the nine benchmarks. Two remarks are in order here.
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Fig. 33. The speedups of 2obj+D, E2obj+D, and Z2obj+D over 2obj, E2obj, and Z2obj, respectively.

First, Conch performs most impressively on sunflow (by accelerating each baseline by over
42×) and tradebeans (by accelerating each baseline by over 54×). In addition, Conch is
also very effective on avrora, luindex and lusearch, but performs relatively more poorly
on batik, h2, pmd and xalan. The average speedups achieved by 2obj+D, E2obj+D and
Z2obj+D over 2obj, E2obj, and Z2obj are 13.4×, 14.3×, and 7.0×, respectively, which are
substantially higher than those achieved for the older DaCapo benchmarks (Table 2). Sec-
ond, for all the nine benchmarks except sunflow and tradebeans, the speedups achieved
by Z2obj+D over Z2obj are noticeably lower than those achieved by 2obj+D over 2obj and
E2obj+D over E2obj, since Zipper can identify more context-independent objects aggres-
sively (at the expense of causing kobj to lose some precision) than Eagle (which identifies
context-independent objects conservatively by preserving the precision of kobj) and kobj
(which does nothing). However, for each baseline, its debloated baseline runs significantly
faster due to additional context-independent objects identified successfully by Conch.

— k = 3. In this case, neither of the three baselines, 3obj, E3obj, and Z3obj is scalable (due
to OoM). However, by debloating their contexts, their debloated versions, 3obj+D, E3obj+D,
Z3obj+D, can now scalably analyze a common set of seven benchmarks, avrora, luindex,
lusearch, pmd, sunflow, tradebeans, and xalan. In addition, Z3obj+D can also analyze
batik scalably to completion. Overall, the total analysis times spent by 3obj+D, E3obj+D,
Z3obj+D are 3.2 hours, 3.3 hours, and 2.2 hours, respectively.

5.5.2 Precision. For the three baselines, kobj, Ekobj, and Zkobj, we only need to consider k = 2
as they are scalable when k = 2 but unscalable when k = 3 for all the nine benchmarks. Again,
Conch causes the three debloated baselines (2obj+D, E2obj+D, and Z2obj+D) to lose no or little
precision (less than 0.1% on average) with respect to their corresponding baselines (2obj, E2obj,
and Z2obj).

Let us examine the three-pointer analysis algorithms considered in our evaluation. Z2obj+D
exhibits a slight loss of precision in terms of #call-edges relative to 2obj in sunflow but otherwise
achieves exactly the same precision as 2obj for all the four metrics, #fail-cast, #call-edges, #poly-

calls, and #reach-mtds, across the nine benchmarks. Let us now move to the other two pointer
analysis algorithms. For #poly-calls and #reach-mtds, 2obj+D and E2obj+D achieve the same preci-
sion as 2obj and E2obj across the nine benchmarks, respectively. For #call-edges, both 2obj+D and
E2obj+D exhibit only a negligible loss of precision in sunflow relative to 2obj and E2obj, respec-
tively. For #fail-cast, both 2obj+D and E2obj+D suffer from a slight loss of precision (an average
of less than 0.1%) with respect to 2obj and E2obj, respectively (by reporting a few extra may-fail
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casts as shown in Table 7). For both 2obj and E2obj, their worst-cases (in relative terms) happen
in lusearch (where #fail-cast is 659 for both 2obj and E2obj but 663 for 2obj+D and E2obj+D).

We have also analyzed the reasons for the loss of precision caused by Conch. For the precision
loss in #call-edges in sunflow, the code snippet given in Figure 27 is still the culprit. Due to a
similar reason as illustrated in Figure 27, the precision loss in #fail-cast across the benchmarks is
attributed to a TimSort object allocated in method sort() of class java.util.TimSort that is
identified as being context-independent incorrectly (since it does not satisfy Conch-P2).

6 RELATED WORK

In this section, we mainly review the prior work that is the most closely related to improving the
performance of whole-program pointer analysis for object-oriented programs.

There are several recent efforts on exploiting selective context-sensitivity to accelerate the per-
formance of the standard object-sensitive pointer analysis (i.e., kobj) [24, 32]. Eagle [32] im-
proves the efficiency of kobj while preserving its precision by conservatively reasoning about
value flows via CFL reachability. Zipper [24], as a representative of non-precision-preserving ap-
proaches [11, 18, 24, 26], trades precision for efficiency by exploiting several value flow patterns.
These techniques mitigate the context explosion problem of kobj by analyzing only a subset of
methods in the program context-insensitively. In contrast, Conch represents a novel mitigation
approach as it can debloat contexts for all the objects in the program, enabling existing algorithms
to run significantly faster at only a negligible loss of precision.

There are other attempts on mitigating the context explosion problem in context-sensitive
pointer analysis. By giving up precision-preserving guarantees offered by Eagle [32], Turner [13,
14] exploits object containment to provide better performance improvements in accelerating kobj.
Conch can be used to boost its performance further. Mahjong [53] mitigates context explosion
by merging equivalent heap abstractions at the expense of precision in alias relations. Conch is
orthogonal to Mahjong and may boost its performance by debloating its contexts used.

Data-driven approaches [16–18] apply machine learning to obtain various heuristics for sup-
porting selective context-sensitivity. Scaler [25] trades precision for scalability by selecting a
suitable context-sensitivity variant for each method so that the amount of points-to information
is bounded.

All the above pointer analysis techniques [13, 14, 16–18, 24, 25, 30, 53] share a common optimiza-
tion pattern. They achieve their performance improvements by first exploiting a pre-analysis to
select a set of precision-uncritical methods/variables/objects and then instructing the subsequent
main pointer analysis to analyze the selected methods/variables/objects context-insensitively.

In [52], context transformations are introduced as an alternative context abstraction to context
strings (as used in kobj), but the practical benefits are shown to be small.

Elsewhere [20, 33, 50, 51], efforts have been made to improve the precision of object-sensitive
pointer analysis. This thread of research is orthogonal to ours considered here. It is worth noting
that an insight discussed in [51] that is used for determining whether a method should be re-
analyzed according to object sensitivity is quite similar to Conch-P2 despite that their solution
seems to be more conservative than the IFDS-based object leak analysis proposed in this article.

Unlike whole-program analyses [6, 21–23, 35, 44, 58] considered in this article, demand-driven
pointer analyses [41, 45, 46, 48, 49, 61] typically only compute the points-to information for pro-
gram points that may affect a particular site of interest for specific clients.

Our object leak analysis (introduced in Section 4.2) is conceptually similar to escape analysis
(for Java) [8, 59] but both are fundamentally different in terms of design objectives and hence
runtime complexity. In terms of design objectives, our object leak analysis is performed to de-
termine the context-dependability of an object by approximating its value flow based on CFL
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reachability [30] while escape analysis is traditionally conducted to support register allocation,
stack allocation, and synchronization optimization. As a result, our object leak analysis completely
ignores static fields while escape analysis is sensitive to such fields. In addition, our object leak
analysis is flow-insensitive and performed on a specifically customized PAG while escape analysis
is usually flow-sensitive and performed on a control flow graph. In terms of runtime complex-
ity, our object leak analysis is linear to the number of PAG edges so that it can be served as a
lightweight pre-analysis for debloating the contexts for object-sensitive pointer analysis while the
time complexities of escape analysis algorithms, which are formulated as data-flow analysis prob-
lems, are much higher [9]. As revealed in Table 3, Conch is extremely lightweight. Otherwise, the
pre-analysis time incurred by Conch in a program may outweigh the performance improvement
achieved from the underlying main analysis accelerated by Conch (based on our experience in
designing pre-analyses).

7 CONCLUSION

Scalability is a major challenge in designing and developing precise object-sensitive pointer analy-
sis techniques due to the combinatorial explosion of contexts in large object-oriented programs. In
this article, we address this challenge by applying context debloating so that we can boost the per-
formance of all object-sensitive pointer analysis algorithms with negligible loss in precision. Our
key insight is to replace a set of two existing necessary conditions (whose verification is undecid-
able) with a set of three necessary conditions that can be linearly verified in terms of the number
of PAG edges in a program for determining the context-dependability of the objects allocated in
the program. Our evaluation shows that our new approach, Conch, can improve significantly the
efficiency and scalability of not only kobj but also existing representative approaches to selective
context-sensitivity that can already accelerate the performance of kobj.

We believe that the performance benefits of context debloating are not just limited to object-
sensitive pointer analysis as demonstrated here. It would be interesting to explore how to apply
context debloating to other flavors of pointer analysis such as call-site-sensitive pointer analy-
sis [42] and context-transformation-based pointer analysis [52]. In addition, it would also be worth-
while investigating how to apply context debloating to other context-sensitive program analyses
such as taint analysis [2] and data-dependence analysis [62] for improving their efficiency and
scalability.
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