
Efficient and Precise Pointer Analysis with Fine-Grained
Context Sensitivity

Author:
He, Dongjie

Publication Date:
2022

License:
https://creativecommons.org/licenses/by/4.0/
Link to license to see what you are allowed to do with this resource.

Downloaded from http://hdl.handle.net/1959.4/100280 in https://
unsworks.unsw.edu.au on 2022-05-02

https://creativecommons.org/licenses/by/4.0/
http://hdl.handle.net/1959.4/100280
https://unsworks.unsw.edu.au
https://unsworks.unsw.edu.au

Efficient and Precise Pointer Analysis

with Fine-Grained Context Sensitivity
by

Dongjie He

A THESIS IN FULFILLMENT OF

THE REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

April 30, 2022

School of Computer Science and Engineering

Faculty of Engineering

The University of New South Wales

All rights reserved. This work may not be reproduced in any form without the

permission of the author. © Dongjie He 2022

Abstract

Pointer analysis addresses a fundamental problem in program analysis: deter-

mining statically whether or not a given pointer may reference an object in the

program. It underpins almost all forms of other static analysis, including program

understanding, program verification, bug detection, security analysis, compiler op-

timization, and symbolic execution. However, existing pointer analysis techniques

suffer from efficiency and scalability issues for large programs. Improving their

efficiency while still maintaining their precision is a long-standing hard problem.

This thesis aims to improve the efficiency and scalability of pointer analysis

for object-oriented programming languages such as Java by exploring fine-grained

context sensitivity. Unlike traditional approaches, which apply context-sensitivity

either uniformly to all methods or selectively to a subset of methods in a program,

we go one step further by applying context-sensitivity only to a subset of precision-

critical variables and objects so that we can reduce significantly the scale of Pointer

Assignment Graph (PAG). Conducting pointer analysis on a smaller PAG enables

the pointer analysis to run significantly faster while preserving most of its precision.

This thesis makes its contributions by introducing three different fine-grained

pointer analysis approaches for Java programs. The first approach, called Turner,

can accelerate k-object-sensitive pointer analysis (i.e., kobj) for Java significantly

with negligible precision loss by exploiting object containment and reachability.

i

The second approach, called context debloating, can accelerate all existing object-

sensitive pointer analysis algorithms for Java by eliminating the context explo-

sion problem completely for context-independent objects. In addition, we have

also developed the first supporting tool, named Conch, for identifying context-

independent objects. The last approach, called P3Ctx, represents the first

precision-preserving technique for accelerating k-callsite-sensitive pointer analysis

(k-CFA) for Java based on a complete CFL-reachability formulation of k-CFA for

Java with built-in on-the-fly call graph construction (for the first time).

ii

Publications

• Dongjie He, Jingbo Lu, and Jingling Xue. A CFL-Reachability Formu-

lation of Callsite-Sensitive Pointer Analysis with Built-in On-the-Fly Call

Graph Construction. In submission.

• Dongjie He, Jingbo Lu, Yaoqing Gao and Jingling Xue. Selecting Context-

Sensitivity Modularly for Accelerating Object-Sensitive Pointer Analysis. In

IEEE Transactions on Software Engineering (TSE’22).

• Dongjie He, Jingbo Lu, and Jingling Xue. Qilin: A New Framework for

Supporting Fine-Grained Context-Sensitivity in Java Pointer Analysis. In

36th European Conference on Object-Oriented Programming (ECOOP’22).

• Dongjie He, Jingbo Lu, and Jingling Xue. Context Debloating for Object-

Sensitive Pointer Analysis. In 36th IEEE/ACM International Conference on

Automated Software Engineering (ASE’21).

• Jingbo Lu, Dongjie He, and Jingling Xue. Selective Context-Sensitivity for

k-CFA with CFL-Reachability. In 28th Static Analysis Symposium (SAS’21).

• Dongjie He, Jingbo Lu, Yaoqing Gao and Jingling Xue. Accelerating

Object-Sensitive Pointer Analysis by Exploiting Object Containment and

Reachability. In 35th European Conference on Object-Oriented Programming

(ECOOP’21).

iii

• Jingbo Lu, Dongjie He, and Jingling Xue. CFL-Reachability-based

Precision-Preserving Acceleration of Object-Sensitive Pointer Analysis. In

ACM Transactions on Software Engineering and Methodology (TOSEM’21).

• Diyu Wu, Dongjie He, Shiping Chen and Jingling Xue. Exposing Android

Event-Based Races by Selective Branch Instrumentation. In 31st IEEE In-

ternational Symposium on Software Reliability Engineering (ISSRE’20).

• Jie Liu, Dongjie He, Diyu Wu and Jingling Xue. Correlating UI Contexts

with Sensitive API Calls: Dynamic Semantic Extraction and Analysis. In

31st IEEE International Symposium on Software Reliability Engineering (IS-

SRE’20).

• Dongjie He, Haofeng Li, Lei Wang, Haining Meng, Hengjie Zheng, Jie Liu,

Shuangwei Hu, Lian Li and Jingling Xue. Performance-Boosting Sparsifica-

tion of the IFDS Algorithm with Applications to Taint Analysis. In 34th

IEEE/ACM International Conference on Automated Software Engineering

(ASE’19) . Distinguished Paper Award.

iv

Acknowledgments

I am incredibly fortunate to have many people to thank.

First and foremost, I would like to thank my supervisor Jingling Xue for his

support, patience, and guidance throughout my Ph.D. study. He always discusses

academic problems with me and teaches me academic writing. It was his mentor-

ship and encouragement which made this thesis possible. His diligence, enthusiasm,

and meticulous attitude to the research influence me and will continue to benefit

me all my life.

I also thank my master advisor Lian Li, who guided me into the land of program

analysis. He taught me writing data flow analysis in LLVM hand by hand and gave

me lots of free time to explore static analysis frameworks like Doop, Soot and

Wala. All these have laid a solid foundation for my doctoral research.

My special thanks go to Jingbo Lu, a great research partner during my Ph.D.

study. His implementation of Eagle (together with the underlying in-house im-

plementation of Java pointer analysis) brings me quickly to the state of the art.

His work also inspired me to develop Turner, Conch, P3Ctx, and Qilin.

Great thanks to Lei Wang, who taught me the IFDS algorithm when I was

designing IctApiFinder. In addition, the original idea of SparseDroid also came

from him. I also thank Jie Lu and Yue Li for encouragement during some difficult

times of my Ph.D. studies.

v

Also, many thanks to all the other members of the CORG group, past and

present, during my Ph.D. study: Xinwei Xie, Ding Ye, Hua Yan, Jieyuan Zhang,

Jie Liu, Diyu Wu, Xuezheng Xu, Changwei Zou, Xudong Wang, Yong Joo Park,

Yujiang Gui, Wei Li, Yonggang Tao, and Runze You. They have made my time at

UNSW memorable.

I want to thank my annual progress review panel members: Dr. Hui Wu, Dr.

Annie Guo, and Prof. Sri Parameswaran, for their encouragement and invaluable

advice. I also thank A/Prof. Ana Milanova, and Asst/Prof. Qirun Zhang for serv-

ing on my Examining Committee and providing valuable feedback and guidance.

Last but not least, I would like to thank all my family members: my wife, my

parents, and my younger brother for their unconditional support and endless love,

and my son for the joy that he brings to me. I dedicate my thesis and dear to

them.

vi

Contents

Abstract i

Publications iii

Acknowledgments v

List of Figures xiii

List of Tables xvi

List of Algorithms xvii

1 Introduction 1

1.1 Preliminaries . 3

1.1.1 Pointer Analysis in a Nutshell 3

1.1.2 Context Sensitivity . 4

1.1.3 CFL-Reachability . 6

1.2 Contribution Overview . 8

1.2.1 Accelerating kOBJ by Exploiting Object Containment and

Reachability . 9

1.2.2 Context Debloating for Object-Sensitive Pointer Analysis . . 10

1.2.3 Precision-Preserving Acceleration for kCFA 10

vii

1.3 Publications and Organization . 11

2 Background 13

2.1 A Simplified Java Language . 13

2.2 Pointer Analysis: Concepts and Measurements 15

2.3 Inclusion-based Formulation . 16

2.3.1 Notations . 17

2.3.2 Andersen-Style Inclusion-based Formulation 17

2.3.3 Inclusion-based Formulation with Context Sensitivity 19

2.3.4 Fine-Grained Context-sensitive Pointer Analysis 22

2.4 CFL-Reachability Formulation . 23

2.4.1 Callsite-based CFL-Reachability Formulation 23

2.4.2 Object-based CFL-Reachability Formulation 27

3 Accelerating kOBJ by Exploiting Object Containment and Reach-

ability 31

3.1 Overview . 32

3.2 Motivation . 35

3.2.1 Challenges . 36

3.2.2 Example . 39

3.2.3 Turner: Our Approach . 43

3.3 Turner . 46

3.3.1 Object Containment . 47

3.3.2 Object Reachability . 47

3.3.3 Time Complexity . 60

3.4 Evaluation . 61

3.4.1 RQ1: Precision . 63

viii

3.4.2 RQ2: Efficiency . 65

3.4.3 RQ3: Effectiveness . 68

3.5 Conclusion . 72

4 Context Debloating for Object-sensitive Pointer Analysis 75

4.1 Overview . 76

4.2 Motivation . 78

4.2.1 Object Sensitivity . 78

4.2.2 Limitations of Existing Algorithms 80

4.2.3 Conch: Our Context Debloating Approach 82

4.3 Context Debloating . 88

4.4 Conch . 88

4.4.1 Verifying Observation 4.1 89

4.4.2 Verifying Observation 4.2 89

4.4.3 Verifying Observation 4.3 94

4.4.4 Soundness and Time Complexity 97

4.5 Evaluation . 98

4.5.1 RQ1: Is Conch Precise and Efficient? 99

4.5.2 RQ2: Can Conch Speed Up Baseline Analyses? 100

4.6 Conclusion . 105

5 Precision-Preserving Acceleration for k-CFA 107

5.1 Overview . 108

5.2 Motivation . 110

5.2.1 Example . 110

5.2.2 Andersen-Style Inclusion-based Formulation 111

5.2.3 LFC-based CFL-Reachability Formulation 112

ix

5.2.4 LFCR: Necessity and Challenges 116

5.3 LFCR: Design and Insights . 117

5.3.1 Pointer Assignment Graph 117

5.3.2 LFCR . 120

5.3.3 Time Complexities . 131

5.4 P3Ctx: An LFCR Application . 132

5.4.1 CFL-Reachability-Guided Selections 132

5.4.2 Regularization of LF into LF r 133

5.4.3 P3Ctx . 135

5.5 Evaluation . 138

5.5.1 Experimental Setup . 138

5.5.2 Results . 139

5.6 Conclusion . 141

6 Related Work 143

6.1 Selective Context-Sensitivity . 143

6.2 Other Efficient Pointer Analysis Techniques 144

6.3 CFL-Reachability . 145

6.4 IFDS Analysis . 147

7 Summary and Future Directions 149

7.1 Fine-Grained Pointer Analysis with Variable-Level Context Lengths 151

7.2 Design-Pattern-based Acceleration technique for Pointer Analysis . 152

7.3 Client-Oriented Pointer Analysis 152

7.4 Context Debloating for Other Context-Sensitive Program Analysis . 153

7.5 Other Potential Directions . 153

Bibliography 154

x

List of Figures

1.1 A graphical illustration of value flow across id(). 6

1.2 The labeled PAG for the id() example in Section 1.1.2. 7

2.1 A simplified Java language. 14

2.2 Anderson-style Inclusion-based Formulation. 18

2.3 Inclusion-based formulation with context-sensitivity (M is the con-

taining method of a statement being analyzed). 20

2.4 Fine-grained Context-sensitive pointer analysis (M is the containing

method of a statement being analyzed). 22

2.5 Inference Rules for building the PAG required by the traditional

callsite-based CFL-reachability formulation [76]. 24

2.6 The PAG for a code snippet. 26

2.7 Rules for building the PAG required by Lo
FC 27

3.1 A total of four possible value-flow patterns for determinng whether

a variable x should be precision-critical or not. 37

3.2 A Java program abstracted from real code using the standard JDK

library. 40

3.3 Computing PTS(w1) = {O1} for Figure 3.2 by 2obj, E-2obj, Z-2obj

and T-2obj. 42

3.4 Rule for treating all the objects in CIOBS
Turner as context-insensitive. . 48

xi

3.5 Rule for analyzing a method call. 52

3.6 Rule for adding the PAG edges for parameters. 55

3.7 The DFA as an equivalent representation of the grammar for defining

L5. 59

3.8 Rules for computing RM and R−1
M for a method M with GM =

(NM , EM). 60

3.9 Percentage contributions made by Turner’s two analysis stages for

the speedups of T-2OBJ over 2OBJ. 69

3.10 The Venn diagram of the objects in a program. 70

3.11 Imprecise points-to information computed by T-2OBJ for a top con-

tainer P. 71

3.12 Imprecise points-to information computed by T-2OBJ for a bottom

container D. 71

4.1 An example for illustrating object sensitivity. 79

4.2 Computing the points-to information for v1 and v2 in Figure 4.1 by

applying Andersen’s analysis and 2obj. 80

4.3 An example for motivating Conch (1 6 i 6 n and 0 6 j < 2i),

reusing class B defined in lines 12-28 in Figure 4.1. 81

4.4 The object allocation graph (OAG) for Figure 4.3, where only the

two edges in red will remain after context debloating. 82

4.5 Illustrating the conditions for an object to be context-dependent. . 83

4.6 A context-dependent object B violating Obs 4.1. 85

4.7 Three common cases abstracted from JDK for Obs 4.2. 85

4.8 Three common cases abstracted from JDK for Obs 4.3. 86

4.9 PAG edges for a parameterless method with no calls. 91

4.10 Two intermediate DFAs for the DFA in Figure 4.12. 91

xii

4.11 PAG edges for parameters and return variables. 92

4.12 The DFA for verifying Obs 4.2. 93

4.13 Rules for computing leakObjects, i.e., the set of objects that can

flow out of their containing methods for verifying Obs 4.2. Si ∈

{H,F,B}, where i ∈ {1, 2, 3} and Syml is a symbolic object ab-

stracting all objects returned from call site l. 95

4.14 The DFA used for computing depOnParam. 96

4.15 Percentage distribution of the two types of objects. 103

5.1 A motivating example. 111

5.2 Disconnection in the value flows between parameter passing in LFC

and dynamic dispatch at a virtual callsite. 115

5.3 Rules for building the PAG required by LFCR. 118

5.4 The PAG constructed for the program given in Figure 5.1. 119

5.5 Three different approaches for performing dynamic dispatch at a

virtual callsite during parameter passing. 123

5.6 A DFA for accepting LF r . 135

5.7 Rules for conducting P3Ctx over G = (N,E). 137

xiii

xiv

List of Tables

3.1 The contexts used for analyzing the variables/objects in Figure 3.2

by 2OBJ, E-2OBJ, Z-2OBJ, and T-2OBJ (where i in each context

containing Ai/ai ranges over [1, n]). 41

3.2 Main results. For a given k ∈ {2, 3}, the speedups of E-kOBJ, Z-

kOBJ, and T-kOBJ are normalized with kOBJ as the baseline. For

all the metrics except “Speedup”, smaller is better. 64

3.3 Context-sensitive facts (in millions). For all the metrics, smaller is

better. 67

3.4 Times spent by Spark and the three pre-analyses in seconds. . . . 68

4.1 Main results. In all metrics (except for speedups), smaller is better.

Given an analysis Base, Base+D is its debloated version by Conch.

OoM stands for “Out of Memory”. 101

4.2 Times spent by pre-analyses in seconds. 102

4.3 Average number of contexts analyzed for a method by kOBJ,

kOBJ+D, ZkOBJ and ZkOBJ+D, where k ∈ {2, 3}. 103

4.4 Context-sensitive facts. For all the metrics, smaller is better. . . . 104

5.1 The points-to results for the program in Figure 5.1 computed by

2-CFA according to the rules in Figure 2.3. 112

xv

5.2 The precision and efficiency of k-CFA, and Pk-CFA. For all the met-

rics except speedup, smaller is better. 140

5.3 The analysis times of Spark and P3Ctx in seconds. 141

xvi

List of Algorithms

1 Conch: context debloating. 90

xvii

xviii

Chapter 1

Introduction

Modern programming languages such as C/C++, Rust, and Java come with rich

program analysis techniques for studying various kinds of program properties.

Pointer Analysis is one of the fundamental program analysis techniques that stat-

ically analyze which memory locations a pointer in a program can point to at run-

time without executing the program. For object-oriented languages such as Java,

a memory location is usually abstracted as a heap allocation site, and a pointer is

often known as a variable (reference) or an object’s field (e.g., O.f).

Pointer analysis underpins almost all forms of other static analysis includ-

ing call graph construction [1, 36, 61], program understanding [57, 77], bug detec-

tion [17, 43, 56, 93], security analysis [4, 18, 20], compiler optimization [15, 79], and

symbolic execution [30, 87, 88]. Hence, effective and precise pointer analyses are

highly called for as they can benefit many client applications and other program

analysis techniques.

Every day, software becomes more complex. Consequently, existing pointer

analysis techniques require more time and memory resources to obtain precise

points-to information. Even worse, they often suffer from severe scalability issues.

1

2 Chapter 1 Introduction

For instance, for a reasonably large object-oriented program, k-object-sensitive

pointer analysis, denoted kobj, often requires tens of minutes or hours’ analysis

time to complete and usually fails to scale when k ≥ 3.

As a result, production compilers and program analysis frameworks must often

trade precision for efficiency by adopting some imprecise pointer analysis tech-

niques, by default. For example, LLVM [35] relies on three simple (ad hoc) pointer

analyses (which are either field-based, flow-insensitive or context-insensitive anal-

ysis) to perform IR optimization [46]. Soot [89] relies on Spark [36] (a context-

insensitive, flow-insensitive inclusion-style pointer analysis) for callgraph construc-

tion. As a result, many potential optimization opportunities may be missed or

many false alarms may be reported.

Theoretically, precise pointer analysis techniques (with flow-sensitivity, field-

sensitivity, and context-sensitivity all considered) are undecidable (by Rice’s theo-

rem and [64]). Thus, how to make a good trade-off between precision and efficiency

remains a long-standing hard problem.

In the last two decades, context sensitivity has been widely adopted in de-

veloping highly precise pointer analysis algorithms for object-oriented languages.

Context-sensitive approaches analyze a method separately under different call-

ing contexts that abstract its different run-time invocations. There are several

kinds of context-sensitivity: callsite-sensitivity [70], object-sensitivity [53,54], type-

sensitivity [73] and hybrid sensitivity [31].

Traditionally, context-sensitivity is enforced for all the analyzed methods in-

discriminately [31, 37, 53, 54, 73]. A few recent approaches on selective context-

sensitivity [29,40,74], which enforce context-sensitivity only to a subset of so-called

precision-critical methods, have been proposed to improve the efficiency of pointer

analysis while sometimes incurring substantial precision loss. Is it possible to im-

Chapter 1 Introduction 3

prove the efficiency of these existing pointer analyses further while still maintaining

their precision? What are the speedups can we achieve potentially? The central

theme of this thesis will unfold around these two questions.

This thesis aims to accelerate existing pointer analysis algorithms and ease their

scalability issues. In particular, we are interested in exploring fine-grained context-

sensitivity techniques on Java pointer analysis by applying context-sensitivity only

to a subset of precision-critical variables and objects. Before presenting our contri-

butions, we first provide some preliminaries.

1.1 Preliminaries

1.1.1 Pointer Analysis in a Nutshell

Many programming languages, such as C, C++, Rust, and Java, contain reference

variables (also called pointers). In such languages, reference variables usually refer

to some (heap or stack) values according to the addresses they keep. Take Java for

an example by considering the following two statements:

A a1 = new A(); // A1

A a2 = new A(); // A2

A1 and A2 are two object values that are allocated in heap memory. Their memory

addresses are saved into a1 and a2 (which are two reference variables created on the

stack), respectively. Thus, we can use a1 to refer to A1, and similarly, a2 to refer to

A2. In other words, a1 points to A1 and a2 points to A2. Let PTS(v) be the context-

insensitive points-to set of v. Then we have PTS(a1) ={A1} and PTS(a2) ={A2}.

Note that in Java, reference variables cannot refer to stack values but only to heap

objects. Such a different variable model makes Java pointer analysis substantially

different from other languages’.

4 Chapter 1 Introduction

The points-to relation plays a significant role in static program analysis. For

example, in a data race analysis, suppose the two statements below run concurrently

(without being protected by a lock discipline):

v1.f = a1; || v2.f = a2;

if we know that v1 and v2 are aliases, i.e., PTS(v1) ∩ PTS(v2) 6= ∅, we can report a

data race warning between the two statements since they may possibly write the

memory addresses of A1 and A2 to the f field of a common heap object concurrently.

Moreover, the points-to relation can also be used to construct a precise callgraph.

Consider a virtual call to showName() whose base variable v3 is of type Fruit,

denoted as v3 : Fruit:

v3.showName();

if we know what objects (and thus their corresponding types) v3 may point to, we

could resolve the target methods invoked and build the callgraph edges precisely.

In this case, suppose PTS(v3) = {O1, O2}, where O1 : Apple and O2 : Mango, with

Apple and Mango being subtypes of Fruit, we could correctly resolve the two

targets to be Apple :: showName() and Mango :: showName(), so that spurious call

targets such as Pear :: showName() and Grape :: showName() have been successfully

eliminated.

1.1.2 Context Sensitivity

Most pointer analysis techniques (especially for object-oriented languages like Java)

rely on context sensitivity, which distinguishes the reference variables declared and

heap objects allocated locally in a method under different calling contexts for de-

veloping highly precise pointer analyses.

Consider an identity function below:

Object id(Object q) {

Chapter 1 Introduction 5

return q;

}

which will return whatever its parameter q receives. Suppose this function is in-

voked twice with O1 and O2 as the corresponding arguments:

w1 = id(new Object()); // O1

w2 = id(new Object()); // O2

Context-insensitively, we have PTS(q) = {O1,O2}, and thus obtain PTS(w1) =

PTS(w2) = {O1,O2} soundly but imprecisely.

To eliminate the spurious pointed-to targets (e.g., O2 in PTS(w1) and O1 in

PTS(w2)), we thus need context sensitivity. Suppose the two invocations to the iden-

tity function are distinguished by two different calling contexts, c′ and c′′, respec-

tively, and let PTS(v, c) = {(o1, c1), · · · , (on, cn)} be one context-sensitive points-to

set of v, where each pointed-to object oi is identified by its heap context ci. Then we

have PTS(w1, []) = PTS(q, c′) = {(O1, [])} and PTS(w2, []) = PTS(q, c′′) = {(O2, [])},

where [] represents an empty context. By dropping the contexts, we obtain the

context-insensitive points-to information as PTS(q) = {O1,O2}, PTS(w1) = {O1} and

PTS(w2) = {O2}, which is now precise.

As a kind of value flow analysis, pointer analysis could be graphically repre-

sented by using a so-called pointer assignment graph (PAG) [36]. With PAG, pointer

analysis is reduced to a graph reachability problem. In the previous case, Figure 1.1

illustrates how heap objects flow in the program. In the context-insensitive anal-

ysis (Figure 1.1(a)), O1 and O2 from different callsites are merged at q and later

propagated to both w1 and w2. In the context-sensitive analysis (Figure 1.1(b)),

q is distinguished by its two contexts c′ and c′′. As a result, the original cross

value flow paths in Figure 1.1(a) are now split into two separate value flow paths

6 Chapter 1 Introduction

O1 O2

q

w1 w2

(a) Context-insensitive PAG.

(O1, []) (O2, [])

(q, c′) (q, c′′)

(w1, []) (w2, [])

(b) Context-sensitive PAG.

Figure 1.1: A graphical illustration of value flow across id().

in Figure 1.1(b). Context sensitivity enlarges the scale of PAG but substantially

improves the precision of pointer analysis.

In the literature, there are several kinds of context sensitivity, e.g., call-site-

sensitivity [70], object-sensitivity [53, 54], type-sensitivity [73], and hibrid sensitiv-

ity [31]. We will formally define them in Section 2.3.3. Here, we just give a brief

description. Different types of context-sensitivity are distinguished by different con-

text elements used. For example, k-call-site-sensitivity distinguishes the contexts

of a method by its k-most-recent call sites and k-object-sensitivity distinguishes the

contexts of a method by its receiver object’s k-most-recent allocation sites. In this

thesis, we focus on call-site-sensitivity [70] and object-sensitivity [53,54] as they are

widely used in practice.

1.1.3 CFL-Reachability

The standard forms of many static analyses can be formulated as context-free

language reachability (CFL-reachability) analyses [62]. A context-free language is

defined by a 4-tuple G = (V ,Σ,R, S), where V is the nonterminal set, Σ is the

terminal set, R is the production set, and S is the start nonterminal. The general

form of a production rule is α→ β, where α ∈ V is a nonterminal and β ∈ (V ∪Σ)∗

is a string of nonterminals and/or terminals. For example, the following production

Chapter 1 Introduction 7

O1 O2

q

w1 w2

[c′ [c′′

]c′

]c′′

Figure 1.2: The labeled PAG for the id() example in Section 1.1.2.

rules are all valid:

A→ B C D | A→ C | A→ a

Dyck-CFL is a special kind of context-free language for handling balanced

parentheses. Consider an alphabet Σ over the set of opening parentheses

Â = {ĉ1, ĉ2, · · · , ĉk} and the set of their matching closing parentheses Ǎ =

{č1, č2, · · · , čk}. The Dyck language of size k (i.e., k kinds of parentheses) is defined

by the following context-free grammar:

S −→ S S | ĉ1 S č1 | · · · | ĉk S čk | ϵ (1.1)

where S is the start symbol and ϵ is the empty string.

Let G be a directed graph with edge labels taken from alphabet Σ, and let L

be a context-free language over Σ. Each path p in G is labeled with a string s(p)

in Σ∗, obtained by concatenating edge labels in order. We say p is an L-path if

s(p) ∈ L. Given nodes u and v, if G contains an L-path from u to v, we say v is

L-reachable from u, denoted by L(u, v). For a node n in G, we write L(u, v)n if n

appears on L(u, v). For a path p in G such that its label is L(p) = ℓ1, · · · , ℓr in L,

the inverse of p, i.e., p has the label L(p) = ℓr, · · · , ℓ1.

8 Chapter 1 Introduction

Figure 1.2 gives a labeled PAG for the id() example described in Section 1.1.2.

Let S → S S | [c′ S]c′ | [c′′ S]c′′ | ϵ be a Dyck language defined on this PAG. Then

we have L(O1, w1):

O1
[c′−→ q

]c′−→ w1

and L(O2, w2):

O2
[c′′−→ q

]c′′−→ w2

are valid flow paths, but L(O1, w2):

O1
[c′−→ q

]c′′−→ w2

and L(O2, w1):

O2
[c′′−→ q

]c′−→ w1

are invalid paths. Here, the Dyck language plays the same role as context-sensitivity

and enables O1 and O2 in the labeled PAG (Figure 1.2) to flow precisely. In addi-

tion, we sometimes also denote L(O1, w1) as L(O1, w1)q when variable q appears on

L(O1, w1). Let path p = L(O1, w1). Then we have L(p) = [c′ ,]c′ and L(p) =]c′ , [c′ .

1.2 Contribution Overview

The goal of this thesis is to explore the design space of fine-grained context-

sensitivity for accelerating existing pointer analysis techniques while preserving

all or most of their precision.

Chapter 1 Introduction 9

1.2.1 Accelerating kOBJ by Exploiting Object Contain-

ment and Reachability

Recently, there are several selective pointer analysis techniques on improving effi-

ciency of kobj [22, 29, 40, 47, 49, 74].

Zipper [40], as a non-precision-preserving representative of method-level tech-

niques [22, 29, 40, 74], selects heuristically a set of context-sensitive methods to

include some but not all the precision-critical variables/objects and also some

precision-uncritical variables/objects in the program. As a result, Zipper some-

times improves the efficiency of kobj significantly but at the expense of introducing

a substantial loss of precision for some programs.

In contrast, Eagle [47,49], as the precision-preserving representative of partial

techniques, selects the set of context-sensitive variables/objects as a superset of the

set of precision-critical variables/objects in a program by conservatively reasoning

about CFL (Context-Free-Language) reachability in the program, thereby limiting

its potential speedups achieved.

As the first contribution, this thesis introduces Turner [24], which represents

a sweet spot between Eagle and Zipper: Turner enables kobj to run sig-

nificantly faster than Eagle while achieving substantially better precision than

Zipper. Turner achieves this by two novel aspects in its design. First, we ex-

ploit a key observation that some precision-uncritical objects can be approximated

initially based on the object-containment relationship. This approximation turns

out to be practically accurate, as it introduces a small degree yet the only source of

imprecision into the final points-to information computed. Second, leveraging this

initial approximation, we present a simple DFA (Deterministic Finite Automaton)

to reason about object reachability across a method (from its entry to its exit)

intra-procedurally to finalize all its precision-critical variables/objects selected.

10 Chapter 1 Introduction

1.2.2 Context Debloating for Object-Sensitive Pointer

Analysis

Currently, kobj does not scale well for reasonably large programs when k > 3 and is

often time-consuming when it is scalable [27,73,82,86]. When designing Turner,

we observe that many objects allocated in a method are used independently of

its calling contexts. Distinguishing these objects context-sensitively, as often done

in the past, will only increase the number of calling contexts analyzed without

any precision improvement. Although the object containment relation exploited in

Turner is already practical, it may still miss thousands of context-independent

objects in some programs.

To further tap the potential for performance improvement, this thesis intro-

duces context debloating as its second contribution. We propose a new approach,

Conch [25], for finding more context-independent objects (than Turner) based

on three critical observations regarding context-dependability for the objects used

practically in real-world object-oriented programs. By allowing only context-

dependent objects to be handled context-sensitively, Conch can significantly limit

the explosive growth of the number of contexts and achieve substantially improved

efficiency and scalability.

1.2.3 Precision-Preserving Acceleration for kCFA

This thesis introduces the third fine-grained approach, P3Ctx, as an application of

a complete CFL-reachability formulation of callsite-sensitive pointer analysis with

built-in on-the-fly callgraph construction.

When designing Selectx [48], we observe that the traditional CFL-reachability

formulation for k-callsite-sensitive pointer analysis (k-CFA) models field accesses

Chapter 1 Introduction 11

and calling contexts only but relies on a separate algorithm for call graph con-

struction [76,78], which may cause k-CFA to lose precision even if it uses the most

precise call graph for a program, built in advance or on the fly. In addition, the

Selectx-guided k-CFA, whose pre-analysis reasons about CFL-reachability (based

on the traditional incomplete formulation) to select precision-critical variables and

objects, could not preserve k-CFA’s precision as it is disconnected to the value-flow

paths traversed by the call graph construction algorithm.

We overcome these two limitations by presenting the first complete CFL-

reachability formulation of k-CFA for Java with built-in on-the-fly call graph con-

struction. Based on this new CFL-reachability formulation, we present P3Ctx,

the first precision-preserving acceleration technique for k-CFA with fine-grained

context-sensitivity.

1.3 Publications and Organization

This thesis contains text and material from several publications:

• Our first fine-grained pointer analysis technique presented in Chapter 3 is

based on “Accelerating Object-Sensitive Pointer Analysis by Exploiting Ob-

ject Containment and Reachability”, which is appeared in ECOOP 2021.

• The second fine-grained pointer analysis technique, context debloating, pro-

posed in Chapter 4 is derived from “Context Debloating for Object-Sensitive

Pointer Analysis” published in ASE 2021.

• Our third fine-grained techniques presented in Chapter 5 is established on

“A CFL-Reachability Formulation of Callsite-Sensitive Pointer Analysis with

Built-in On-the-Fly Call Graph Construction”, which is now in submission.

12 Chapter 1 Introduction

Lastly, we organize other chapters as follows. In Chapter 2, we will review

some background knowledge for this thesis. Chapter 6 will discuss some more

related work, and finally, we summarize this thesis and suggest some future research

directions in Chapter 7.

Chapter 2

Background

This chapter introduces some background knowledge for this thesis. Section 2.1

gives a simplified Java language for formalizing pointer analyses. Section 2.2 briefly

reviews the concept and measurements of pointer analyses. Section 2.3 reviews

the inclusion-based formulations for Java pointer analyses, including the standard

Andersen’s analysis [3, 36] and its context-sensitive incarnations. We also give a

fine-grained formulation 1 as the basis of this thesis. Section 2.4 reviews two CFL-

reachability formulations for Java pointer analyses.

2.1 A Simplified Java Language

Figure 2.1 gives a simplified Java language, in which a program consists of a set

of classes, where each class consists of instance fields and methods. Methods

are stylised to have a total of 5 kinds of basic statements, i.e., New, Assign,

Store, Load, and Call, in their body, and always end with a single return

statement. Constructors are regarded as regular instance methods. For exam-

1This formulation is systematically introduced in our work “Qilin: A New Framework for
Supporting Fine-Grained Context-Sensitivity in Java Pointer Analysis” for the first time.

13

14 Chapter 2 Background

ple, “x = new T (...)” in the standard Java language is modeled as “x = new

T ; x.<init>(...)” in Figure 2.1, where <init>(...) is the corresponding constructor

invoked. Allocation sites and call sites are identified by their labels (e.g., line num-

bers). The control flow statements are not considered because our formalizations

discussed in this thesis are flow-insensitive.

Class ::= class C extends C { C f ; M }
M ∈ Method ::= C m (C v) { C v; S; return v; }

S ∈ Statement ::= v = new C o [New]
| v = v [Assign]
| v.f = v | C.f = v [Store]
| v = v.f | v = C.f [Load]
| v = v.m(v) c [Call]

v ∈ V is the domain of variable names
C ∈ T is the domain of class names
m ∈ M is the domain of method names
f ∈ F is the domain of field names
o ∈ H is the domain of heap objects
c ∈ L is the domain of labels for call sites

Figure 2.1: A simplified Java language.

In the formalisation of this thesis, the parameters of a method m are often

uniquely identified as follows. The “this” variable, i-th parameter, and the return

variable of m are denoted by thism, pmi , and retm, respectively.

As is standard, the method/field (variable) names in distinct classes (methods)

are assumed to be distinct. In addition, all variables in a method are assumed to

be in SSA form [14]. Static methods/fields may be handled differently in different

chapters and will be discussed wherever appropriate.

Chapter 2 Background 15

2.2 Pointer Analysis: Concepts and Measure-

ments

Pointer analysis is a fundamental static analysis that determines what objects a

pointer may point to, where objects refer to abstractions for a set of objects typically

allocated at an allocation site at runtime, and pointers refer to variables and object

field references. In essence, a specific pointer analysis aims to establish a many-to-

many mapping between the set of pointers and the set of objects in a program.

There are three measurements on judging the effectiveness and quality of a

pointer analysis: soundness, precision, and scalability.

Soundness The soundness of a pointer analysis is measured by assessing how

many false negatives that should exist in the points-to results compared with

ground truths. Generally, the fewer the false negatives, the higher the sound-

ness. A pointer analysis technique is sound if it could infer all the ground truths in

the program. In practice, a sound pointer analysis algorithm is almost impossible

due to ubiquitous dynamic language features in Java such as reflections and the

native codes [45]. In this case, a new term named soundiness is introduced to de-

scribe a sound analysis. A soundy analysis aims to be as sound as possible without

excessively compromising precision and/or scalability.

Precision The precision of a pointer analysis is measured by assessing how many

false positives exist in the points-to results compared with ground truths. Gener-

ally, the fewer the false positives, the higher the precision. Specifically, if a pointer

analysis is sound, then the higher precision is often reflected by fewer established

points-to relations. Based on this fact, the following five metrics are commonly

used in measuring the precision of a pointer analysis in practice [24, 40, 49, 73, 82]:

16 Chapter 2 Background

• “#call-edges”: the number of call graph edges discovered�

• “#poly-calls”: the number of polymorphic calls discovered�

• “#fail-casts”: the number of type casts that may fail�

• “#reachables”: the number of reachable methods.

• “#avg-pts”: the average number of objects pointed by a variable by consid-

ering only the local variables in the Java methods (being analyzed).

For all metrics, the smaller they are, the higher precision a pointer analysis is.

Scalability We measure the scalability of a pointer analysis by the efficiency (in

elapsed time and memory consumption) of a pointer analysis.

In Java, field sensitivity and context sensitivity are two main factors that affect

the precision and scalability of pointer analyses and are thus mainly considered in

this thesis. Shortly, we will review how to support field-sensitivity and context-

sensitivity in two different formulations of pointer analysis, i.e., inclusion-based

formulation (Section 2.3) and CFL-reachability formulation (Section 2.4).

2.3 Inclusion-based Formulation

In this section, we first introduce a few commonly used notations (Section 2.3.1) and

then review the inclusion-based formulations for Java pointer analysis (Section 2.3.2

and Section 2.3.3). Lastly, we present a new formulation for supporting fine-grained

context-sensitive pointer analysis (Section 2.3.4).

Chapter 2 Background 17

2.3.1 Notations

Let C be the universe of contexts. Given a context ctx = [c1, . . . , cn] ∈ C, we write

dctxek for [c1, . . . , ck] and write c ++ ctx for [c, c1, . . . , cn], implying a new context

constructed by appending the context element c in front of ctx. The following

auxiliary functions will be used shortly:

• PTS : (V ∪H× F)× C→ ℘(H× C)

• PTS : (V ∪H× F)→ ℘(H)

• MethodCtx : M→ ℘(C)

• Dispatch : M×H→M

• Cons : H× C× L× C→ C

• HCons : C 7→ C

where PTS (as already defined in Section 1.1.2) records the points-to information

found context-sensitively for a variable or an object’s field, PTS is the context-

insensitive version of PTS, MethodCtx maintains the contexts used for analyzing a

method, Dispatch resolves a virtual call to a target method based on the dynamic

type of the receiver object, and Cons and HCons are two significant parameters

in context-sensitive pointer analyses used for describing how to construct a new

context for a method and heap, respectively.

2.3.2 Andersen-Style Inclusion-based Formulation

Andersen’s analysis [3, 36] is also known as a context-insensitive, field-sensitive

pointer analysis. It is less precise but very efficient in practice. Thus, it is widely

18 Chapter 2 Background

used by other program analysis techniques and often used as a pre-analysis in

developing other precise and efficient pointer analyses.

Figure 2.2 presents the inference rules of Anderson’s analysis. Each rule handles

value flow for each basic statement. In [A-New], O ∈ H is an abstract heap object.

[A-Assign] handles direct value flow. [A-Load] and [A-Store] handle indirect

value flow. Loads and stores to the elements of an array are modeled by collapsing

all the elements into a special field arr of the array. Finally, [A-Call] handles

inter-procedural value flow. Here, m′ is a target method resolved by Dispatchfor

a receiver object O at callsite c (based on the dynamic type of O). Thus, this

rule is also responsible for performing on-the-fly call graph construction during the

pointer analysis.

x = new T // O

O ∈ PTS(x)
[A-New]

x = y

PTS(y) ⊆ PTS(x)
[A-Assign]

x = y.f O ∈ PTS(y)
PTS(O.f) ⊆ PTS(x)

[A-Load]
x.f = y O ∈ PTS(x)
PTS(y) ⊆ PTS(O.f)

[A-Store]

x = r.m(a1, . . . , an) // c O ∈ PTS(r) m′ = Dispatch(m, O)

O ∈ PTS(thism′
) ∀i ∈ [1, n] : PTS(ai) ⊆ PTS(pm′

i) PTS(retm′
) ⊆ PTS(x)

[A-Call]

Figure 2.2: Anderson-style Inclusion-based Formulation.

Note that the receiver variable r and the other arguments a1, . . . , an are handled

differently. A receiver object flows only to the method dispatched on itself while

the objects pointed to by the other arguments flow to all the methods dispatched

at this callsite. Finally, static calls can be regarded as special virtual calls without

the receiver variables. Therefore, its rule is subsumed by [A-Call].

Chapter 2 Background 19

2.3.3 Inclusion-based Formulation with Context Sensitivity

Traditionally, context-sensitive approaches analyze a method separately under dif-

ferent calling contexts that abstract its different run-time invocations. Under such

method-level context-sensitivity, whenever a method is analyzed for a given context,

all its variables and objects are qualified by, i.e., analyzed under that context.

Figure 2.3 (extended from Figure 2.2) gives the inclusion-based formulation

for method-level context-sensitive pointer analysis [31, 74, 86]. In this formulation,

context-sensitivity is achieved by parameterizing contexts (such as ctx and htx) as

modifiers to the basic abstractions (i.e., variables and objects). In [I-New], HCons

is used to create the heap contexts. Rules [I-Assign], [I-Load], and [I-Store] for

handling assignments, loads, and stores are standard. In [I-Call], m′ is a target

method dynamically resolved in the same way as [A-Call]. ctx′ constructed by

Cons represents a callee context of m′ and ctx′ ∈ MethodCtx(m′) reveals how the

contexts of a method are maintained. Initially, the contexts of all the entry methods

are set to be empty, e.g., MethodCtx(“main”) = {[]}.

In the literature, four flavors of context-sensitivity are proposed: callsite-

sensitivity [70] (which distinguishes the contexts of a method by its callsites) and

object-sensitivity [53, 54] (which distinguishes the contexts of a method by its re-

ceiver’s allocation sites) are the two most popular ones. The two other variations

are type-sensitivity [73] and hybrid sensitivity [31].

Below, we describe a few significant instantiations of Cons for the four common

types of context-sensitivity, where a calling context of a method is abstracted by

its last k context elements (under k-limiting).

• Callsite. A callsite-sensitive pointer analysis [70], known also as control-flow

analysis (CFA) [71], uses a callsite c as a context element. Therefore, the

20 Chapter 2 Background

x = new T // O ctx ∈ MethodCtx(M) htx = HCons(ctx)
〈O, htx〉 ∈ PTS(x, ctx)

[I-New]

x = y ctx ∈ MethodCtx(M)
PTS(y, ctx) ⊆ PTS(x, ctx)

[I-Assign]

x = y.f ctx ∈ MethodCtx(M) 〈O, htx〉 ∈ PTS(y, ctx)
PTS(O.f, htx) ⊆ PTS(x, ctx)

[I-Load]

x.f = y ctx ∈ MethodCtx(M) 〈O, htx〉 ∈ PTS(x, ctx)
PTS(y, ctx) ⊆ PTS(O.f, htx)

[I-Store]

x = r.m(a1, . . . , an) // c ctx ∈ MethodCtx(M) 〈O, htx〉 ∈ PTS(r, ctx)
m′ = Dispatch(m, O) ctx′ = Cons(O, htx, c, ctx)

ctx′ ∈ MethodCtx(m′) PTS(retm′
, ctx′) ⊆ PTS(x, ctx)

〈O, htx〉 ∈ PTS(thism′
, ctx′) ∀i ∈ [1, n] : PTS(ai, ctx) ⊆ PTS(pm′

i , ctx′)

[I-VCall]

Figure 2.3: Inclusion-based formulation with context-sensitivity (M is the
containing method of a statement being analyzed).

context constructor is:

Conscfa(o, htx, c, ctx) = dc++ ctxek (2.1)

• Object. An object-sensitive pointer analysis [53, 54] uses a receiver object o

as a context element. Thus, the context constructor simply becomes:

Consobj(o, htx, c, ctx) = do++ htxek (2.2)

The context constructed here for analyzing a method m is represented by a

sequence of k context elements (under k-limiting), [o1, ..., ok], where o1 is the

receiver object of m and oi is the receiver object of a method in which oi−1

is allocated [73]. So oi is an allocator of oi−1.

For object-oriented languages, object-sensitive pointer analysis is regarded as

providing highly useful precision [27,49,73,82,86] and thus widely adopted in

Chapter 2 Background 21

several pointer analysis frameworks for Java, such as Soot [89], Doop [72],

and Wala [26].

• Type. A type-sensitive pointer analysis [73], which is a more scalable but less

precise alternative of an object-sensitive pointer analysis, resorts to the class

type containing the method where a receiver object o is allocated, denoted

as TypeContg(o). Thus, we have:

Constype(o, htx, c, ctx) = dTypeContg(o) ++ htxek (2.3)

• Hybrid. A hybrid pointer analysis [31] distinguishes static and dynamic call

sites:

Conshyb(o, htx, c, ctx) =


do++ htxek c /∈ SC

dcar(ctx) ++ c++ cdr(ctx)ek c ∈ SC
(2.4)

where SC is the set of all static call sites in the program. Here, car and cdr

are standard, with car pulling the first element of a list and cdr returning

the list without the car.

The heap constructor could be simply defined as below:

HCons(ctx) = dctxehk (2.5)

where hk represents the (heap) context length for a heap object. In practice,

hk = k − 1 is usually used [27, 41, 74, 82].

Let Csm be the subset of (precision-critical) methods in a program that will be

analyzed context-sensitively. Figure 2.3 could also be adapted to support method-

level selective context-sensitive pointer analysis techniques [29,40,74] by redefining

22 Chapter 2 Background

its context constructor (i.e. Cons) as follows:

Conssel(o, htx, c, ctx) =


[] m′ /∈ Csm

Cons(o, htx, c, ctx) m′ ∈ Csm
(2.6)

where m′ is a target method resolved at callsite c.

2.3.4 Fine-Grained Context-sensitive Pointer Analysis

In this section, we go one step further by generalizing the inclusion-based for-

mulation for traditional context-sensitive pointer analyses in Figure 2.3 to a new

formulation for supporting the fine-grained context-sensitive pointer analysis.

x = new T // O ctx ∈ MethodCtx(M)
〈O, Sel(O, ctx)〉 ∈ PTS(x, Sel(x, ctx))

[F-New]

x = y ctx ∈ MethodCtx(M)
PTS(y, Sel(y, ctx)) ⊆ PTS(x, Sel(x, ctx))

[F-Assign]

x = y.f ctx ∈ MethodCtx(M) (O, htx) ∈ PTS(y, Sel(y, ctx))
PTS(O.f, htx) ⊆ PTS(x, Sel(x, ctx))

[F-Load]

x.f = y ctx ∈ MethodCtx(M) (O, htx) ∈ PTS(x, Sel(x, ctx))
PTS(y, Sel(y, ctx)) ⊆ PTS(O.f, htx)

[F-Store]

x = r.m(a1, . . . , an) // c ctx ∈ MethodCtx(M) m′ = Dispatch(m, O)
(O, htx) ∈ PTS(r, Sel(r, ctx)) ctx′ = Cons(O, htx, c, ctx)

ctx′ ∈ MethodCtx(m′) (O, htx) ∈ PTS(thism′
, Sel(thism′

, ctx′))
∀i ∈ [1, n] : PTS(ai, Sel(ai, ctx)) ⊆ PTS(pm′

i , Sel(pm′
i , ctx′))

PTS(retm′
, Sel(retm′

, ctx′)) ⊆ PTS(x, Sel(x, ctx))

[F-Call]

Figure 2.4: Fine-grained Context-sensitive pointer analysis (M is the con-
taining method of a statement being analyzed).

Figure 2.4 presents the new formulation, in which the contexts of each variable

and object are no longer required to be the same as the contexts of their containing

Chapter 2 Background 23

methods but are selected from their containing methods’ contexts by using a par-

ticular selector, Sel. By defining different instantiations of Sel, we could define

different fine-grained context-sensitive pointer analysis techniques. For example,

we could apply contexts to only a subset of (precision-critical) variables by defining

the selector as follows:

Sel(v, ctx) =


[] v /∈ Csv

ctx v ∈ Csv
(2.7)

where Csv is the set of variables and objects selected to be analyzed context-

sensitively. Thus, Figure 2.4 lays a foundation of the three fine-grained pointer

analysis techniques introduced later in this thesis.

2.4 CFL-Reachability Formulation

In the CFL-reachability formulation of pointer analysis, a Java program is repre-

sented by a directed graph, called Pointer Assignment Graph (PAG), where nodes

represent the variables and objects in the program and its edges represent value

flow through the assignments in the program.

Below, we will review two different kinds of CFL-reachability formulations for

callsite-sensitive and object-sensitive pointer analyses, respectively.

2.4.1 Callsite-based CFL-Reachability Formulation

Traditionally, k-callsite-sensitive pointer analysis (denoted k-CFA) [76] could also

be solved by reasoning about CFL-reachability on its PAG (Pointer Assignment

Graph) representation [36]. Figure 2.5 gives five rules for building the PAG. For

a PAG edge, its label above indicates whether it is an assignment or field access.

24 Chapter 2 Background

There are two types of assign edges: intra-procedural edges (for modeling regular

assignments without a below-edge label) and inter-procedural edges (for modeling

parameter passing with a below-edge label representing a callsite).

In such a PAG, passing arguments to parameters at callsites is modeled by

inter-procedural assign edges. For example, in [P-VCall], ĉ (č) signifies an inter-

procedural value-flow entering into (exiting from) m′ at callsite c, where m′ repre-

sents a virtual method discovered by a separate call graph construction algorithm

(either in advance [5, 16, 81] or on the fly [76, 78]). Thus, ĉ (č) is also known as

an entry (exit) context. Static calls are subsumed by [P-VCall] by just ignoring

receiver-variable-related edges (e.g., r assign−−−→
ĉ

thism
′).

For a PAG edge x
ℓ−→
c

y, its inverse edge, which is omitted in Figure 2.5 but

required by the formulation, is defined as y
ℓ−→
c

x. For a below-edge label ĉ or

č, ĉ = č and č = ĉ, implying that the concepts of entry and exit contexts for

inter-procedural assign edges are swapped if they are traversed inversely.

x = new T // O

O
new−−→ x

[P-New]
x = y

y
assign−−−→ x

[P-Assign]

x = y.f

y
load[f]−−−→ x

[P-Load]
x.f = y

y
store[f]−−−→ x

[P-Store]

x = r.m(a1, . . . , an) // c m′ is a target of this callsite

r
assign−−−→

ĉ
thism

′ ∀ i ∈ [1, n] : ai
assign−−−→

ĉ
pm

′
i retm

′ assign−−−→
č

x
[P-VCall]

Figure 2.5: Inference Rules for building the PAG required by the tradi-
tional callsite-based CFL-reachability formulation [76].

In the traditional callsite-based CFL-reachability formulation [76], k-CFA is

solved by reasoning about the intersection of two CFLs, LFC = LF ∩ LC , with

LF defined over the PAG’s above-edge labels and LC over the PAG’s below-edge

labels. Let L be a CFL over Σ formed by the above-edge (below-edge) labels. Each

Chapter 2 Background 25

path p in the PAG has a string L(p) in Σ∗ formed by concatenating in order the

above-edge (below-edge) labels in p. A node v in the PAG is said to be L-reachable

from a node u in the PAG if there exists a path p from u to v, known as L-path,

such that L(p) ∈ L.

LF requires all field accesses to be field-sensitive (with stores and loads being

matched as balanced parentheses):

flowsto −→ new flows∗

flows −→ assign | store[f] alias load[f]

alias −→ flowsto flowsto

flowsto −→ flows∗ new

flows −→ assign | load[f] alias store[f]

(2.8)

If O flowsto v, then v is LF -reachable from O. In addition, O flowsto v iff

v flowsto O, meaning that flowsto actually represents the standard points-to re-

lation. Finally, u alias v iff u flowsto O flowsto v for some object O.

Figure 2.6 depicts a code snippet (consisting of local variables only), together

with its PAG. Here, LF (O, v), i.e., O flowsto v, implying that v points to O, which

holds due to the following flowsto path:

O new−−→ u store[f]−−−→ p new−−→ A new−−→ p assign−−−→ q load[f]−−−→ v (2.9)

By inverting all the edges in this flowsto path, a flowsto path showing v flowsto O

is obtained.

26 Chapter 2 Background

1. u = new O(); // O
2. p = new A(); // A
3. q = p;
4. p.f = u;
5. v = q.f;

(a) Code (b) PAG

O A

u

q

p
store[f]

new new

load[f]
v

assign

O A

u

q

p
store[f]

new new

load[f]
v

assign

Figure 2.6: The PAG for a code snippet.

LC enforces callsite-sensitivity (by matching “calls” and “returns” as also bal-

anced parentheses):

realizable −→ exit entry

exit −→ exit balanced | exit č | ϵ

entry −→ entry balanced | entry ĉ | ϵ

balanced −→ balanced balanced | ĉ balanced č | ϵ

(2.10)

A path p in the PAG is realizable iff p is an LC-path.

Finally, a variable v points to an object O iff there exists a path p from O to

v in the PAG, such that LF (p) ∈ LF (p is a flowsto-path) and LC(p) ∈ LC (p is a

realizable path). In this thesis, such a path is referred to as an LFC-path.

The limitation of LFC is that it does not have a built-in call graph construction

mechanism. In other words, when handling the inter-context value flow at a virtual

call site, the language itself does not know where to propagate next. As a result,

Selectx [48], a recent LFC-based approach specially designed to select precision-

critical variables/objects for k-CFA, could not guarantee to preserve precision. In

Chapter 5, we will propose a new CFL-reachability formulation for k-CFA with a

built-in callgraph dispatching mechanism in the language. We have also developed

a precision-preserving approach, P3Ctx, for accelerating k-CFA.

Chapter 2 Background 27

x = new T // O

O
new−−→ x

[O-New]
x = y

y
assign−−−→ x

[O-Assign]

x.f = y O ∈ PTS(x)

y
store[f]−−−→ x O

hload[f]−−−−→
Ô

f
[O-Store]

x = y.f O ∈ PTS(y)

y
load[f]−−−→ x f

hstore[f]−−−−→
Ǒ

O
[O-Load]

x = r.m(a1, . . . , an) // c O ∈ PTS(r) m′ = dispatch(m, O)

∀ i : ai
store[pm′

i]
−−−−−→ r r

load[retm
′]−−−−−−→ x ∀ i : O

hload[pm′
i]

−−−−−→
Ô

pm
′

i retm
′ hstore[retm′]−−−−−−−→

Ǒ
O

[O-Call]

Figure 2.7: Rules for building the PAG required by Lo
FC.

2.4.2 Object-based CFL-Reachability Formulation

Recently, Lu et. at [47,49] propose a new CFL reachability formulation for object-

sensitive pointer analysis, which is also formalized as the intersection of two context-

free languages: Lo
FC = Lo

F ∩ Lo
C on top of a new PAG.

Figure 2.7 gives the PAG construction rules. [O-New] and [O-Assign] are

standard. In [O-Store], when a store edge y
store[f]−−−→ x is added, its corresponding

heap load edges, i.e., O hload[f]−−−−→
Ô

f for each O ∈ PTS(x) are also added. In [O-Load],

for each added load edge y
load[f]−−−→ x, its heap store edges, i.e., f hstore[f]−−−−→

Ǒ
O for each

O ∈ PTS(y) are added accordingly. Finally, in [O-Call], the parameter passing

for each argument ai is simply modelled as a store, i.e., r.pm′
i = ai, resulting in the

edges added by apply [O-Store]. Similarly, the returned value for x is modelled

as a load, i.e.,x = r.retm
′ , resulting in the edges added by applying [O-Load].

Again, the inverse edge of a PAG edge x
ℓ−→
o

y, which is omitted in Figure 2.7

but required by Lo
FC , is defined as y ℓ−→

o
x. For a below-edge label ô or ǒ, ô = ǒ and

ǒ = ô, implying that the concepts of entry and exit contexts for inter-procedural

assign edges are swapped if they are traversed inversely.

28 Chapter 2 Background

Equation (2.11) defines the Lo
F , which realises a context-insensitive field-based

pointer analysis for kobj:

flowsto −→ new flows∗

flowsto −→ flows∗ new

flows −→ assign | store[f] flowsto hload[f] | hstore[f] flowsto load[f]

flows −→ assign | load[f] flowsto hstore[f] | hload[f] flowsto store[f]

(2.11)

Lo
F requires store[f] matched by hload[f], hstore[f] matched by load[f], hload[f]

matched by store[f], and load[f] matched by hstore[f]. By creatively treating pa-

rameters as special fields of receiver objects, Lo
F enables a uniformly and object-

sensitively handling for both method calls and field accesses.

Lo
C given below looks the same as LC grammatically except that each context

element is now an object instead, i.e., oi(i ∈ [1, n]):

realisable −→ exit entry

exit −→ exit balanced | exit ǒi | ϵ

entry −→ entry balanced | entry ôi | ϵ

balanced −→ balanced balanced | ôi balanced ǒi | ϵ

(2.12)

Lo
C enforces the object-sensitive context-sensitivity in kobj for both method calls

and field accesses (by turning Lo
F from a field-based analysis into a field-sensitive

analysis).

Lo
FC provides a theoretical basis for determining whether a variable or an ob-

ject should be context-sensitive or not. In Chapter 4, Conch will leverage three

practical conditions to approximate these theoretical conditions in order to iden-

tify effectively context-independent objects, which will be later used for developing

Chapter 2 Background 29

an efficient pointer analysis algorithm by context debloating, i.e., debloating the

contexts for existing object-sensitive pointer analysis algorithms.

30 Chapter 2 Background

Chapter 3

Accelerating kOBJ by Exploiting

Object Containment and

Reachability

In the previous chapter, we have introduced some background knowledge about

pointer analysis, such as the inclusion-based and CFL-reachability formulations for

supporting field- and context-sensitivity. We have also presented the inference rules

of fine-grained pointer analysis. We are ready to introduce our fine-grained pointer

analysis approaches.

This chapter presents Turner, our first fine-grained pointer analysis technique

that was published at the ECOOP conference [24]. The objective is to advance

existing pointer analysis techniques in terms of efficiency and precision trade-offs

made. Turner will enable kobj to run significantly faster than the precision-

preserving state-of-the-art while achieving substantially better precision than the

non-precision-preserving state-of-the-art.

31

32
Chapter 3 Accelerating kOBJ by Exploiting Object Containment and

Reachability

The outline of this chapter is organized as follows. Section 3.1 gives an overview

of Turner. Section 3.2 motivates our Turner approach. We formalize our

Turner approach in Section 3.3 and evaluate Turner against the state of the

arts in Section 3.4. Finally, Section 3.5 concludes this chapter.

3.1 Overview

Traditional k-object-sensitive pointer analysis, denoted kobj, blindly applies the

k-limiting context abstraction uniformly to a program, which can cause the number

of contexts handled to blow up exponentially (often without improving precision

much). In this chapter, we address the problem of developing a pre-analysis for

a Java program to enable kobj to apply fine-grained context-sensitivity (i.e, a

k-limited context abstraction) only to some of its variables/objects selected and

context-insensitivity to all the rest in the program.

Definition 3.1 A variable/object n in a program is precision-critical if kobj loses

precision in terms of the points-to information obtained (for some value of k) when

n is analyzed by kobj context-insensitively instead of context-sensitively.

A pre-analysis is said to be precision-preserving if it can identify the precision-

critical variables/objects in a program precisely or over-approximately as being

context-sensitive, and non-precision-preserving otherwise. Unfortunately, making

such selections precisely is out of question as solving kobj without k-limiting is

undecidable [64]. When designing a practical pre-analysis, which aims to select the

set of context-sensitive variables/objects, Cideal, in the program, the main challenge

are to ensure that (1) Cideal includes as many precision-critical variables/objects

as possible but as few precision-uncritical variables/objects as possible, (2) Cideal

Chapter 3 Accelerating kOBJ by Exploiting Object Containment and
Reachability 33

results in no or little precision loss, and (3) Cideal is found in a lightweight manner

to ensure that the pre-analysis overhead introduced is negligible (relative to kobj).

Recently, several pre-analyses have been proposed [22,29,40,47,49,74]. Broadly

speaking, two approaches exist. Eagle [47, 49] represents a precision-preserving

acceleration of kobj by reasoning about CFL (Context-Free-Language) reachabil-

ity in the program. Designed to be precision-preserving, Eagle analyzes conserva-

tively and often efficiently the value flows reaching a variable/object and selects the

set of context-sensitive variables/objects as a superset of the set of precision-critical

variables/objects in the program over-approximately, thereby limiting the potential

speedups achieved. On the other hand, Zipper [40], as a non-precision-preserving

representative of the remaining pre-analyses [22,29,40,74], examines the value flows

reaching a variable/object heuristically and often efficiently by selecting the set of

context-sensitive variables/objects to include some but not all the precision-critical

variables/objects and also some precision-uncritical variables/objects in the pro-

gram. As a result, Zipper can sometimes improve the efficiency of kobj more

significantly than Eagle but at the expense of introducing a substantial loss of

precision for some programs.

In this chapter, we introduce a new approach, named Turner, that repre-

sents a sweet spot between Eagle and Zipper . Turner enables kobj to run

significantly faster than Eagle while achieving significantly better precision than

Zipper. Despite losing a small precision in the average points-to set size (#avg-

pts), Turner achieves exactly the same precision for the other three commonly

used precision metrics [27, 47, 49, 73, 82, 86], call graph construction (#call-edges),

may-fail casting (#fail-casts) and polymorphic call detection (#poly-calls), for a

set of 12 popular Java benchmarks and applications evaluated. Turner is simple,

lightweight yet effective due to two novel aspects in its design. First, we exploit a

34
Chapter 3 Accelerating kOBJ by Exploiting Object Containment and

Reachability

key observation that some precision-uncritical objects can be approximated initially

based on the object-containment relationship that is inferred from the points-to in-

formation pre-computed by Andersen’s analysis [3]. This approximation turns out

to be practically accurate, as it introduces a small degree yet the only source of

imprecision into the final points-to information computed. Second, leveraging this

initial approximation, we introduce a simple DFA (Deterministic Finite Automa-

ton) to reason about object reachability across a method (from its entry to its exit)

intra-procedurally along all the possible value flows established by its statements

to finalize all its precision-critical variables/objects selected.

We have validated Turner with an implementation in Soot against Ea-

gle and Zipper using a set of 12 Java benchmarks and applications. In gen-

eral, Turner enables kobj to run significantly faster than Eagle due to fewer

precision-uncritical variables/objects analyzed context-sensitively and achieve sig-

nificantly better precision than Zipper due to more precision-critical variables/ob-

jects analyzed context-sensitively than Zipper.

In summary, this chapter makes the following contributions:

• We introduce a new approach, Turner, that can accelerate k-object-

sensitive pointer analysis (i.e., kobj) for Java programs significantly with

negligible precision loss.

• We propose to first approximate the precision-criticality of the objects in

a program based on object containment and then decide whether the vari-

ables/objects in the program should be context-sensitive or not by conducting

an object reachability analysis intra-procedurally with a DFA, which turns

out to be simple, lightweight and effective.

Chapter 3 Accelerating kOBJ by Exploiting Object Containment and
Reachability 35

• Turner enables kobj to run significantly faster than Eagle and achieve

significantly better precision than Zipper for a set of 12 popular Java bench-

marks and applications evaluated in terms of four common precision metrics,

#avg-pts, #call-edges, #fail-casts, and #poly-calls (with Turner losing no

precision for the last three metrics).

3.2 Motivation

We motivate Turner in the context of the two state-of-the-art pre-analyses, Ea-

gle [47, 49] and Zipper [40]. Eagle supports partial context-sensitivity as it

enables kobj to analyze only a subset of variables/objects in a method context-

sensitively. On the other hand, Zipper allows kobj to analyze a method either

fully context-sensitively or fully context-insensitively. Like Eagle, Turner also

supports partial context-sensitivity in order to maximize the potential speedups at-

tainable. As in Eagle and Zipper, Turner also relies on the points-to informa-

tion in a program pre-computed by Andersen’s analysis [3] (context-insensitively).

In Section 3.2.1, we examine the main challenges faced in developing a pre-

analysis for accelerating kobj and discuss the methodological differences between

Turner and two existing approaches, Eagle and Zipper. In Section 3.2.2, we

introduce a motivating example abstracted from real code by highlighting the ef-

fects of these differences on the context-sensitivity selectively applied to kobj. In

Section 3.2.3, we describe the basic idea behind Turner (including our insights

and trade-offs).

36
Chapter 3 Accelerating kOBJ by Exploiting Object Containment and

Reachability

3.2.1 Challenges

A variable/object n in a program is precision-critical if kobj loses precision when

it analyzes n context-insensitively instead of context-sensitively (Definition 3.1).

In the case of a precision loss, there must exist some variable v in the program

such that its context-insensitive points-to information becomes less precise. In this

case, PTS(v) will contain not only the pointed-to objects found before (when n is

analyzed context-sensitively) but also some spurious pointed-to objects introduced

now (when n is analyzed context-insensitively). As n and v can be further apart

in the program, separated by a long sequence of method calls (with complex field

accesses on n along the way), designing a practical pre-analysis P , which selects

a set of variables/objects in a program for kobj to analyze context-sensitively,

is challenging (since solving kobj without k-limiting is undecidable [64]). For a

program, let Cideal be the set of precision-critical variables/objects specified by

Definition 3.1 and CP the set of context-sensitive variables/objects selected by P .

The main challenges lie in how to ensure that (1) |Cideal − CP | is minimized (so

that as many precision-critical variables/objects are selected) and |CP − Cideal| is

minimized (so that as few precision-uncritical variables/objects are selected), (2)

CP causes kobj to lose no or little precision, and (3) CP is selected in a lightweight

manner (so that P introduces negligible overhead relative to kobj).

A pre-analysis for kobj relies on the following fact to identify a precision-

critical variable/object, with its accesses possibly triggered by statements outside

its containing method. Without loss of generality, a method is assumed to contain

only one return statement of the form “return r”, where r a local variable in the

method (referred to as its return variable).

Fact 3.1 Consider a program being analyzed object-sensitively with the parameters

and the return variable of a method modeled as its (special) fields as in [47,49]. A

Chapter 3 Accelerating kOBJ by Exploiting Object Containment and
Reachability 37

variable/object n in a method M in the program is considered to be precision-critical

only if, during program execution, there is a value flow entering and leaving M via

a parameter or the return variable of M , by passing through n (i.e., by first writing

into n via an access path and then reading it from the same access path), where n

may be the parameter or the return variable itself.

In this case, analyzing n context-sensitively will allow several such value flows to

be tracked separately based on their calling contexts. Otherwise, some precision

may be potentially lost.

(a) param-return

 1. class B {
 2. Object id(Object p) {
 3. = p;
 4. return ;
 5. }
 6. static void main() {
 7. B b = new B(); // B
 8. Object o1 = new Object();
 9. Object o2 = b.id(o1);
10. }}

 1. class A { Object f; }
 2. class B {
 3. Object id(Object p) {
 4. = p;
 5. return ;
 6. }
 7. static void main() {
 8. A a1 = new A(); // A
 9. B b = new B(); // B
10. A a2 = (A) b.id (a1);
11. a2.f = new Object(); // O
12. Object o = a2.f;
13. }}

 1. class A { Object f; }
 2. class B {
 3. A create() {
 4. A = new A(); // A
 5. return ;
 6. }
 7. static void main() {
 8. B b = new B(); // B
 9. A a = b.create();
10. a.f = new Object(); // O
11. Object o = a.f;
12. }}

 1. class A { Object f; }
 2. class B {
 3. void foo(A q, A p) {
 4. = p;
 5. .f = q;
 6. }
 7. static void main() {
 8. A a1 = new A(); // A1
 9. A a2 = new A(); // A2
10. B b = new B(); // B
11. b.foo(a1, a2);
12. Object o = a2.f;
13. }}

(b) return-param (c) param-param (d) return-return

xx

param

return

xx xx

xx

xx
xx

xx

xx

Figure 3.1: A total of four possible value-flow patterns for determinng
whether a variable x should be precision-critical or not.

A pre-analysis, as illustrated in Figure 3.1, should identify a (local) variable

x as precision-critical by considering a total of four possible value-flow patterns

passing through x (classified according to whether the two end points of a value-

flow are a parameter or the return variable of its containing method [49,76]). The

same four patterns are also applicable to a locally allocated object. In “param-

return” (Figure 3.1(a)), the pre-analysis should recognize that the object created

in line 8 will flow into x in id() via its parameter p and then out of id() via a

38
Chapter 3 Accelerating kOBJ by Exploiting Object Containment and

Reachability

return variable, which happens to be x itself. In “return-param” (Figure 3.1(b)),

the pre-analysis, when checking whether the object created in line 11 will flow into

o in line 12 or not, will first need to find out what a2 points to. This will entail

reasoning about the value flow of a2 in reverse order, by entering id() via its

return statement (variable) and leaving id() from its parameter p. In “param-

param” (Figure 3.1(c)), the object A1 created in line 8 will flow into x (or x.f

precisely) in foo() via its parameter q and then out of foo() via its parameter

p. In “return-return” (Figure 3.1(d)), the pre-analysis, when checking whether the

object created in line 10 can flow into o in line 11 or not, will need to find what a

points to, by entering and exiting create() from its return variable and visiting x

in between.

We can now discuss how Turner differs from Eagle [47,49] and Zipper [40]

methodologically. To start with, all the three are relatively lightweight with respect

to kobj. Below we examine these pre-analyses in terms of their efficiency and

precision tradeoffs made on approximating Cideal. There are two caveats. First,

Cideal is conceptual but cannot be found exactly in a program. Second, some

precision-critical variables/objects affect the precision and/or efficiency of kobj

more profoundly than others, but they cannot be easily identified. How to do so

approximately can be an interesting research topic in future work.

Eagle is precision-preserving, since it accounts for all the four value-flow pat-

terns given in Figure 3.1 by reasoning about CFL reachability in the program

inter-procedurally to ensure that Cideal − CEagle = ∅. For some programs, Ea-

gle may conservatively mis-classify many precision-uncritical variables/objects as

being precision-critical, thereby causing CEagle − Cideal to be unduly large, and

consequently, limiting the speedups attainable.

Chapter 3 Accelerating kOBJ by Exploiting Object Containment and
Reachability 39

Zipper is not precision-preserving (implying that Cideal − CZipper 6= ∅, in gen-

eral), since it considers only the “param-return” and “return-param” patterns in

Figure 3.1 heuristically by pattern-matching and ignores “param-param” (according

to its authors [40]) and “return-return” (according to its open-source implementa-

tion). For some programs, Zipper can achieve greater speedups than Eagle but

at a precision loss, since it has misclassified some precision- yet performance-critical

variables/objects as context-insensitive.

In this chapter, Turner is designed to strike a good balance between Ea-

gle and Zipper. We aim to ensure that |CTurner − Cideal| < |CEagle − Cideal|

so that Turner can enable kobj to run significantly faster than Eagle (due to

fewer precision-uncritical variable/objects selected for kobj to analyze context-

sensitively). At the same time, we aim to ensure that |Cideal − CTurner| <

|Cideal − CZipper| so that Turner can also enable kobj to achieve significantly

better precision than Zipper (due to more precision-critical variable/objects se-

lected for kobj to analyze context-sensitively). We accomplish this by exploiting

object containment to approximate the precision-criticality of objects and then rea-

soning about object reachability by considering all the four value-flow patterns in

Figure 3.1 intra-procedurally.

3.2.2 Example

Figure 3.2 gives a Java program abstracted from real code developed based on

JDK. In lines 1-25, a simplified HashMap class is defined. In lines 26-42, class A

represents a use case of HashMap. In foo(), two instances of HashMap, M1 and M2,

and two instances of java.lang.Object, O1 and O2, are created. Afterwards, O1

(O2), pointed to by v1 (v2), is deposited into M1 (M2), pointed to by map1 (map2),

with O (received from its parameter k) as the corresponding key, and later retrieved

40
Chapter 3 Accelerating kOBJ by Exploiting Object Containment and

Reachability

and saved in w1 (w2). In main(), n instances of A, A1, ..., An, are created (where

n > 1) and then used as the receivers for invoking foo().

 1. class Entry {
 2. Object key, value;
 3. Entry(Object p, Object q) {
 4. this.key = p;
 5. this.value = q;
 6. }}

 7. class HashMap {
 8. Entry[] table;
 9. Object get(Object k){
10. int idx = k.hashCode;
11. Entry[] t = this.table;
12. Entry e = t[idx];
13. Object r = e.value;
14. return r;
15. }
16. void put(Object k, Object v) {
17. int idx = k.hashCode;
18. Entry e = new Entry(k, v); // E
19. Entry[] t = this.table;
20. t[idx] = e;
21. }

22. HashMap() {
23. Entry[] t = new Entry[16]; // @
24. this.table = t;
25. }}

26. class A {
27. void foo(Object k) {
28. HashMap map1 = new HashMap(); // M1
29. HashMap map2 = new HashMap(); // M2
30. Object v1 = new Object(); // O1
31. Object v2 = new Object(); // O2
32. map1.put(k, v1);
33. map2.put(k, v2);
34. Object w1 = map1.get(k);
35. Object w2 = map2.get(k);
36. }
37. public static void main(String args[]) {
38. Object k = new Object(); // O
39. A ai = new A(); // Ai

40. ai.foo(k);

41. …
42. }}

1 ≤ i ≤ n

Figure 3.2: A Java program abstracted from real code using the standard
JDK library.

Table 3.1 lists the contexts used for analyzing this program by the four main

analyses, 2obj, E-2obj, Z-2obj, and T-2obj. Here, P -2obj denotes the ver-

sion of 2obj that adopts the selective context-sensitivity prescribed by P ∈

{E (for Eagle),Z (for Zipper),T (for Turner)}. Eagle is always precision-

preserving. For this program, Zipper happens to be also precision-preserving

since Z-2obj behaves exactly as 2obj does. Turner also happens to be precision-

preserving but T-2obj differs from 2obj/Z-2obj and E-2obj substantially. Be-

low we focus on examining how the context-insensitive points-to information for

w1 and w2 in foo(), PTS(w1) = {O1} and PTS(w2) = {O2}, is obtained by each of

Chapter 3 Accelerating kOBJ by Exploiting Object Containment and
Reachability 41

the four main analyses. For reasons of symmetry, Figure 3.3 illustrates only how

PTS(w1) = {O1} is obtained.

Table 3.1: The contexts used for analyzing the variables/objects in Fig-
ure 3.2 by 2OBJ, E-2OBJ, Z-2OBJ, and T-2OBJ (where i in each context
containing Ai/ai ranges over [1, n]).

Method Variables/Objects 2obj / Z-2obj E-2obj T-2obj
Entry p, q, this [E, M1], [E, M2] [E, M1], [E, M2] [E, M1], [E, M2]

get k [M1, Ai], [M2, Ai]
[] []

e, r, this, t [M1, Ai], [M2, Ai] [M1], [M2]

put k, v, e, this, t [M1, Ai], [M2, Ai] [M1, Ai], [M2, Ai] [M1], [M2]E [M1], [M2] [M1], [M2]

HashMap this, t [M1, Ai], [M2, Ai] [M1, Ai], [M2, Ai] [M1], [M2]@ [M1], [M2] [M1], [M2]

foo

v1, v2, w1, w2

[Ai]
[]

[]O1, O2
k, map1, map2 [Ai]M1, M2

main k, ai [] [] []O, Ai

First of all, 2obj analyzes foo() for a total of n times by identifying its

variables/objects under the i-th invocation with its receiver Ai (Figure 3.3(a)).

Thus, ∀ 1 6 i 6 n : PTS(w1, [Ai]) = {O1, [Ai]} ∧ PTS(w2, [Ai]) = {O2, [Ai]} context-

sensitively. By projecting out all the contexts, 2obj obtains PTS(w1) = {O1} and

PTS(w2) = {O2} context-insensitively, as desired.

For this particular program, Z-2obj is equivalent to 2obj (Table 3.1 and Fig-

ure 3.3(a)). However, it is easy to modify it slightly so that Z-2obj will behave

differently while suffering from a loss of precision (as it does not consider the last

two patterns given in Figure 3.1).

E-2obj enables 2obj to support partial context-sensitivity without losing any

precision. The variables/objects in {v1, v2, w1, w2, O1, O2} in foo() and variable k

in get() will now be context-insensitive. In the case of foo(), however, k, map1,

42
Chapter 3 Accelerating kOBJ by Exploiting Object Containment and

Reachability

(O1, [A1])

(v1, [A1])

(M1, [A1])

(w1, [A1])

(map1, [A1])

(O1, [An])

(v1, [An])

(M1, [An])

(w1, [An])

(map1, [An])

…

(O1, [A1])

(v1, [A1])

(M1, [A1])

(w1, [A1])

(map1, [A1])

(O1, [An])

(v1, [An])

(M1, [An])

(w1, [An])

(map1, [An])

…

(O1, [])

(v1, [])

(M1, [])

(w1, [])

(map1, [])

(O1, [])

(v1, [])

(M1, [])

(w1, [])

(map1, [])

(a) 2OBJ/Z-2OBJ (b) E-2OBJ (c) T-2OBJ

(O1, [])

(v1, [])

(M1, [A1])

(w1, [])

(map1, [A1])

(M1, [An])

(map1, [An])

…

(O1, [])

(v1, [])

(M1, [A1])

(w1, [])

(map1, [A1])

(M1, [An])

(map1, [An])

…

Figure 3.3: Computing PTS(w1) = {O1} for Figure 3.2 by 2obj, E-2obj,
Z-2obj and T-2obj.

map2, M1 and M2 must still be analyzed context-sensitively due to a spurious “param-

return” pattern established by the facts that (1) k is a parameter, (2) put() can

write into M1/M2, and (3) get() can read from M1/M2. As a result, as illustrated

in Figure 3.3(b), E-2obj will still need to analyze foo() for a total of n times,

since it must distinguish the two HashMap objects M1 and M2 created in foo()

context-sensitively as in 2obj, except that it can now analyze the two objects,

O1 and O2, created in foo() context-insensitively. Thus, E-2obj obtains directly

that PTS(w1, []) = {O1, []} and PTS(w2, []) = {O2, []}, i.e., PTS(w1) = {O1} and

PTS(w2) = {O2}.

T-2obj, as illustrated in Figure 3.3(c), goes beyond E-2obj (for this particular

program) by modeling M1 and M2 also context-insensitively. As a result, foo()

is analyzed context-insensitively only once. As in the case of E-2obj, T-2obj

also obtains directly that PTS(w1, []) = {O1, []} and PTS(w2, []) = {O2, []}, i.e.,

PTS(w1) = {O1} and PTS(w2) = {O2}.

Chapter 3 Accelerating kOBJ by Exploiting Object Containment and
Reachability 43

3.2.3 Turner: Our Approach

Turner is designed to accelerate kobj with partial context-sensitivity at a negli-

gible loss of precision. Unlike Eagle [47, 49] and Zipper [40], Turner works by

exploiting both object containment and object reachability to enable kobj to strike

a better balance between efficiency and precision. In principle, Turner may lose

precision in its first stage only but will always preserve precision in its second stage

if it does not lose precision in its first stage.

3.2.3.1 Object Containment

To start with, we exploit a key insight stated below to identify some precision-

uncritical objects approximately based on the object containment relationship that

is inferred from the points-to information pre-computed (context-insensitively) by

Anderson’s analysis [3].

Observation 3.1 A top container is an object that is pointed to by neither (1)

another object (which may be the container itself) via a field of a declared type of C

or C[], where C is a class type nor (2) the return variable of the method in which

the container is allocated.

A bottom container is an object that does not point to another object (which

may be the container itself) via a field of a declared type of C or C[], where C is a

class type.

Given a program, its top and bottom containers are considered as being precision-

uncritical.

Definition 3.2 Observation 3.1 is said to be precision-preserving for a program

if kobj does not lose precision when it analyzes the precision-uncritical objects

44
Chapter 3 Accelerating kOBJ by Exploiting Object Containment and

Reachability

identified in the program context-insensitively and the remaining variables/objects

exactly as before.

Therefore, an object created by a factory method (regarded here as a method

that returns its own allocated objects via its return variable) is not a top con-

tainer. Such an object will be considered as being precision-uncritical iff it is a

bottom container. For a program, the precision-uncritical objects identified here

will be analyzed by kobj context-insensitively (for the reasons given below) and the

remaining objects will be further classified as either precision-critical or precision-

uncritical by an object reachability analysis (Section 3.2.3.2).

Consider create() in Figure 3.1(d). The object A created inside is not regarded

as a top container, since it is pointed to by its return variable. In object-sensitive

pointer analysis, when create() called on receiver object B in line 9 is analyzed,

returning A to this caller is actually modeled as this.ret = x (line 5) and a =

b.ret (line 9), where both this and b point to B, and ret can be understood as

a special return variable introduced for create() (Section 3.3.2.1) [47, 49]. Con-

ceptually, A is not a top container. In this example, A is not a bottom container

either, since A.f = O in line 10, where O is an instance of java.lang.Object. As

a result, A is considered as being precision-critical. However, if lines 10-11 were not

present, then A would be deemed as being precision-uncritical as it is now a bottom

container.

Consider Figure 3.2 (which is free of factory methods), where a total of n + 7

objects can be found: E, @, M1, M2, O1, O2, O, A1, ..., An. According to the object

containment relationship inferred from Andersen’s analysis, M1 and M2 contain @,

which contains E, which contains O1, O2 and O. By Observation 3.1, the set of

top containers is given by {M1, M2, A1, ..., An} and the set of bottom containers is

given by {O1, O2, O, A1, ..., An}. Note that both sets of containers are not necessarily

Chapter 3 Accelerating kOBJ by Exploiting Object Containment and
Reachability 45

disjoint. Thus, the n + 5 objects in {M1, M2, O1, O2, O, A1, ..., An} are considered as

being precision-uncritical and will thus be analyzed by kobj context-insensitively.

In our approach, Observation 3.1 (made based on object containment) repre-

sents the only source of imprecision in Turner, which may propagate into its

object reachability analysis. Turner will suffer only a slight loss of precision in

#avg-pts computed by T-kobj when some top or bottom containers that should be

context-sensitive are mis-classified as being precision-uncritical, and consequently,

analyzed by T-kobj context-insensitively. However, this does not affect the pre-

cision of #call-edges, #fail-casts, and #poly-calls for the set of 12 popular Java

programs evaluated (at least). The set of top containers consists of the objects

that are allocated and used locally in a method, such as M1 and M2 (two HashMap

objects) in foo() in Figure 3.2. These objects do not require context-sensitivity,

since their encapsulated data does not usually flow out of its containing methods

via their parameters or return variables. On the other hand, a bottom container

also does not usually require context-sensitivity, as it represents an object that typ-

ically encapsulates its primitive data (if any), including arrays of primitive types if

it ever contains pointers, such as O, O1 and O2 (three field-less java.lang.Object

objects) in Figure 3.2. In Section 3.4.3, we will examine two examples to explain

why Turner loses some small precision in #avg-pts but preserves precision in

#call-edges, #fail-casts, and #poly-calls in real code.

3.2.3.2 Object Reachability

Given a program, Turner relies on a simple DFA (Deterministic Finite Automa-

ton) to reason about implicitly the four value-flow patterns in Figure 3.1 in a

method to select its variables/objects to be analyzed by T-kobj context-sensitively.

By design, the precision-uncritical objects identified by Observation 3.1 in the pro-

46
Chapter 3 Accelerating kOBJ by Exploiting Object Containment and

Reachability

gram are deemed context-insensitive. The remaining objects in the program will

be classified by the DFA as either precision-critical (context-sensitive) or precision-

uncritical (context-insensitive). Simultaneously, the variables in the program are

classified. Turner’s intra-procedural analysis will be precision-preserving if Ob-

servation 3.1 is precision-preserving, as it is designed to over-approximate the

precision-critical variables/objects in the program.

For our example in Figure 3.2, Table 3.1 gives the contexts selected by Turner

for kobj, i.e., T-2obj. We discuss only their differences with the contexts selected

by Eagle for kobj, i.e., E-2obj. By exploiting object containment as discussed

in Section 3.2.3.1, M1, M2, O1, O2, and O have been identified as being precision-

uncritical and will thus be analyzed context-insensitively. Given that M1 and M2, are

now context-insensitive, k, map1, and map2 will also be identified as being context-

insensitive by our DFA, as the spurious “param-param” pattern that causes Eagle

to flag M1, M2, k, map1, and map2 in foo() as being context-sensitive no longer

exists (Section 3.2.2). As M1 and M2 are context-insensitive, the contexts [M1, Ai]

and [M2, Ai] listed under E-2obj have been shortened to [M1] and [M2] under T-2obj

(Table 3.1).

3.3 Turner

We describe the two stages of Turner, object containment (Section 3.3.1) and

reachability (Section 3.3.2), by focusing predominantly on formalizing our object

reachability analysis.

Chapter 3 Accelerating kOBJ by Exploiting Object Containment and
Reachability 47

3.3.1 Object Containment

In this first stage on object containment analysis, we identify some precision-

uncritical objects in a program based on the points-to information pre-computed

by Andersen’s analysis [3] according to Observation 3.1. For an object o, we write

reto to denote the return variable in the method where o is allocated. For two

objects o1 and o2, we write o1
class−type(f)−−−−−−−−→ o2 if o1.f = o2 for some field f whose

declared type is either C or C[], where C is some class type. As a result, the set of

precision-uncritical objects in a program can be found by:

CIOBS
Turner = TopCon ∪ BotCon (3.1)

where the sets of top and bottom containers in the program are identified as follows:

TopCon =
{
o
∣∣∣ (∄ (o′, f) ∈ H× F : o′

class−type(f)−−−−−−−−→ o
)
∧ o /∈ PTS(reto)

}
BotCon =

{
o
∣∣∣ ∄ (o′, f) ∈ H× F : o

class−type(f)−−−−−−−−→ o′
} (3.2)

3.3.2 Object Reachability

In this second stage on object reachability analysis, we make use of a DFA to

determine intra-procedurally whether a variable/object requires context-sensitivity

or not. Let CITurner be the set of context-insensitive variables/objects that are

finally selected by Turner to support fine-grained selective context-sensitivity

(Figure 2.4). By design, CIOBS
Turner ⊆ CITurner, i.e., the precision-uncritical objects

selected earlier will always be analyzed context-insensitively. The remaining objects

and all the variables in the program will be further classified as either context-

sensitive or context-insensitive according to the DFA, by leveraging CIOBS
Turner.

48
Chapter 3 Accelerating kOBJ by Exploiting Object Containment and

Reachability

We start by using LF (Equation (2.8)) [69, 78], renamed to L0 here, to depict

value flows and perform pointer analysis intra-procedurally for parameterless meth-

ods that contain no calls inside. We reuse [P-New], [P-Assign], [P-Store], and

[P-Load] in Figure 2.5 for constructing PAG for L0. For clarity, we rename them

as [T-New], [T-Assign], [T-Store], and [T-Load] respectively.

Below, we introduce how to evolve L0 incrementally to obtain a regular gram-

mar, i.e., a DFA to decide intra-procedurally whether a variable/object requires

context-sensitivity or not.

3.3.2.1 Ignoring Context-Insensitive Value Flows

Instead of computing points-to information in a program directly, Turner is de-

signed to analyze the context-sensitive value flows across the parameters or return

variables of its methods (Fact 3.1). Thus, we will ignore the global statements and

the precision-uncritical objects in CIOBS
Turner, as all the value-flows passing through

them are context-insensitive.

x = new T // O O /∈ CIOBS
Turner

O
cs-likely−−−−→ O

[T-Object]

Figure 3.4: Rule for treating all the objects in CIOBS
Turner as context-

insensitive.

To handle the objects in CIOBS
Turner context-insensitively as global variables, as

shown in Figure 3.4, we have added a self-loop edge label, named cs-likely, for

each object that is not in CIOBS
Turner to indicate that it is currently treated as being

potentially context-sensitive but will be classified later as being either context-

Chapter 3 Accelerating kOBJ by Exploiting Object Containment and
Reachability 49

sensitive or context-insensitive by our reachability analysis. By adding one new

terminal cs-likely to the grammar for defining L0, we obtain:

L1 :



flowsto −→ new flows∗

flows −→ assign | store[f] alias load[f]

alias −→ flowsto cs-likely flowsto

flowsto −→ flows∗ new

flows −→ assign | load[f] alias store[f]

(3.3)

We will discuss how to handle method parameters and method calls shortly below.

Let us consider Figure 2.6 again by supposing A to be a cs-likely object, then

L1(O, v) can also be established as before, since we have:

O new−−→ u store[f]−−−→ p new−−→ A cs-likely−−−−→ A new−−→ p assign−−−→ q load[f]−−−→ v (3.4)

Otherwise, L1(O, v) will no longer be possible due to the absence of A cs-likely−−−−→ A.

To simplify matters, returning values from a method can be treated identically

as passing parameters for the method. In object-sensitive pointer analysis [27, 47,

49, 73, 82, 86], a method M is analyzed context-sensitively under different receiver

objects. Thus, its return statement “return r” can be modeled as “this.ret = r”,

where ret is a fresh local variable (interpreted now as the return variable of M)

and the return values in “this.ret” can be retrieved by its callers via its receiver

objects. Given this simple transformation, the four value-flow patterns given in

Figure 3.1 can be unified as one “param-param” pattern.

Lemma 3.1 A variable/object n in a method M requires context-sensitivity only if

n lies on a sequence of statements, s1, ..., sr, such that (1) si and si+1 form a def-use

chain involving only local variables and cs-likely objects, (2) s1 represents a use of

50
Chapter 3 Accelerating kOBJ by Exploiting Object Containment and

Reachability

either a cs-likely object or a parameter of M , and (3) sr represents a definition of

P.f , where P is a parameter of M (including this) and f is a field of the objects

pointed by P (including M ’s return variable (ret)).

Proof. Follows directly from Fact 3.1 and the definition of cs-likely objects.

In this case, n should be context-sensitive, since the modification effects of different

definitions of n on P.f under different calling contexts of M must be separated

context-sensitively.

3.3.2.2 Approximating the Value Flows Spanning across Method Calls

We now consider how to handle a method call made in a method being analyzed.

Turner will over-approximate the context-sensitive value flows spanning across

a call site without analyzing its invoked methods. With L1, we can only reason

about CFL reachability starting from an object. With L2 given below, we can also

start from a variable (Lemma 3.1):

L2 :


flows −→ (new | assign | store[f] alias load[f])∗

alias −→ flows cs-likely flows

flows −→ (new | assign | load[f] alias store[f])∗

(3.5)

Lemma 3.2 L2 ⊇ L1.

Proof. Follows simply from examining the structural differences in their pro-

ductions.

In both languages, the aliases between two variables are established in exactly the

same way.

Chapter 3 Accelerating kOBJ by Exploiting Object Containment and
Reachability 51

Next, we over-approximate L2 to obtain L3 by abstracting the field accesses

with 1-limited access paths and handling aliases more conservatively (as explained

shortly below):

L3 :


flows −→ (new | assign | load | store alias)∗

alias −→ flows cs-likely flows

flows −→ (new | assign | load | alias store)∗

(3.6)

Thus, the fields in loads and stores are ignored, and loads and assignments

become indistinguishable, but stores are treated differently (i.e., unsymmetrically

as loads) in order to keep track of aliases as desired. Note that L3 is still a CFL,

since (1) a store is required to match a new, assign or load, and (2) a store is

required to match a new, assign or load. This balanced-parentheses property is

somehow hidden in the alias-production.

For the code given in Figure 2.6, L3(O, v) will still hold even if, say, v = q.f is

replaced by v = q.g due to the existence of the following flowsto path:

O new−−→ u store−−→ p new−−→ A cs-likely−−−−→ A new−−→ p assign−−−→ q load−−→ v (3.7)

Lemma 3.3 L3 ⊇ L2.

Proof. In L3, the first and third production can be expressed equivalently as

flows −→ (new | assign | load | store alias load?)∗ and flows −→ (new | assign | load |

load? alias store)∗, respectively. Here, (s)? indicates that s is optional, where ‘(’

and ‘)’ can be omitted if s represents one symbol. We can conclude that L3 ⊇ L2

by noting that the field access paths in L3 are 1-limited.

52
Chapter 3 Accelerating kOBJ by Exploiting Object Containment and

Reachability

In L3, a store can now also be matched with a store when looking for aliases:

flows =⇒+ ... store flows cs-likely flows store ... (3.8)

For the code given in Figure 2.6, L3(O, v) will thus still hold if we (1) replace v

= q.f by q.g = v and (2) add v = new V(), where the allocated object, V, is

assumed to be cs-likely:

O new−−→ u store−−→ p new−−→ A cs-likely−−−−→ A new−−→ p assign−−−→ q store−−→ v new−−→ V cs-likely−−−−→ V new−−→ v (3.9)

We discuss below how to exploit this property to avoid analyzing the methods

invoked at a call site while still keeping track of all context-sensitive value flows

spanning the call site.

x = a0.m(a1, ..., ar)

∀ i : ai
store[pm′

i]
−−−−−→ a0 ∀ i : a0

store[pm′
i]

−−−−−→ ai a0
load[retm′]−−−−−−→ x x

load[retm′]−−−−−−→ a0

[T-Call]

Figure 3.5: Rule for analyzing a method call.

Consider how kobj analyzes a method call x = a0.m(a1, ..., ar), with a target

method m′ resolved when a0 points to a receiver object O. Let its r+1 parameters

be pm
′

0 , ..., pm
′

r , where pm
′

0 represents thism′ . Let its return variable retm
′ be intro-

duced as described in Section 3.3.2.1. Object-sensitively, pm′
0 , ..., pm

′
r and retm

′ are

handled as if they were special fields of O [47, 49]: ∀ i : a0.p
m′
i = ai for passing

parameters and x = a0.ret
m′ (for retrieving return values). As a result, Figure 3.5

gives a rule, [T-Call], for adding the PAG edges required for a method call accord-

ing to [T-Load] and [T-Store]. When m′ is analyzed by kobj, where its thism′

variable points to O, its parameters will be initialized as ∀ i : pm
′

i = thism
′
.pm

′
i

and its return values will be made available in thism
′
.retm

′ .

Chapter 3 Accelerating kOBJ by Exploiting Object Containment and
Reachability 53

Given how x = a0.m(a1, ..., ar) is modeled above, we can determine whether

or not a context-sensitive value flow that enters one of its invoked methods via a

parameter can also exit it via another parameter without actually analyzing the

invoked method itself, by enforcing L3(ai, aj) conservatively, i.e., ensuring that

whatever flows into ai flows also into aj, if necessary. As will be clear in Sec-

tion 3.3.2.3 below, x = a0.m(a1, ..., ar) needs to be approximated this way if a0

may point to at least one cs-likely object and can be ignored otherwise.

Lemma 3.4 Given a method M (where how its parameters are modeled is irrele-

vant here), when analyzing a call x = a0.m(a1, ..., ar) contained in M , L3(ai, aj) is

established iff a0 points to at least one cs-likely object.

Proof. Let O be an object pointed by a0. By [T-Call], passing ai and aj

to a target method m′ at the call site is modeled by two stores a0.p
m′
i = ai and

a0.p
m′
i = aj. Thus, we have:

flows =⇒+ ... ai
store−−→ a0 flows O · · · O flows a0

store−−→ aj ... (3.10)

As a result, L3(ai, aj) is established (as far as this particular call site is concerned,

regardless of its truthhood established elsewhere) iff O is a cs-likely object, in which

case the “· · · ” that sits between the two occurrences of O can be replaced by
cs-likely−−−−→.

3.3.2.3 Approximating the Incoming Value Flows from Parameters

We discuss now how to handle the parameters of a method when it is analyzed.

It is not computationally feasible to formulate our pre-analysis for a method in

terms of L3 directly (even after its parameters are modeled in a certain way). As

L3 is a CFL (with balanced parentheses), the worst-time complexity for finding

54
Chapter 3 Accelerating kOBJ by Exploiting Object Containment and

Reachability

the points-to set of a variable is O(N3Γ3
L3
), where N is the number of nodes in the

PAG and ΓL3 is the size of L3 [32, 63].

We now over-approximate L3 by turning it into a regular language L4 defined

by:

L4 :


flows −→ (new | assign | load)∗((store | store) flows)?

flows −→ (new | assign | load)∗(cs-likely flows)?
(3.11)

Lemma 3.5 L4 ⊇ L3.

Proof. L4 is regularized from L3 by no longer distinguishing store and store.

Thus, we are now even more conservative in abstracting aliases in L4 than in L3. If

we replace p.f = u with u.f = p in Figure 2.6, L3(O, v) will not hold but L4(O, v)

will, since

O new−−→ u store−−→ p new−−→ A cs-likely−−−−→ A new−−→ p assign−−−→ q load−−→ v (3.12)

We are now ready to describe our final regular language L5 used to decide if a

variable/object in a method should be context-sensitive or not. By exploiting the

fact that store and store are treated identically in L4, we have obtained L5:

L5 :



s −→ param flows

flows −→ (new | assign | load)∗((store | store) flows)?

flows −→ (new | assign | load)∗(cs-likely flows)? | param e

e −→ ϵ

(3.13)

Chapter 3 Accelerating kOBJ by Exploiting Object Containment and
Reachability 55

where param and param are terminals of self-loop edges which are added to the

PAG for each parameter of a method according to a rule, [T-Param], given in

Figure 3.6.

p is a parameter

p
param−−−→ p p

param−−−→ p
[P-Param]

Figure 3.6: Rule for adding the PAG edges for parameters.

We can now analyze a method without knowing what its parameters may point

to, by treating it effectively as a parameterless method, so that all the results

developed so far are applicable.

Lemma 3.6 Let P1 and P2 be two (not necessarily different) parameters of a

method. Then L4(P1, P2) ⇐⇒ L5(P1, P2).

Proof. Follows straightforwardly by noting the minor differences in their pro-

ductions.

As discussed in Section 1.1.3, if L is a CFL, L(u, v)n holds if L(u, v) holds due

to an L-path that contains a node n. Thus, CITurner can now be defined as:

CITurner = {n |M ∈M,∄P1, P2 ∈ param(M) : LGM
5 (P1, P2)

n} (3.14)

where param(M) is the set of parameters of a method M , L5 is superscripted with

the PAG, GM , built for M , and n is a node in GM . By construction, CIOBS
Turner ⊆

CITurner holds due to the absence of a self-loop edge, labeled cs-likely, around each

object in CIOBS
Turner. In addition, all the global variables will be context-insensitive

regardless.

Let us apply Turner to the four examples in Figure 3.1 to see how it has

successfully selected x to be context-sensitive (where “return x” in each example

56
Chapter 3 Accelerating kOBJ by Exploiting Object Containment and

Reachability

has been replaced by “this.ret = x” and the object A created in Figure 3.1(d) is

assumed to be a cs-likely object):

• Figure 3.1(a) and 3.1(b): L5(p, this)x: p assign−−−→ x store−−→ this.

• Figure 3.1(c). L5(p, q)x: p assign−−−→ x store−−→ q.

• Figure 3.1(d): L5(this, this)x: this store−−→ x new−−→ A cs-likely−−−−→ A new−−→ x store−−→

this.

Finally, we show that Turner is precision-preserving if Observation 3.1 is

precision-preserving. The basic idea is to show that if a variable/object is context-

sensitive according to Theorem 3.1, i.e., Fact 3.1 (Figure 3.1), then it must reside

on an L5-path.

Theorem 3.7 Suppose Observation 3.1 is precision-preserving. Let G be the PAG

built for a method M by using rules [T-New], [T-Assign], [T-Store], [T-Load],

[T-Object], and [T-Call]. If a variable/object n in M is context-sensitive by

Lemma 3.1, then L5(P1, P2)
n, where P1 and P2 are two (not necessarily different)

parameters of M .

Proof. Our proof proceeds in the following three steps:

1. We assume that M is analyzed equivalently under one cs-likely receiver object,

OM . Let M ′ be obtained from M by augmenting it with (1) “thisM =

new T // OM” and (2) “P = thisM .P” for every parameter P of M . Let

G′ be the resulting PAG augmented from G. For every parameter P of M ,

we now have P
assign−−−→ thisM

new−−→ OM
cs-likely−−−−→ OM

new−−→ thisM
assign−−−→ P .

Thus, L5(P1, P2)
n holds over G, where P1 and P2 are two parameters of M

iff L5(P
′, P ′)n holds over G′, where P ′ is a parameter of M . In L5, every

Chapter 3 Accelerating kOBJ by Exploiting Object Containment and
Reachability 57

variable will now be guaranteed to point to at least one object, which can be

OM .

2. We show now that all the context-sensitive value flows that enter M under its

different calling contexts are tracked in L5 if they pass through a method call

b = a0.m0(a1, ..., ar) (via a0, ..., ar). Thus, it suffices to consider each call site

in M in isolation. Note that the loads and stores in a program can always

be modeled as getters and setters.

By Lemmas 3.5 and 3.6, Theorem 3.4 applies also to L5: L5(ai, aj) is es-

tablished in analyzing b = a0.m0(a1, ..., ar) iff a0 points to at least one cs-

likely object. Thus, we only need to argue that if a0 points to only context-

insensitive objects, recorded in Fa0 , then each invoked method at this call

site can be ignored in this sense. In this case (where OM /∈ Fa0 as OM is

context-sensitive by construction), if some pointed-to objects of a0 are miss-

ing in Fa0 (as our pre-analysis is intra-procedural), then there must exist a

call chain, a0 = x1.m1(...), x1 = x2.m2(...), ..., xt−1 = xt.mt(...) (modeled ef-

fectively as a0 = x1 = ... = xt in L5), where all the pointed-to objects of xt in

the program are found intra-procedurally (under the assumption that all the

receiver objects of M are abstracted by one single context-sensitive object,

OM , as explained in Step 1).

Since Observation 3.1 is assumed to be precision-preserving, the value flows

that enter M under its different calling contexts (i.e., receiver objects) need

not be tracked, i.e., separated context-sensitively at each call site mi(). To

prove this claim inductively, let us write x−1 = x0.m0(...) to represent b =

a0.m0(...). Now, let Rmi
be the set of objects returned by mi() but missed

by L5, as mi() is not analyzed. Our claim is true for xt−1 = xt.mt(...), since

all the objects pointed to by xt in the program are context-insensitive. This

58
Chapter 3 Accelerating kOBJ by Exploiting Object Containment and

Reachability

also implies that the objects in Rmt are all conflated under different calling

contexts of M . Suppose that our claim holds for mi(), in which case, the

objects in Rmi
are all conflated. Let us consider xi−2 = xi−1.mi−1(...). As

xi−1 can only point to either some context-insensitive objects in Fa0 found

intra-procedurally by L5 or the conflated objects in Rmi
, our claim must also

be true for mi−1().

3. If a variable n is context-sensitive by Lemma 3.1, there must exist a cs-likely

O due to Step 1 such that L1(O,P)n : O flows n′ store−−→ P , which contains

n, where n′ is a variable (which may be n) and P is a parameter of M . By

applying Lemmas 3.2 – 3.6 and the result established in Step 2, we must have

L5(O,P)n : O flows n′ store−−→ P (passing through n). As a result, L5(P, P)n :

P
store−−→ n′ flows O

cs-likely−−−−→ O flows n′ store−−→ P holds. If an object n is

context-sensitive by Lemma 3.1, L5(P, P)n can be established similarly.

3.3.2.4 Computing CITurner with a DFA

We give an efficient algorithm for computing CITurner with a DFA (Figure 3.7)

obtained equivalently from the regular grammar for L5. Our algorithm proceeds in

linear time of the number of nodes in the PAG by exploiting a special property in

our DFA.

The DFA is a quintuple A = (Q,Σ, δ, s, e), where Q = {s, flows, flows, e}

is the set of states, Σ = {param, param, new, new, assign, assign, load, load, store, store,

cs-likely} is the alphabet, δ : Q × Σ 7→ Q is the state transition function, s is the

start state, and e is the accepting, i.e., final state.

Chapter 3 Accelerating kOBJ by Exploiting Object Containment and
Reachability 59

sstart flows flows e
param

new | assign | load
store | store

new | assign | load

param

cs-likely

Figure 3.7: The DFA as an equivalent representation of the grammar
for defining L5.

Definition 3.3 Given a PAG edge n1
σ−→ n2 with a corresponding state transition

δ(q1, σ) = q2, we define (n1, q1) � (n2, q2) as a one-step transition. The transitive

closure of �, denoted by �+, represents a multiple-step transition.

We describe an important property of our DFA in Lemmas 3.8 and 3.9 below.

Lemma 3.8 Let n1 and n2 be two PAG nodes. We have (1) (n1, s) �+

(n2, flows) =⇒ (n2, flows) �+ (n1, e) and (2) (n1, s) �+ (n2, flows) =⇒

(n2, flows) �+ (n1, e).

Proof. To prove (1), we note that n1 flows n2 =⇒ n2 flows n1 in L5. To prove

(2), we note that n1 flows n
store | store−−−−−−→ n2 =⇒ n2

store | store−−−−−−→ n flows n1 in L5,

where n is a PAG node.

Lemma 3.9 Let n1 and n2 be two PAG nodes. We have (n2, flows) �+ (n1, e) =⇒

(n1, s) �+ (n2, flows) and (n2, flows) �+ (n1, e) =⇒ (n1, s) �+ (n2, flows).

Proof. Proceeds as in the proof of Theorem 3.8 by noting [T-Param] given in

Figure 3.6.

In (3.14), we include a variable/object n in a method M (with its PAG denoted

by GM) into CITurner if LGM
5 (P1, P2)

n does not hold for any two parameters P1 and

P2 of M . In terms of our DFA, LGM
5 (P1, P2)

n holds iff (P1, s) �+ (n, q) �+ (P2, e),

where q ∈ {flows, flows}.

60
Chapter 3 Accelerating kOBJ by Exploiting Object Containment and

Reachability

Theorem 3.10 Let n be a variable/object in a method with P1 and P2 as its two

parameters. (P1, s) �+ (n, q) �+ (P2, e) ⇐⇒ (P2, s) �+ (n, q) �+ (P1, e),

where q ∈ {flows, flows}.

Proof. Lemmas 3.8 and 3.9.

As a result, we have designed an efficient algorithm for verifying LGM
5 (P1, P2)

n

by verifying n ∈ RM(flows)∩RM(flows) (Theorem 3.10) for a method M (with GM

as its PAG), in which, R : Q 7→ ℘(V ∪ H) returns a set of nodes in GM reached

at a given state q ∈ Q and R−1 : V ∪ H 7→ ℘(Q) is the inverse of R. These two

functions are computed according to the two rules given in Figure 3.8. The two

rules are simple: [A-I] performs the initializations needed while [A-II] computes a

fixed point for each function iteratively.

n ∈ NM

n ∈ RM(s) s ∈ R−1
M (n)

[A-I]

n1
σ−→ n2 ∈ EM q1 ∈ R−1

M (n1) δ(q1, σ) = q2 q2 /∈ R−1
M (n2)

n2 ∈ RM(q2) q2 ∈ R−1
M (n2)

[A-II]

Figure 3.8: Rules for computing RM and R−1
M for a method M with

GM = (NM , EM).

Given RM computed above, we can now obtain CITurner efficiently as follows:

CITurner = {n |M ∈M, n is a node in GM , n /∈ RM(flows) ∩RM(flows)} (3.15)

3.3.3 Time Complexity

The worst-case time complexity of Turner in analyzing a program is linear in

terms of its number of statements, for two reasons. First, CIOBS
Turner given in (3.1) and

(3.2) can be found in O(|H|) based on the points-to information already computed

Chapter 3 Accelerating kOBJ by Exploiting Object Containment and
Reachability 61

by Andersen’s analysis [3]. Second, RM used in (3.15) for a method M , with its

PAG denoted GM = (NM , EM), can be computed by the rules in Figure 3.8 in

O(|EM | × |Q|), where |EM | is the number of edges in GM (constructed linearly

based on the number of statements in M according to the rules [T-New], [T-

Assign], [T-Store], [T-Load] and those in Figures 3.4–3.6) and |Q|, i.e., the

number of states in the DFA (Figure 3.7), is 4.

3.4 Evaluation

We demonstrate that Turner can accelerate kobj significantly with only negligible

precision loss, by being both substantially faster than Eagle [47,49] (the currently

best precision-preserving pre-analysis) and substantially more precise than Zipper

[40] (the currently best non-precision-preserving pre-analysis). We address the

following three research questions:

• RQ1. Is Turner precise?

• RQ2. Is Turner efficient?

• RQ3. Is Turner effective (by exploiting object containment and reachabil-

ity)?

We have implemented Turner in Soot [89], a program analysis and opti-

mization framework for Java, on top of its context-insensitive Andersen’s pointer

analysis, Spark [36], and an object-sensitive version of Spark (i.e., kobj) devel-

oped by ourselves. Our pre-analysis is implemented in 1000 lines of Java code,

which has been released as an open-source tool at http://www.cse.unsw.edu.au/

~corg/turner. To compare Turner with Eagle [49] and Zipper [40], we have

http://www.cse.unsw.edu.au/~corg/turner
http://www.cse.unsw.edu.au/~corg/turner

62
Chapter 3 Accelerating kOBJ by Exploiting Object Containment and

Reachability

implemented Eagle based on its three rules (in 600 lines of Java code) and used

Zipper’s latest version (b83b038).

As Zipper is evaluated in Doop [72], we have used an experimental setting

that is as close as possible to its original one in several major aspects. First,

objects such as StringBuilder, StringBuffer and Throwable objects are merged

in terms of their dynamic types and then analyzed context-insensitively as is often

done in Doop [11] and Wala [26]. Second, we perform an exception analysis

together with kobj as in Doop by handling exception objects caught in terms of

so-called exception-catch links [10]. Third, for type-filtering purposes performed

on the elements of an array, we use the declared type of its elements instead of

java.lang.Object. Finally, we use the summaries provided in Soot to handle

native code.

We have carried out all the experiments on an Intel(R) Xeon(R) CPU E5-2637

3.5GHz machine with 512GB of RAM. We have selected a set of 12 popular Java

programs, including 9 benchmarks from DaCapo2006 [7], and 3 Java applications

(checkstyle, JPC and findbugs), which are commonly used in evaluating kobj

[27, 29, 74, 82, 84]. The Java library used is JRE1.6.0_45 (as the DaCapo2006

benchmarks rely only on an older version of JRE). We use Tamiflex [9], a dynamic

reflection analysis tool, to resolve Java reflection as is often done in the pointer

analysis literature [40, 47, 49, 73, 74, 82].

The time budget used for running each object-sensitive pointer analysis on a

program is set as 24 hours. The analysis time of a program is an average of three

runs.

Table 3.2 presents our main results. We compare Turner with Eagle and

Zipper in terms of their efficiency and precision tradeoffs made on improving kobj.

For each k ∈ {2, 3} considered, kobj is the baseline, Z-kobj, E-kobj and T-kobj

Chapter 3 Accelerating kOBJ by Exploiting Object Containment and
Reachability 63

are the versions of kobj for performing selective context-sensitivity under Zipper,

Eagle and Turner, respectively.

3.4.1 RQ1: Precision

Table 3.2 lists four common metrics used for measuring the precision of a context-

sensitive pointer analysis: #fail-casts, #call-edges, #poly-calls, and #avg-pts. Ea-

gle is designed to be precision-preserving by ensuring that E-kobj produces ex-

actly the same context-insensitive points-to information as kobj. Thus, E-2obj

and E-3obj achieve trivially the same precision in all the four metrics. Zipper is

designed to accelerate kobj heuristically as much as possible (by also ignoring the

last two value-flow patterns in Figure 3.1) while allowing sometimes a significant

loss of precision. For 2obj, Z-2obj has caused its #avg-pts to increase by 18.1%

on average, resulting in the average percentage precision losses of 7.8%, 0.7%, and

1.7% for #fail-casts, #call-edges, and #poly-calls, respectively. For 3obj, Z-3obj

has caused its #avg-pts to increase by 16.2% on average, resulting in the average

percentage precision losses of 10.8%, 0.7%, and 2.0% for #fail-casts, #call-edges,

and #poly-calls, respectively. In this thesis, Turner is designed to trade only a

slight loss of precision for efficiency (by reasoning all the four value-flow patterns in

Figure 3.1 (implicitly) using a DFA based on object containment and reachability).

Despite some slightly imprecise points-to information produced (with #avg-pts in-

creasing by 0.6% and 0.5% under T-2obj and T-3obj, respectively), both T-2obj

and T-3obj preserve the precision for #fail-casts, #call-edges, and #poly-calls

across all the 12 programs.

64
Chapter 3 Accelerating kOBJ by Exploiting Object Containment and

Reachability

Table 3.2: Main results. For a given k ∈ {2, 3}, the speedups of E-kOBJ,
Z-kOBJ, and T-kOBJ are normalized with kOBJ as the baseline. For all
the metrics except “Speedup”, smaller is better.

Metrics 2obj E-2obj Z-2obj T-2obj 3obj E-3obj Z-3obj T-3obj
Time (s) 24.5 12.4 12.7 6.8 628.9 570.8 141.4 196.5
Speedup - 2.0x 1.9x 3.6x - 1.1x 4.4x 3.2x
#fail-casts 516 516 565 516 456 456 513 456
#call-edges 50975 50975 51203 50975 50948 50948 51176 50948
#poly-calls 1607 1607 1629 1607 1600 1600 1622 1600

an
tlr

#avg-pts 6.110 6.110 6.585 6.125 4.927 4.927 5.427 4.945
Time (s) 412.6 290.9 324.2 138.9 10648.2 6994.7 6878.9 1902.8
Speedup - 1.4x 1.3x 3.0x - 1.5x 1.5x 5.6x
#fail-casts 1295 1295 1349 1295 1198 1198 1256 1198
#call-edges 56488 56488 56988 56488 56258 56258 56837 56258
#poly-calls 1549 1549 1587 1549 1535 1535 1577 1535

bl
oa

t

#avg-pts 14.796 14.796 15.672 14.816 13.995 13.995 14.802 14.019
Time (s) 206.2 107.5 28.3 75.1 OoM 12346.4 522.7 7886.1
Speedup - 1.9x 7.3x 2.7x - - - -
#fail-casts 1339 1339 1410 1339 - 1239 1316 1239
#call-edges 72426 72426 73009 72426 - 71987 72640 71987
#poly-calls 1988 1988 2011 1988 - 1962 1989 1962

ch
ar

t

#avg-pts 4.905 4.905 5.363 4.971 - 4.149 4.799 4.168
Time (s) 10680.5 5885.3 4122.8 4686.0 OoM OoM OoM OoM
Speedup - 1.8x 2.6x 2.3x - - - -
#fail-casts 3551 3551 3718 3551 - - - -
#call-edges 162208 162208 163186 162208 - - - -
#poly-calls 9525 9525 9572 9525 - - - -ec

lip
se

#avg-pts 17.334 17.334 19.691 17.519 - - - -
Time (s) 18.7 10.2 6.9 5.2 728.1 651.6 123.8 187.3
Speedup - 1.8x 2.7x 3.6x - 1.1x 5.9x 3.9x
#fail-casts 414 414 460 414 362 362 416 362
#call-edges 34173 34173 34406 34173 34146 34146 34379 34146
#poly-calls 816 816 841 816 809 809 834 809

fo
p

#avg-pts 3.577 3.577 4.132 3.597 3.359 3.359 3.942 3.383
Time (s) 15.7 9.4 6.3 4.6 596.3 532.6 131.7 185.0
Speedup - 1.7x 2.5x 3.4x - 1.1x 4.5x 3.2x
#fail-casts 402 402 455 402 348 348 405 348
#call-edges 33449 33449 33689 33449 33422 33422 33662 33422
#poly-calls 905 905 932 905 898 898 925 898lu

in
de

x

#avg-pts 3.595 3.595 4.285 3.612 3.352 3.352 4.072 3.374
Time (s) 22.3 15.8 11.1 10.4 1968.0 1736.8 523.5 881.1
Speedup - 1.4x 2.0x 2.1x - 1.1x 3.8x 2.2x
#fail-casts 417 417 473 417 366 366 425 366
#call-edges 36247 36247 36485 36247 36220 36220 36458 36220
#poly-calls 1103 1103 1131 1103 1096 1096 1124 1096lu

se
ar

ch

#avg-pts 3.611 3.611 4.229 3.627 3.358 3.358 3.959 3.381
Time (s) 42.1 23.9 23.8 18.3 1504.0 1380.1 358.6 266.2
Speedup - 1.8x 1.8x 2.3x - 1.1x 4.2x 5.7x
#fail-casts 1174 1174 1252 1174 1116 1116 1199 1116
#call-edges 59664 59664 59832 59664 59599 59599 59767 59599
#poly-calls 2329 2329 2354 2329 2322 2322 2347 2322

pm
d

#avg-pts 4.943 4.943 6.378 4.954 4.684 4.684 5.973 4.698
Time (s) 243.2 121.8 54.2 90.9 25424.4 6771.9 694.2 1386.4
Speedup - 2.0x 4.5x 2.7x - 3.8x 36.6x 18.3x
#fail-casts 569 569 629 569 516 516 582 516
#call-edges 45916 45916 46113 45916 45884 45884 46086 45884
#poly-calls 1589 1589 1611 1589 1582 1582 1604 1582xa

la
n

#avg-pts 4.253 4.253 5.258 4.272 4.096 4.096 5.014 4.119
Time (s) 1240.6 710.2 484.3 339.3 OoM OoM OoM OoM
Speedup - 1.7x 2.6x 3.7x - - - -
#fail-casts 1129 1129 1203 1129 - - - -
#call-edges 66702 66702 67528 66702 - - - -
#poly-calls 2188 2188 2246 2188 - - - -ch

ec
ks

ty
le

#avg-pts 6.380 6.380 10.070 6.491 - - - -
Time (s) 101.9 59.2 31.0 44.0 2371.1 1172.9 175.9 316.8
Speedup - 1.7x 3.3x 2.3x - 2.0x 13.5x 7.5x
#fail-casts 1364 1364 1438 1364 1209 1209 1281 1209
#call-edges 81003 81003 81590 81003 79315 79315 79893 79315
#poly-calls 4255 4255 4301 4255 4115 4115 4159 4115

JP
C

#avg-pts 5.050 5.050 5.486 5.065 4.434 4.434 4.752 4.458
Time (s) 1820.6 681.1 128.7 150.9 OoM OoM 2133.8 1947.0
Speedup - 2.7x 14.1x 12.1x - - - -
#fail-casts 2037 2037 2100 2037 - - 1884 1650
#call-edges 87532 87532 88134 87532 - - 87289 86599
#poly-calls 3472 3472 3487 3472 - - 3463 3441fin

db
ug

s

#avg-pts 8.011 8.011 8.804 8.058 - - 7.203 6.632

Chapter 3 Accelerating kOBJ by Exploiting Object Containment and
Reachability 65

3.4.2 RQ2: Efficiency

On average, as shown in Table 3.2, T-kobj is faster than E-kobj but slower than

Z-kobj. By adopting the context selections prescribed by each of the three pre-

analyses, kobj runs faster under all the configurations. We compare Turner with

Eagle and Zipper below.

• T-kOBJ vs. E-kOBJ. Both achieve the same precision for #fail-casts,

#call-edges, and #poly-calls across the 12 benchmarks for k ∈ {2, 3}, but

T-kobj is faster in each case. For k = 2, the speedups of T-2obj over 2obj

range from 2.1x (for lusearch) to 12.1x (for findbugs) with an average of

3.6x. In contrast, the speedups of E-2obj over 2obj range from 1.4x (for

bloat and lusearch) to 2.7x (for findbugs) with an average of 1.8x only.

For k = 3, the speedups of T-3obj over 3obj range from 2.2x (for lusearch)

to 18.3x (for xalan) with an average of 6.2x, while the speedups of E-3obj

over 3obj range from 1.1x (for antlr, fop, luindex, lusearch, and pmd) to

3.8x (for xalan) with an average of 1.6x only. Thus, the speedups of T-kobj

over E-kobj are 1.9x when k = 2 and 3.4x (with chart included even though

3obj is unscalable) when k = 3.

In addition, T-kobj exhibits better scalability than E-kobj. For the four

benchmarks, chart, eclipse, checkstyle and findbugs, that are unscalable

under 3obj, T-3obj can now analyze chart and findbugs successfully but

E-3obj can analyze chart only.

• T-kOBJ vs. Z-kOBJ. Despite its substantially better precision, T-kobj is

faster in seven programs when k = 2 and three when k = 3. Compared with

the kobj baseline, the average speedups achieved by T-kobj and Z-kobj

are 3.6x and 3.9x, respectively, when k = 2, and 6.2x and 9.3x, respectively,

66
Chapter 3 Accelerating kOBJ by Exploiting Object Containment and

Reachability

when k = 3. As a result, Z-kobj is faster than T-kobj by 1.1x when k = 2

and 2.7x (with chart and findbugs included) when k = 3, on average. In

terms of scalability, T-kobj is on par with Z-kobj for k ∈ {2, 3}.

Table 3.3 gives the numbers of context-sensitive facts established by kobj, E-

kobj, Z-kobj and T-kobj, with #cs-gpts, #cs-pts and #cs-fpts representing the

numbers of context-sensitive objects pointed by global variables (i.e., static fields),

local variables and instance fields, respectively, and #cs-calls representing the num-

ber of context-sensitive call edges. In general, the speedups of a pointer analysis

over a baseline come from a significant reduction in the number of context-sensitive

facts computed by the baseline. For example, Z-3obj is significantly faster than

T-3obj and E-3obj for chart as its number of context-sensitive facts is signifi-

cantly less than the other two. Similarly, T-3obj is also much faster than E-3obj

and Z-3obj for bloat. However, the analysis time of a pointer analysis is not

linearly proportional to the number of context-sensitive facts computed [86]. For

example, T-3obj is faster than 3obj by 3.2x for antlr but achieves a percentage

time reduction of only 49.7%.

Table 3.4 gives the times spent by Spark [36] (an implementation of context-

insensitive Andersen’s analysis [3]) and the three pre-analyses, Eagle, Zipper and

Turner. As discussed earlier, each pre-analysis relies on the points-to information

computed by Spark to make its context selection decisions. Turner is signifi-

cantly faster than Eagle and Zipper across all the 12 programs. On average, we

have 1.1 seconds (Turner), 8.9 seconds (Eagle) and 12.2 seconds (Zipper). Ea-

gle is a single-threaded pre-analysis, Zipper is multi-threaded (with 16 threads

used in our experiments), Turner is currently single-threaded but is embarrass-

ingly parallel, as it is intra-procedural. Without any parallelization, Turner ex-

Chapter 3 Accelerating kOBJ by Exploiting Object Containment and
Reachability 67

Table 3.3: Context-sensitive facts (in millions). For all the metrics,
smaller is better.

Metrics 2obj E-2obj Z-2obj T-2obj 3obj E-3obj Z-3obj T-3obj
#cs-gpts 4.0K 3.8K 4.8K 2.2K 6.6K 6.0K 12.2K 2.8K
#cs-pts 8.7M 4.9M 8.8M 1.5M 83.4M 63.4M 72.4M 33.3M
#cs-fpts 0.4M 0.3M 0.4M 0.2M 10.2M 9.9M 10.3M 8.0M
#cs-calls 2.4M 1.8M 1.0M 0.7M 38.5M 33.5M 6.8M 25.1Man

tlr

Total 11.5M 7.1M 10.2M 2.4M 132.1M 106.7M 89.6M 66.4M
#cs-gpts 3.2K 3.0K 4.0K 2.2K 5.1K 4.3K 11.3K 3.1K
#cs-pts 120.4M 82.4M 111.1M 36.9M 1196.0M 856.5M 1137.5M 230.8M
#cs-fpts 4.0M 4.0M 5.1M 3.7M 35.8M 35.4M 51.3M 30.6M
#cs-calls 35.5M 32.1M 29.5M 15.0M 371.7M 340.5M 298.2M 109.9Mbl

oa
t

Total 159.9M 118.4M 145.7M 55.6M 1603.6M 1232.5M 1487.0M 371.3M
#cs-gpts 14.3K 13.0K 10.8K 8.2K - 34.5K 26.3K 22.0K
#cs-pts 64.3M 36.7M 17.0M 19.9M - 1378.0M 171.2M 1005.7M
#cs-fpts 1.5M 1.1M 0.8M 1.0M - 55.4M 24.8M 48.8M
#cs-calls 20.5M 12.2M 2.5M 8.7M - 356.0M 23.9M 260.8Mch

ar
t

Total 86.4M 49.9M 20.4M 29.7M - 1789.4M 220.0M 1315.3M
#cs-gpts 40.6K 39.9K 28.8K 10.0K - - - -
#cs-pts 991.9M 742.7M 744.5M 565.5M - - - -
#cs-fpts 21.8M 21.4M 20.4M 16.2M - - - -
#cs-calls 609.1M 342.7M 188.6M 296.5M - - - -ec

lip
se

Total 1622.8M 1106.8M 953.6M 878.2M - - - -
#cs-gpts 3.1K 2.9K 3.7K 2.1K 4.5K 3.8K 9.8K 2.7K
#cs-pts 3.7M 2.1M 3.6M 1.0M 70.3M 56.1M 48.8M 33.5M
#cs-fpts 0.2M 0.2M 0.2M 0.2M 9.7M 9.4M 9.4M 7.9M
#cs-calls 1.1M 0.9M 0.5M 0.5M 33.7M 29.8M 4.2M 25.0Mfo

p

Total 5.0M 3.2M 4.2M 1.6M 113.7M 95.3M 62.5M 66.4M
#cs-gpts 2.8K 2.6K 3.8K 1.9K 4.5K 3.9K 11.0K 2.7K
#cs-pts 3.8M 2.2M 4.2M 1.1M 67.6M 54.2M 56.5M 33.2M
#cs-fpts 0.2M 0.2M 0.2M 0.2M 9.7M 9.4M 10.8M 8.0M
#cs-calls 1.1M 0.9M 0.5M 0.5M 33.1M 29.6M 4.7M 25.1Mlu

in
de

x

Total 5.2M 3.3M 4.9M 1.7M 110.4M 93.2M 72.0M 66.3M
#cs-gpts 3.0K 2.7K 3.8K 1.9K 4.2K 3.5K 10.3K 2.5K
#cs-pts 5.8M 3.9M 5.1M 2.2M 167.7M 151.6M 115.3M 92.2M
#cs-fpts 0.3M 0.2M 0.2M 0.2M 11.2M 11.0M 11.0M 9.4M
#cs-calls 2.3M 1.9M 1.0M 1.4M 108.1M 94.9M 40.5M 80.8M

lu
se

ar
ch

Total 8.4M 6.0M 6.4M 3.8M 287.1M 257.5M 166.9M 182.4M
#cs-gpts 3.9K 3.6K 5.9K 2.5K 5.6K 4.9K 23.8K 3.4K
#cs-pts 12.2M 7.6M 15.1M 4.1M 144.6M 108.8M 184.5M 45.5M
#cs-fpts 1.1M 1.0M 1.1M 0.9M 15.9M 15.3M 19.0M 11.7M
#cs-calls 3.6M 2.6M 2.1M 1.7M 58.5M 49.0M 17.0M 33.3Mpm

d

Total 16.9M 11.1M 18.4M 6.7M 219.0M 173.1M 220.5M 90.6M
#cs-gpts 3.9K 3.6K 3.6K 2.4K 15.5K 13.5K 10.3K 6.1K
#cs-pts 99.1M 45.9M 20.1M 14.3M 1795.3M 987.3M 253.0M 104.5M
#cs-fpts 2.5M 2.4M 1.8M 1.9M 70.9M 63.6M 18.8M 27.0M
#cs-calls 26.0M 19.3M 4.7M 17.2M 432.4M 300.8M 35.3M 168.1Mxa

la
n

Total 127.6M 67.6M 26.6M 33.3M 2298.6M 1351.7M 307.1M 299.6M
#cs-gpts 7.8K 7.5K 11.5K 3.9K - - - -
#cs-pts 145.0M 107.2M 118.2M 38.0M - - - -
#cs-fpts 2.5M 2.3M 3.0M 1.6M - - - -
#cs-calls 78.6M 34.5M 23.2M 21.1M - - - -

ch
ec

ks
ty

le

Total 226.1M 144.0M 144.4M 60.7M - - - -
#cs-gpts 7.9K 7.1K 7.7K 5.7K 22.1K 19.5K 17.5K 10.2K
#cs-pts 28.7M 18.8M 13.9M 12.1M 618.1M 319.8M 68.6M 69.1M
#cs-fpts 1.2M 0.9M 1.0M 0.9M 22.8M 20.0M 13.0M 13.0M
#cs-calls 9.6M 7.1M 2.7M 5.8M 95.2M 61.4M 7.2M 38.4MJP

C

Total 39.6M 26.9M 17.6M 18.8M 736.1M 401.3M 88.8M 120.5M
#cs-gpts 33.5K 32.9K 10.7K 4.0K - - 45.6K 6.0K
#cs-pts 326.4M 245.0M 57.2M 37.8M - - 545.9M 183.3M
#cs-fpts 15.7M 15.5M 4.7M 1.1M - - 59.4M 26.6M
#cs-calls 120.0M 58.3M 11.9M 9.6M - - 96.4M 138.5M

fin
db

ug
s

Total 462.0M 318.9M 73.8M 48.5M - - 701.7M 348.5M

68
Chapter 3 Accelerating kOBJ by Exploiting Object Containment and

Reachability

hibits already negligible analysis times as it runs linearly in terms of the number

of statements in a program.

Table 3.4: Times spent by Spark and the three pre-analyses in seconds.

antlr bloat chart eclipse fop luindex lusearch pmd xalan checkstyle JPC findbugs Avg
Spark 9.0 10.7 17.2 38.6 8.1 7.4 7.9 13.5 9.5 16.8 19.3 19.8 14.8
Eagle 3.5 3.8 9.9 34.6 2.8 2.7 3.0 9.3 6.1 9.2 9.6 12.1 8.9
Zipper 5.4 6.5 17.1 38.9 4.4 4.2 4.6 9.5 9.0 17.9 11.5 17.4 12.2
Turner 0.8 0.9 1.4 2.4 0.5 0.5 0.5 1.1 0.8 1.2 1.2 1.3 1.1

3.4.3 RQ3: Effectiveness

Turner relies on object containment and reachability to make its context se-

lections. In order to understand roughly their percentage contributions to the

speedups achieved by T-kobj over kobj, let us consider two versions of T-

kobj: (1) T-kobjC , where only object containment is exploited, i.e., the ob-

jects in CIOBS
Turner are context-insensitive and all the rest (the variables/objects in

(V ∪ G ∪ H) \ CIOBS
Turner) are handled as in kobj, and (2) T-kobjR, where only

object reachability is exploited by assuming CIOBS
Turner = ∅. Let T-kobjSSpeedup be

the speedup obtained by T-kobjS over kobj, where S ∈ {C,R, ϵ}, for a pro-

gram. Certainly, T-kobjCSpeedup + T-kobjRSpeedup = T-kobjSpeedup is not expected

for a program, as the common contribution made by T-kobjC and T-kobjR

towards T-kobjSpeedup cannot be meaningfully isolated. Instead, we consider

T-kobjSSpeedup/(T-kobjCSpeedup + T-kobjRSpeedup), where S ∈ {C,R}, as the rela-

tive percentage contribution made by T-kobjS towards T-kobjSpeedup in order to

gain a rough understanding about whether both stages are indispensable. Fig-

ure 3.9 illustrates the case for accelerating 2obj by T-2obj, demonstrating that

both object containment and object reachability are indeed exploited beneficially

for real-world programs.

Chapter 3 Accelerating kOBJ by Exploiting Object Containment and
Reachability 69

antlr bloat chart eclipse fop luindex lusearch pmd xalan checkstyle JPC findbugs Avg
0%

20%

40%

60%

80%

100%

Object Containment Object Reachability

Figure 3.9: Percentage contributions made by Turner’s two analysis
stages for the speedups of T-2OBJ over 2OBJ.

Our work is largely driven by our insight stated in Observation 3.1. Therefore,

Turner is designed to exploit both object containment and reachability to classify

the objects, and consequently, the variables in a program as context-sensitive or

context-insensitive.

Figure 3.10 gives a Venn diagram showing how Turner classifies the contain-

ers, i.e., objects in a program. Based on object containment (Observation 3.1),

CIOBS
Turner = TopCon ∪ BotCon gives the set of precision-uncritical, i.e., context-

insensitive objects identified. Based on object reachability (performed by our DFA),

CIDFA
Turner ⊆ H\CIOBS

Turner gives an additional set of context-insensitive sets identified.

Thus, CSTurner = H \ (CIOBS
Turner ∪ CIDFA

Turner) represents the set of context-sensitive

objects identified. On average, across the 12 programs evaluated, the ratios of

|CIOBS
Turner|, |CIDFA

Turner| and |CSTurner| over |H| are 61.3%, 4.9%, and 33.8%, respec-

tively. As the performance benefits of making different objects context-insensitive

can be drastically different (which are hard to measure individually), these ratios,

together with Figure 3.9, demonstrate again the effectiveness of Turner’s two

analysis stages.

Finally, we give two examples abstracted from the JDK library to explain why

Turner does not lose any precision in #call-edges, #fail-casts, and #poly-calls

70
Chapter 3 Accelerating kOBJ by Exploiting Object Containment and

Reachability

TopCon ∩ BotConTopCon BotCon

CSTurner CIDFA
Turner

Figure 3.10: The Venn diagram of the objects in a program.

even though it suffers from a small loss of precision in #avg-pts across the 12

programs evaluated. Turner can render some points-to sets imprecise when some

top/bottom containers that are classified as precision-uncritical in CIOBS
Turner should

have been analyzed context-sensitively.

Figure 3.11 illustrates a case in which whether the object P created in line 4 (a

top container according to Observation 3.1) is analyzed context-sensitively or not

affects PTS(str) obtained in line 23. Consider 2obj, which will analyze P context-

sensitively. When analyzing lines 19–22, we find that PTS(ui, []) = {(Ui, [])} ∧

PTS(Ui.file, []) = PTS(P.path, [Ui]) = {(Si, [])}, where 1 6 i 6 2. When analyzing

line 23, we find that PTS(str, []) = {(S1, [])}. Context-insensitively, 2obj thus

obtains PTS(str) = {S1}. In the case of T-2obj, however, P ∈ CIOBS
Turner will

be analyzed context-insensitively instead. When analyzing lines 19–22, we have

PTS(ui, []) = {(Ui, [])} ∧ PTS(Ui.file, []) = PTS(P.path, []) = {(S1, []), (S2, [])},

where 1 6 i 6 2. As P is context-insensitive, analyzing line 23 this time will

give rise to PTS(str, []) = {(S1, []), (S2, [])}. Thus, context-insensitively, T-2obj

obtains PTS(str) = {S1, S2}, which contains a spurious target S2 introduced for

Chapter 3 Accelerating kOBJ by Exploiting Object Containment and
Reachability 71

str. Despite this loss of precision in #avg-pts, however, T-2obj does not lose

any precision in #fail-casts, #call-edges, and #poly-calls, as both S1 and S2 have

exactly the same type, java.lang.String.

 1. class URL {
 2. String file;
 3. URL(String s) {
 4. Parts parts = new Parts(s); // P
 5. this.file = parts.getPath();
 6. }
 7. String getFile() {
 8. return this.file;
 9. }}
10. class Parts {
11. String path;
12. Parts(String p) {
13. this.path = p;
14. }

15. String getPath() {
16. return this.path;
17. }}

18. void main() {
19. String s1 = new String(); // S1
20. String s2 = new String(); // S2
21. URL u1 = new URL(s1); // U1
22. URL u2 = new URL(s2); // U2
23. String str = u1.getFile();
24. InputStream in = new FileInputStream(str);
25. // parse content of the Stream.
26. in.close();
27. }

Figure 3.11: Imprecise points-to information computed by T-2OBJ for
a top container P.

 1. class DerInputBuffer {
 2. byte[] buf;
 3. DerInputBuffer (byte[] p) {
 4. this.buf = p;
 5. }

 6. Date getTime() {
 7. byte[] t = this.buf;
 8. long l = t[0];
 9. return new Date(l);
10. }}

11. class DerValue {
12. DerInputBuffer buffer;
13. DerValue(byte[] buf) {
14. this.buffer = new DerInputBuffer(buf); // D
15. }}
16. void main() {
17. byte[] b1 = new byte[10]; // B1
18. byte[] b2 = new byte[10]; // B2
19. DerValue v1 = new DerValue(b1); // V1
20. DerValue v2 = new DerValue(b2); // V2
21. Date d1 = v1.buffer.getTime();
22. }

Figure 3.12: Imprecise points-to information computed by T-2OBJ for
a bottom container D.

Figure 3.12 illustrates another case in which whether the object D created in

line 14 (a bottom container according to Observation 3.1) is analyzed context-

sensitively or not affects PTS(t) obtained in line 7. Consider 2obj, which will an-

72
Chapter 3 Accelerating kOBJ by Exploiting Object Containment and

Reachability

alyze D context-sensitively. When analyzing lines 17–20, we find that PTS(vi, []) =

{(Vi, [])} ∧ PTS(Vi.buffer, []) = {(D, [Vi])} ∧ PTS(D.buf, [Vi]) = {(Bi, [])}, where

1 6 i 6 2. When analyzing line 7, we find that PTS(t, [D, V1]) = {(B1, [])}.

Context-insensitively, 2obj thus obtains PTS(t) = {B1}. In the case of T-

2obj, however, D ∈ CIOBS
Turner will be analyzed context-insensitively instead. When

analyzing lines 17–20, we have PTS(vi, []) = {(Vi, [])} ∧ PTS(Vi.buffer, []) =

{(D, [])} ∧ PTS(D.buf, []) = {(Bi, [])}, where 1 6 i 6 2. As t is context-insensitive,

analyzing line 7 will give rise to PTS(t, []) = {(B1, []), (B2, [])}. Thus, context-

insensitively, T-2obj obtains PTS(t) = {B1, B2}, which contains a spurious target

B2 introduced for t. Despite this loss of precision in #avg-pts, T-2obj loses no pre-

cision in #fail-casts, #call-edges, and #poly-calls, as both B1 and B2 have exactly

the same type, java.lang.byte[], and in addition, each array object pointed by

t is used in line 8 for obtaining a long integer only.

3.5 Conclusion

In this chapter, we have introduced Turner, a simple, lightweight yet effective pre-

analysis technique that can accelerate object-sensitive pointer analysis for Java pro-

grams with negligible precision loss. We exploit a key insight that many precision-

uncritical objects in a program can be identified based on a pre-computed object

containment relationship. Leveraging this approximation, we can reason about

object reachability intra-procedurally to determine whether the remaining objects,

together with all the variables, in the program, are precision-critical or not. As

a result, we have obtained a novel pre-analysis that can improve the efficiency of

object-sensitive pointer analysis significantly while suffering only a small loss of pre-

cision in the points-to information produced. Our evaluation shows that Turner

Chapter 3 Accelerating kOBJ by Exploiting Object Containment and
Reachability 73

could preserve the precision of object-sensitive pointer analysis for three important

clients, call graph construction, may-fail casting, and polymorphic call detection

over a set of 12 popular Java programs evaluated.

74
Chapter 3 Accelerating kOBJ by Exploiting Object Containment and

Reachability

Chapter 4

Context Debloating for

Object-sensitive Pointer Analysis

In the last chapter, we have introduced Turner as our first fine-grained pointer

analysis technique. When designing Turner, we realize that the most significant

factor affecting the efficiency of an object-sensitive pointer analysis is the context

combinatorial explosion. To mitigate the context explosion issue, this chapter

introduces our second fine-grained technique, i.e., the context debloating approach,

that was accepted by ASE 2021 [25]. We mitigate context explosion by eliminating

the context explosion problem completely for context-independent objects. The

key to achieving this lies in how to effectively identify context-independent objects.

To address this problem, we introduce Conch, a novel approach that enables us to

find thousands of more context-independent objects than Turner (which identifies

context-independent objects by simply exploiting object containment). Our context

debloating approach is orthogonal to all existing object-sensitive pointer analyses.

Thus, it can be used to substantially accelerate all existing object-sensitive pointer

analysis at the cost of negligible precision loss.

75

76 Chapter 4 Context Debloating for Object-sensitive Pointer Analysis

This chapter is organized as follows. Section 4.1 gives an overview. Section 4.2

motivates our approach. Section 4.3 formalizes context debloating. We present our

Conch approach in Section 4.4 and evaluate the effectiveness of Conch in terms

of context debloating in Section 4.5. Finally, Section 4.6 concludes this chapter.

4.1 Overview

Currently, kobj does not scale well for reasonably large programs when k > 3 and is

often time-consuming when it is scalable [27,73,82,86]. As k increases, the number

of contexts analyzed for a method often blows up exponentially without improving

precision much. To alleviate this issue, several recent research efforts [22, 29, 40,

49, 74] focus on selective context-sensitivity, which first conducts a pre-analysis to

the program and then instructs kobj to apply context-sensitivity only to some of

its methods selected. A number of attempts have been made, including client-

specific machine learning techniques [29] (guided by improving the precision of a

given client, e.g., may-fail-casting) and general-purpose techniques, such as user-

supplied hints [22, 74], pattern matching [40], and CFL (Context-Free Language)

reachability [24, 47, 49]. Despite some performance improvements obtained (at no

or a noticeable loss of precision), these existing selective context-sensitive pointer

analysis algorithms still suffer from an unreasonable explosion of contexts.

We introduce a new approach, Conch, for debloating contexts for all object-

sensitive pointer analysis algorithms, including kobj and its various incarnations

for performing selective context-sensitivity [24,29,40,47,74], by boosting their per-

formance significantly with negligible loss in precision. In object-oriented programs,

we observe that a large number of objects that are allocated in a method are used in-

dependently of its calling contexts. Distinguishing these objects context-sensitively,

Chapter 4 Context Debloating for Object-sensitive Pointer Analysis 77

as often done in the past, will serve to increase only the number of calling con-

texts analyzed for the methods invoked on these objects (as receivers) without any

precision improvement.

Our key insight is to approximate a recently proposed set of two necessary con-

ditions for an object to be context-sensitive, i.e., context-dependent [47,49] (whose

precise verification is undecidable [64]) with a set of three linearly verifiable neces-

sary conditions (in terms of the number of statements in the program), based on

three key observations regarding context-dependability for the objects used practi-

cally in real-world object-oriented programs. To create a practical implementation

for Conch, we have developed a new lightweight IFDS-based algorithm [65] for ver-

ifying these conditions (governing object reachability). By allowing only context-

dependent objects to be handled context-sensitively, Conch can significantly limit

the explosive growth of the number of contexts and achieve substantially improved

efficiency and scalability.

We have implemented Conch on top of the Soot framework [89] and evaluated

it with 12 popular Java benchmarks and applications. Compared with kobj [54]

and Zipper [40] (a representative of selective context-sensitive pointer analyses

[40,49,74]), Conch can speed up the two baselines together substantially (3.1x on

average with a maximum of 15.9x) and analyze 7 more programs scalably, but at

no loss of precision for 10 programs and only a negligible loss of precision (less than

0.1%) for the remaining two.

In summary, this chapter makes the following contributions:

• We present context debloating, a new approach for accelerating all object-

sensitive pointer analysis algorithms.

78 Chapter 4 Context Debloating for Object-sensitive Pointer Analysis

• We give a set of three mostly necesssary conditions for determining an object’s

context-dependability and propose a new lightweight IFDS-based algorithm

for verifying them on the PAG representation [36] of a program.

• We have implemented Conch in the Soot framework and have released it

as an open-source tool at http://www.cse.unsw.edu.au/~corg/conch.

• We have extensively evaluated the effectiveness of Conch (using several

popular metrics) and demonstrated its practical significance for real-world

programs.

4.2 Motivation

We first review object sensitivity as a context abstraction (Section 4.2.1). We

then examine the limitations of existing object-sensitive pointer analysis algorithms

(Section 4.2.2). Finally, we motivate context debloating, by describing the basic

idea behind this new approach, examining the main challenges faced in realizing

it efficiently and effectively, and discussing our solution for addressing these chal-

lenges (Section 4.2.3).

4.2.1 Object Sensitivity

We briefly review object-sensitive pointer analysis with an example given in Fig-

ure 4.1. In lines 7-11, we define class A, which has a field f and its corresponding

setter and getter methods. In lines 12-28, we define class B, which has a field g, a

constructor, and two regular methods (foo() and bar()). In foo() (bar()) of class

B, an instance of java.lang.Object, O1 (O2) is created. Later, O1 (O2) is firstly

stored into A.f and then loaded into v1 (v2) via the setF() and getF() methods,

http://www.cse.unsw.edu.au/~corg/conch

Chapter 4 Context Debloating for Object-sensitive Pointer Analysis 79

respectively. In main(), two instances of B, B1 and B2, are created and used as the

receivers for invoking foo() and bar(), respectively.

1 void main() {
2 B b1 = new B();// B1
3 b1.foo() ;
4 B b2 = new B();// B2
5 b2.bar();
6 }
7 class A {
8 Object f;
9 void setF(Object o) { this . f = o; }

10 Object getF() { return this . f ; }
11 }
12 class B {
13 A g;
14 B() {

15 this .g = new A();// A
16 }
17 void foo() {
18 Object o1 = new Object();// O1
19 A a1 = this.g;
20 a1.setF(o1);
21 Object v1 = a1.getF();
22 }
23 void bar() {
24 Object o2 = new Object();// O2
25 A a2 = this.g;
26 a2.setF(o2);
27 Object v2 = a2.getF();
28 }}

Figure 4.1: An example for illustrating object sensitivity.

In a context-insensitive Andersen’s analysis [3, 36], every method is analyzed

only once under an empty context, []. Let PTS(v) denote the points-to set of a

variable v thus computed. As illustrated in Figure 4.2(a), O1 and O2 are merged at

o (line 9) and will later flow spuriously to v2 and v1, respectively. Hence, we have

PTS(v1) = PTS(v2) = {O1,O2}.

In a k-object-sensitive pointer analysis (kobj), denoted A, the calling contexts

of a method are distinguished by its receiver objects, with each being abstracted

by its k-most-recent allocation sites [53, 54]. We write PTSA(v, c) to represent the

points-to set of a variable v thus computed under a context c. In the case of

2obj (i.e., kobj with k = 2), setF() (getF()) will be analyzed differently for its

two invocations in lines 20 and 26 (lines 21 and 27) under two different contexts,

[A, B1] and [A, B2]. As a result, O1 (created under context [B1]) and O2 (created

under context [B2]) will flow along two separate paths to v1 and v2, respectively

(Figure 4.2(b)). Hence, PTS2obj(v1, [B1]) = {(O1, [B1])} and PTS2obj(v2, [B2]) =

80 Chapter 4 Context Debloating for Object-sensitive Pointer Analysis

{(O2, [B2])}, without the spurious points-to information generated by Andersen’s

analysis.

(O1, [])

(o, [])

(A.f, [])

(v1, [])

(O2, [])

(v2, [])

(O1, [])

(o, [])

(A.f, [])

(v1, [])

(O2, [])

(v2, [])

(a) Andersen

(O1, [B1])

(o, [A,B1])

(A.f, [B1])

(v1, [B1])

(O2, [B2])

(A.f, [B2])

(v2, [B2])

(O1, [B1])

(o, [A,B1])

(A.f, [B1])

(v1, [B1])

(O2, [B2])

(A.f, [B2])

(v2, [B2])

(b) 2OBJ

(o, [A,B2])

Figure 4.2: Computing the points-to information for v1 and v2 in Fig-
ure 4.1 by applying Andersen’s analysis and 2obj.

4.2.2 Limitations of Existing Algorithms

We now use an example in Figure 4.3, which reuses class B from Figure 4.1, to

reveal the limitations of kobj [53,54] and existing approaches for selective context-

sensitivity [22, 29, 40, 49, 74] in analyzing real-world programs.

In lines 29-51, we define class C with a total of 2n+1 methods. In lines 30-38,

where 0 6 j < 2i−1 (2i−1 6 j < 2i), a method, fooi,j() (bari,j()), is defined, in which

an object, Ci,j, is created and used as the receiver to invoke fooi−1, j
2
() (bari−1, j

2
()).

In lines 39-51, we define foo0,0() (bar0,0()), where an instance of B (defined in

Figure 4.1), B3 (B4), is created and used to invoke foo() (bar()). In main() (lines

53-65), 2n instances of C, denoted as Cn,j, where 0 6 j < 2n, are created and used

as the receivers to call foon−1, j
2
() when j < 2n−1 and barn−1, j

2
() when j ≥ 2n−1.

Figure 4.4 depicts the OAG (Object Allocation Graph) [84], where an edge

O → O′ signifies that O is an allocator of O′. For kobj [54, 73], the contexts of

Chapter 4 Context Debloating for Object-sensitive Pointer Analysis 81

29 class C {
30 void fooi,j() { // j < 2i−1

31 C ci,j = new C();{// Ci,j

32 ci,j .fooi−1, j
2
();

33 }
34 D bari,j(D d) { // 2i−1 ≤ j
35 C ci,j = new C(); // Ci,j

36 ci,j .bari−1, j
2
(d);

37 return d;
38 }
39 void foo0,0() {
40 B b3 = new B(); // B3
41 b3.foo() ;
42 }
43 D bar0,0(D d) {
44 B b4 = new B(); // B4

49 b4.bar();
50 return d;
51 }}
52 class D {}
53 void main() {
54 D d = new D(); // D
55 C c = new C(); // Cn,0

56 c.foon−1,0();
57 ...
58 C c = new C(); // Cn,2n−1−1

59 c.foon−1,2n−2−1();
60 C c = new C(); // Cn,2n−1

61 c.barn−1,2n−2(d);
62 ...
63 C c = new C(); // Cn,2n−1

64 c.barn−1,2n−1−1(d);
65 }

Figure 4.3: An example for motivating Conch (1 6 i 6 n and 0 6 j < 2i),
reusing class B defined in lines 12-28 in Figure 4.1.

a method can be directly read off from this graph by starting from its receiver

object and then retrieving the next k − 1 objects backwards. For example, the

contexts of foo() and bar() are {[B3,C1, j

2k−2
, · · · ,Ck−2, j

2
,Ck−1,j] | 0 6 j < 2k−2}

and {[B4,C1, j

2k−2
, · · · ,Ck−2, j

2
,Ck−1,j] | 2k−2 6 j < 2k−1}, respectively. Let Cj(X) =

[A, X,C1, j

2k−3
, · · · ,Ck−3, j

2
,Ck−2,j]. Both setF() and getF() share the contexts in

{Cj(B3) | 0 6 j < 2k−3} ∪ {Cj(B4) | 2k−3 6 j < 2k−2}.

In practice, the number of contexts for analyzing a method can be exponen-

tial. For example, there are a total of 2k−2 contexts for foo(), bar(), setF() and

getF(). As k increases, such a method becomes exponentially expensive to analyze,

consuming more and more memory and analysis time.

Existing approaches for selective context-sensitivity [22, 29, 40, 49, 74] can im-

prove the efficiency and scalability of kobj. For example, Zipper [40], which does

not preserve the precision of kobj, will select main(), B(), foo(), bar(), and

fooi,j() (where j < ri

2
) to be analyzed context-insensitively. However, the context

82 Chapter 4 Context Debloating for Object-sensitive Pointer Analysis

explosion problem still remains for bari,j(), setF() and getF(). Eagle [47, 49],

which preserves the precision of kobj, is worse as it will also analyze B(), foo()

and bar() partially context-sensitively.

Cn,0 Cn,2n−1

. . .

...

Ci,0 . . .
. .
.

. . .

Ci,j

...

. . . Ci,2i−1

. .
.

C1,1C1,0

B3 B4

O1 A DO2

1

Figure 4.4: The object allocation graph (OAG) for Figure 4.3, where
only the two edges in red will remain after context debloating.

4.2.3 Conch: Our Context Debloating Approach

Basic Idea We offer a new approach to mitigating the context explosion prob-

lem. Our approach, named Conch (CONtext-dependability CHecking), aims to

debloat contexts during the pointer analysis and thus complements the prior work

on selective context-sensitivity. Conch can be plugged into all object-sensitive

analysis algorithms, including kobj and its various incarnations for supporting

selective context-sensitivity [22, 29, 40, 49, 74], to boost their performance signif-

icantly with negligible loss in precision. For our motivating example, only A is

context-dependent. Handling any of the other objects context-sensitively will cost

an exponential increase in analysis time without any precision benefit.

To illustrate context debloating using the OAG in Figure 4.4, we will remove

all the allocators of a context-independent object so that the exponential growth

of contexts for the object is avoided completely. Under Conch, only the two edges

Chapter 4 Context Debloating for Object-sensitive Pointer Analysis 83

in red will remain, as A is the only context-dependent object in the example. This

implies that only setF() and getF() will be analyzed context-sensitively under

[A,B3] and [A,B4]. All the other methods will be analyzed context-insensitively.

For this example, debloating contexts can help kobj and its variants reduce their

analysis times and memory consumption significantly without losing any precision.

m

O.f1. · · · .fnO′ v()

Figure 4.5: Illustrating the conditions for an object to be context-
dependent.

Challenges To debloat contexts, we must find context-dependent objects. Re-

cently, the following two necessary conditions (as graphically illustrated in Fig-

ure 4.5) are given for determining the context-dependability of an object O allocated

in a method m based on a new CFL-reachability formulation for object-sensitive

pointer analysis (Section 2.4.2), requiring us to check the existence of a write into

and a read from an access path O.f1. · · · .fn context-sensitively (where the two

accesses often happen outside m) [47, 49]:

• A
(c−→ O.f1. · · · .fn: there exists an object A that flows into m from outside

and ends up being stored later into O.f1. · · · .fn under a calling context c of

m, and

• O.f1. · · · .fn
)c−→ v: there exists a load of O.f1. · · · .fn flowing into a variable

v outside m under also c.

where context matching is formulated by solving the standard balanced parentheses

problem [65]. If these two conditions hold, O must be context-dependent. Other-

84 Chapter 4 Context Debloating for Object-sensitive Pointer Analysis

wise, different objects A flowing into O.f1. · · · .fn under different calling contexts

of m will be conflated, causing them to flow into different variables v spuriously. In

object-sensitive pointer analysis, the parameters and return variable of a method

are also conceptually regarded as special fields of its receiver objects [47,49]. Thus,

in the access path above, a field fi can be either a real Java field or one of such

special fields.

Unfortunately, verifying these two conditions precisely is undecidable [63], as

it requires us to solve kobj fully context-sensitively (with k = ∞). In addition,

weakening these two conditions [47, 49] will over-approximate unduly the number

of context-dependent objects found but approximating them heuristically [22, 29,

40,74] may cut it down significantly but at the expense of some significant precision

loss.

Our Solution To identify context-dependent objects efficiently and effectively,

our key insight is to approximate the two aforementioned necessary conditions

with the three conditions that are linearly verifiable (in terms of the number of

statements) and mostly necessary for real code, based on three key observations

governing how objects are used.

Like the prior work on selective context-sensitivity [22, 29, 40, 74], Conch also

relies on the points-to information pre-computed by Andersen’s analysis.

Observation 4.1 A context-dependent object O often has at least one instance

field O.f that is both written into (x1.f = · · ·) and read from (· · · = x2.f), where

O ∈ PTS(x1) ∧O ∈ PTS(x2), x1 and x2 are not necessarily different.

There can be rare cases, as illustrated in Figure 4.6, where Obs 4.1 may not be

valid for some context-dependent objects, such as B. Under object-sensitivity [47,

49], O pointed to by p is first written into B.q and then returned and stored into

Chapter 4 Context Debloating for Object-sensitive Pointer Analysis 85

1 void main() {
2 A a = new A(); // A
3 Object o = new Object(); // O
4 Object v = a.wrapId(o);
5 }
6 class B {
7 Object id(Object q) {

8 return q;
9 }}

10 class A {
11 Object wrapId(Object p) {
12 B b = new B(); // B
13 return b.id(p);
14 }}

Figure 4.6: A context-dependent object B violating Obs 4.1.

v. As discussed in Section 4.2.3, q is considered as a special field of B. Such cases

are rare in real-world object-oriented programs, as Conch loses little precision

(Section 4.5).

Observation 4.2 A context-dependent object O, pointed to by a variable or a field

of some object, usually flows out of its containing method (for allocating O).

1 Vector(int size) {
2 this.elems = new Object[size];
3 }

(a) Case 1 from Vector

1 Iterator iterator() {
2 return new KeyIterator();
3 }

(b) Case 2 from HashMap

1 void SunJCE_e_a(...) {
2 BufferedReader br = new BufferedReader();
3 this.f = new StreamTokenizer(br);
4 }

(c) Case 3 from SunJCE_e

Figure 4.7: Three common cases abstracted from JDK for Obs 4.2.

Figure 4.7 gives three representative cases abstracted from the JDK where

Obs 4.2 holds. In Figure 4.7(a), the array object created flows out of the con-

structor via a store. In Figure 4.7(b), the KeyIterator object created flows out

of iterator() directly via a return. In Figure 4.7(c), we have a slightly more

complicated case. The BufferedReader object created flows out of its containing

method as it is stored into the input field of the StreamTokenizer object, which

86 Chapter 4 Context Debloating for Object-sensitive Pointer Analysis

flows out of the containing method via a store. The objects that cannot flow out of

their containing methods are usually context-independent as they are often created

and used locally.

Observation 4.3 A context-dependent object O tends to have a store statement

x.f = y in a method m′, where O ∈ PTS(x). Let m be the method where O

is allocated if m′ is a constructor (i.e., the constructor for creating O) and m′

otherwise. Then y (a) is data-dependent on a parameter of m or (b) points to a

context-dependent object.

1 ArrayList() {
2 this.elems = new Object[5];
3 }
4 void set(int idx, E e) {
5 this.elems[idx] = e;
6 }

(a) Case 1 from ArrayList

1 void addEntry(int idx, K k, V v) {
2 this.table[idx] = new Entry(k,v);
3 }
4 Entry(K k, V v) {
5 this.key = k; this.value = v;
6 }

(b) Case 2 from HashMap.

1 HashSet() {
2 this.map = new HashMap();
3 }

4 HashMap(...) {
5 this.table = new Entry[10];
6 }

(c) Case 3 from HashSet and HashMap.

Figure 4.8: Three common cases abstracted from JDK for Obs 4.3.

Figure 4.8 gives three representative cases abstracted from the JDK where

Obs 4.3 holds. In Figure 4.8(a), O is the Object[] object allocated in line 2 and

x.f = y is this.elems[idx] = e, which is modeled as this.elems.arr = e, where

arr is a special field introduced to represent all the elements of an array (Sec-

tion 2.3.2). In this case, m = m′ = set(). Here, e satisfies Obs 4.3(a) trivially.

In Figure 4.8(b), O is the Entry object allocated in line 2, x.f = y is this.key

= k/this.value = v, m′ = Entry(), and m = addEntry(). Here, k/v (in line 5)

Chapter 4 Context Debloating for Object-sensitive Pointer Analysis 87

also satisfies Obs 4.3(a) trivially. In Figure 4.8(c), O is the HashMap object al-

located in line 2, x.f = y is this.table = new Entry[10], m′ = HashMap(), and

m = HashSet(). As new Entry[10] is context-dependent by Obs 4.2 (as well as

Obs 4.1 and Obs 4.3 if the entire code is considered), the HashMap object in line 2

is also context-dependent by Obs 4.3(b). In Obs 4.3(b), the circular dependences

on context-dependability are solved optimistically in Algorithm 1.

Motivating Example For this example given in Figure 4.3 (with class B from

Figure 4.1), Conch will identify A as the only context-dependent object. Let us

examine Figure 4.1, where A is created in line 15. A is context-dependent as it

satisfies all the three observations: (1) A has an instance field f, which has a write

and a read in lines 9 and 10, respectively (Obs 4.1), (2) A can flow out of B() via

the store statement in line 15 (Obs 4.2), and (3) o is stored into A.f in line 9, where

o happens to be a parameter of setF() (Obs 4.3). Let us now consider B3 and B4

created in Figure 4.3. Both are context-independent as both satisfy Obs 4.1 (with

an instance field g of B3/B4 stored in B() and loaded in foo()/bar() in Figure 4.1)

and Obs 4.3 (due to the existence of this.g = new A(); // A in line 15, where A is

context-dependent) but not Obs 4.2 (as B3/B4 does not flow out of its containing

method foo0,0()/bar0,0()). Finally, all the other objects are context-independent

as they do not contain instance fields and are used only locally, failing to satisfy

any of the three observations stated.

Discussion Conch relies on Obs 4.1– Obs 4.3 to generate three corresponding

linearly verifiable conditions for determining the context-dependability of an object.

In Section 4.4, we introduce a lightweight IFDS-based algorithm for verifying these

conditions efficiently. In Section 4.5, we demonstrate Conch is highly effective for

real-world programs.

88 Chapter 4 Context Debloating for Object-sensitive Pointer Analysis

4.3 Context Debloating

To debloat contexts, we assume that D represents the set of context-independent

objects found by Conch. Thus, the objects in H \ D are context-dependent. To

support context debloating, we have defined a new context constructor for kobj:

Cons(O, htx, l, ctx) =


O if O ∈ D

dO ++ htxek if O ∈ H \ D
(4.1)

For a context-dependent receiver object, we proceed identically as before. For a

context-independent receiver object, we no longer distinguish it under its different

allocators, by setting its heap context as htx = [], eliminating the context explosion

problem that would otherwise have occurred when it is used to construct the context

of an invoked method.

Conch is conceptually simple, algorithmically easy to plug into any existing

object-sensitive pointer analysis, and practically effective as validated during our

extensive evaluation.

4.4 Conch

We introduce an IFDS-based algorithm [65] for verifying efficiently the three mostly

necessary conditions stated in Obs 4.1 – Obs 4.3 to find the context-dependent

objects in a program. As these conditions are not sufficient, we may mis-classify

context-independent objects as being context-dependent (but err on the side of

preserving precision). As these conditions are mostly but not strictly necessary

(Figure 4.6), we may occasionally mis-classify context-dependent objects as being

context-independent (at a small loss of precision). We use the points-to information

Chapter 4 Context Debloating for Object-sensitive Pointer Analysis 89

pre-computed by Andersen’s analysis [3,36] (Figure 2.2). We first give a high-level

overview of Algorithm 1 and then discuss how to verify these conditions.

Conch takes a program P as input and returns D as the set of context-

independent objects in P for context-debloating. Some additional notations are

in order. For a given object O, fieldsOf(O) denotes the set of the fields of O. In

addition, hasLoad(O, f) (hasStore(O, f)) holds if P contains a load · · · = x.f (store

x.f = · · ·) such that O ∈ PTS(x). CI and CD, which are initialized to be ∅ (line 1),

represent the sets of context-independent and context-dependent objects found so

far, respectively. There are two stages, with the first stage (lines 2-16) for verifying

Obs 4.1, Obs 4.2 and Obs 4.3(a) and the second stage (lines 17-23) for verifying

Obs 4.3(b).

4.4.1 Verifying Observation 4.1

In lines 3-4, an object Ol is classified as being context-independent (and inserted

into CI) if it does not satisfy Obs 4.1. Otherwise, we will proceed to verify Obs 4.2

and Obs 4.3.

4.4.2 Verifying Observation 4.2

In lines 5-6, an object Ol is classified as being context-independent (and inserted

into CI) if it does not satisfy Obs 4.2, i.e., Ol /∈ leakObjects, where leakObjects

contains the set of objects that can flow out of their containing methods by Obs 4.2.

Otherwise, we will proceed to verify Obs 4.3.

We introduce an IFDS-based algorithm given in Figure 4.13 for computing

leakObjects in P context-sensitively, based on the DFA (Deterministic Finite Au-

tomaton) given in Figure 4.12. Computing leakObjects entails reasoning about

object reachability in P . Let us describe it incrementally.

90 Chapter 4 Context Debloating for Object-sensitive Pointer Analysis

Algorithm 1: Conch: context debloating.
Input: P // Input program
Output: D. // Set of Context-Indep Objects

1 CI← CD← ∅
2 for Ol ∈ H do
3 if ∄ f ∈ fieldsOf(Ol) s.t hasLoad(Ol, f) ∧ hasStore(Ol, f) then
4 CI = CI ∪ {Ol} // Obs 1
5 else if Ol /∈ leakObjects then
6 CI = CI ∪ {Ol} // Obs 2
7 else
8 R(Ol) = {l′ : x.f = y in P | Ol ∈ PTS(x)}
9 for l′ : x.f = y ∈ R(Ol) do

10 if MethodOf(l′) is a constructor of Ol then
11 m = MethodOf(l)
12 else
13 m = MethodOf(l′)
14 if depOnParam(y,m) then
15 CD = CD ∪ {Ol} // Obs 3(a)
16 break

17 UK← H \ (CI ∪ CD), changed ← true
18 while changed do
19 changed ← false
20 for Ol ∈ UK do
21 if ∃ l′ : x.f = y ∈ R(Ol) s.t. PTS(Ol.f) ∩ CD 6= ∅ then
22 CD = CD ∪ {Ol} // Obs 3(b)
23 changed ← true

24 D = CI ∪ (UK \ CD);
25 return D

Initially, we start with a parameterless method containing no calls. Its PAG [36]

can be built by the rules in Figure 4.9. Our analysis is field-insensitive, as reflected

by [D-Load] and [D-Store].

Figure 4.10(a) gives a DFA for tracing approximately how an object O allocated

in a method flows over the PAG. There are four states: H (starting at a heap

object), F (moving forwards in the PAG), B (moving backwards in the PAG), and

E (exiting from the allocating method). Due to the absence of parameters and

returns, no object can flow out of a method, once it is allocated inside, as indicated

by the lack of transitions into the final state E.

Chapter 4 Context Debloating for Object-sensitive Pointer Analysis 91

x = new T // O

O
new−−→ x x

new−−→ O
[D-New]

x = y

y
assign−−−→ x x

assign−−−→ y

[D-Assign]

x = y.f

y
load−−→ x x

load−−→ y

[D-Load]
x.f = y

y
store−−→ x

[D-Store]

Figure 4.9: PAG edges for a parameterless method with no calls.

Hstart

F

B

E

new

assign

store

assign | load

new

(a) No calls/parameters/returns

Hstart

F

B

E

new

assign

store

return

assign | load

paramnew

(b) No calls

Figure 4.10: Two intermediate DFAs for the DFA in Figure 4.12.

92 Chapter 4 Context Debloating for Object-sensitive Pointer Analysis

Let us explain the object reachability analysis supported by this DFA (Fig-

ure 4.12(a)). If the DFA starts with an object O under state H and transits to a

node x under state F by following a sequence of PAG edges, then either O flows

directly to x (via a new edge and possibly some assign edges) or O first flows into

an access path O′.f1. · · · .fn = O, where O′, which is a locally allocated object,

flows to x. If the DFA starts with an object O under state H and transits to a

node y under state B, then either O is stored directly into an access path of y, i.e.,

y.f1. · · · .fn = O, or O is firstly stored into an access path of some locally allocated

object O′ and then O′ is stored into an access path of y, i.e., y.f1. · · · .fn = O′. In

this DFA, the load edges in the PAG are ignored as we track where O rather than

its pointed-to objects flow to (but are used by the DFA in Figure 4.14 for comput-

ing depOnParam). In addition, the DFA also ignores the store edges in the PAG,

as we assume that a method rarely contains a store and a load operating on the

same field of an object (which is often accessed via its getter and setter). In the

rare cases where this fails to hold, Conch may classify a context-dependent object

as being context-independent, causing the underlying pointer analysis to lose some

precision.

To support parameters and return variables, we add their self-loop edges using

the rules in Figure 4.11 and transform the DFA in Figure 4.10(a) into the one

in Figure 4.10(b). Once an object allocated in a method flows to a parameter

(suggested by param) or the return variable (suggested by return) under state E, it

has leaked.

p is a parameter

p
param−−−→ p

[D-Param]
ret is a return variable

ret return−−−→ ret
[D-Return]

Figure 4.11: PAG edges for parameters and return variables.

Chapter 4 Context Debloating for Object-sensitive Pointer Analysis 93

The final DFA is presented in Figure 4.12, where the three dotted transitions

are added for handling call statements. While each method has its own PAG,

some summary edges are added to its PAG for its call sites to capture the inter-

procedural value-flows across these call sites context-sensitively, along the three

dotted transitions. The call graph is built using PTS.

Hstart

F

B

E

new

assign

store

interAssign
return

interStore

assign | load

param
interLoad
new

Figure 4.12: The DFA for verifying Obs 4.2.

Given a call statement l : x = a0.m(a1, ..., ar) contained in method M , let m′

be a resolved target method (with pm
′

i being its i-th parameter and retm
′ being its

return variable). Let n1 and n2 be two PAG nodes. We write 〈n1, S1〉 → 〈n2, S2〉

(known as a path edge in [65]) to indicate that node n1 at state S1 can reach node

n2 at state S2. Let us write GM as the PAG of M . There are four cases considered

when m′ is analyzed:

• 〈pm′
i , F 〉 → 〈pm′

j , E〉: pm
′

i is saved into some access path of pm
′

j , i.e.,

pm
′

j .f1. · · · .fn = pm
′

i . Thus, we add a summary edge, ai
interStore−−−−−→ aj (i.e.,

aj.f = ai), to GM to propagate this reachability fact inter-procedurally.

94 Chapter 4 Context Debloating for Object-sensitive Pointer Analysis

• 〈pm′
i , F 〉 → 〈retm′

, E〉: pm
′

i is saved into some access path of a locally allo-

cated object O in m′, i.e., O.f1. · · · .fn = pm
′

i , and then O flows out of m′ via

its return. Thus, we add a summary edge, ai
interAssign−−−−−−→ x, to GM to reflect

this reachability fact inter-procedurally.

• 〈retm′
, B〉 → 〈pm′

i , E〉: retm
′ is loaded from some access path of pm′

i , i.e.,

retm
′
= pm

′
i .f1. · · · .fn. Thus, we add a summary edge, x interLoad−−−−−→ ai (i.e.,

x = ai.f), to GM to propagate this reachability fact inter-procedurally.

• 〈O,H〉 → 〈retm′
, E〉: O, which is allocated in m′, flows out of m′ via its

return. We introduce a symbolic object Syml to abstract all the possible

objects returned from the call site l and continue our analysis in M .

Figure 4.13 gives our IFDS-based algorithm [65] for computing leakObjects,

operating on a PAG instead of a CFG representation of a program. The rules in

[Seeds] inject three kinds of path edges, where the first one is for tracing leak

objects while the other two are for finding summary edges (which are not injected

on-demand in order to improve parallelism in a parallel implementation of our

algorithm). The rules in [Propagate] perform the reachability analysis according

to the DFA in Figure 4.12. Note that the three dotted transitions in the DFA are

implicitly handled by the summary edges generated in [Summary]. Finally, we

collect the objects that can reach the final state, E, by using [Collect].

4.4.3 Verifying Observation 4.3

In lines 8-16, we verify if an object Ol satisfies Obs 4.3(a). In the case of a positive

answer, Ol is considered immediately as being context-dependent (and thus inserted

into CD), since Ol has already satisfied both Obs 4.1 and Obs 4.2 at this point.

Otherwise, we proceed to verify Obs 4.3(b) in lines 17-23.

Chapter 4 Context Debloating for Object-sensitive Pointer Analysis 95

〈Ol, H〉 → 〈Ol, H〉 〈pm′
i , F 〉 → 〈pm′

i , F 〉 〈retm′
, B〉 → 〈retm′

, B〉
[Seeds]

〈n1, S1〉 → 〈Ol, H〉 l : n2 = new T

〈n1, S1〉 → 〈n2, F 〉
〈n1, S1〉 → 〈n2, F 〉 l : n3 = n2

〈n1, S1〉 → 〈n3, F 〉
〈n1, S1〉 → 〈n2, F 〉 l : n3.f = n2

〈n1, S1〉 → 〈n3, B〉
〈n1, S1〉 → 〈n2, B〉 l : n2 = n3 | n3.f

〈n1, S1〉 → 〈n3, B〉
[Propagate]

〈n1, S1〉 → 〈n2, B〉 l : n2 = new T S1 6= B

〈n1, S1〉 → 〈Ol, H〉
〈n1, S1〉 → 〈n2, S2〉 〈n2, S2〉 → 〈n3, S3〉 ∈ Sum

〈n1, S1〉 → 〈n3, S3〉
〈n1, S1〉 → 〈retm

′
, F 〉

〈n1, S1〉 → 〈retm
′
, E〉

〈n1, S1〉 → 〈pm
′

i , B〉
〈n1, S1〉 → 〈pm

′
i , E〉

〈pm′
i , F 〉 → 〈pm′

j , E〉 pm
′

i 6= pm
′

j l : x = a0.m(a1, · · · , ar) O ∈ PTS(a0) m′ = Dispatch(m,O)

〈ai, F 〉 → 〈aj, B〉 ∈ Sum
〈pm′

i , F 〉 → 〈retm′
, E〉 l : x = a0.m(a1, · · · , ar) O ∈ PTS(a0) m′ = Dispatch(m,O)

〈ai, F 〉 → 〈x, F 〉 ∈ Sum
[Summary]

〈retm′
, B〉 → 〈pm′

i , E〉 l : x = a0.m(a1, · · · , ar) O ∈ PTS(a0) m′ = Dispatch(m,O)

〈x,B〉 → 〈ai, B〉 ∈ Sum
〈O,H〉 → 〈retm′

, F 〉 l : x = a0.m(a1, · · · , ar) O ∈ PTS(a0) m′ = Dispatch(m,O)

〈x,B〉 → 〈Syml, H〉 ∈ Sum 〈Syml, H〉 → 〈x, F 〉 ∈ Sum

〈Ol, H〉 → 〈pm
′

i , E〉
Ol ∈ leakObjects

〈Ol, H〉 → 〈retm
′
, E〉

Ol ∈ leakObjects
[Collect]

Figure 4.13: Rules for computing leakObjects, i.e., the set of objects
that can flow out of their containing methods for verifying Obs 4.2.
Si ∈ {H,F,B}, where i ∈ {1, 2, 3} and Syml is a symbolic object abstracting
all objects returned from call site l.

96 Chapter 4 Context Debloating for Object-sensitive Pointer Analysis

The key to verifying Obs 4.3(a) lies in depOnParam(y,m), which returns true

if y is data-dependent on any parameter of method m. We have also designed and

implemented an IFDS-based algorithm for computing depOnParam, in a similar

manner as how we have computed leakObjects in Figure 4.13, by making use of a

simpler DFA given in Figure 4.14.

Fstart E

assign | load

interAssign

return

Figure 4.14: The DFA used for computing depOnParam.

This DFA has only two states, F and E, recognizing only four types of PAG

edges, where interAssign is a summary edge introduced for supporting call state-

ments. Given a call statement x = a0.m(a1, · · · , ar) in method M . Let m′ be a

target method invoked. When 〈pm′
i , F 〉 → 〈retm′

, E〉 happens, retm′ is recognized

to be data-dependent on pm
′

i (i.e., retm′
= pm

′
i .f1. · · · .fn). Thus, we add a sum-

mary edge, ai
interAssign−−−−−−→ x, to the PAG of m to propagate this reachability fact

inter-procedurally from the callee m′ to the caller M .

Our algorithm for computing depOnParam, which proceeds forwards from

method parameters, is a simplified version of the one in Figure 4.13. For [Seeds],

only the parameters need to be injected. The rules for [Propagate], are similar.

For [Summary], we use the summary edges added as discussed above. Finally, let

dps(v,mv) = {pmv
i | 〈p

mv
i , F 〉 → 〈y, F 〉}, where v is a variable defined in its contain-

ing method mv and pmv
i is some (i-th) parameter of mv. Then depOnParam(y,m)

Chapter 4 Context Debloating for Object-sensitive Pointer Analysis 97

can be defined recursively as (by taking care of chained constructors, in practice):

depOnParam(y,m) =


dps(y,my) 6= ∅ if m = my∨

p
my
i ∈dps(y,my)

depOnParam(ai,m) otherwise
(4.2)

where ai is the corresponding argument of pmy

i .

Finally, Obs 4.3(b) can be verified straightforwardly. At this point, CI and CD

contain the sets of context-independent and context-dependent objects found so

far. Let O be an object in H\ (CI∪CD). O is regarded as being context-dependent

if it can point to any context-dependent object (found so far) transitively and

context-independent otherwise.

4.4.4 Soundness and Time Complexity

Conch is sound as it may mis-classify some context-dependent objects as being

context-independent and thus cause the underlying pointer analysis to produce

over-approximated points-to information, resulting in some loss of precision.

The worst-case time complexity of Conch in analyzing a program P is linear to

the number of its statements, for three reasons. First, leakObjects can be computed

according to Figure 4.13 in O(ED3) [65], where E is the number of PAG edges in

P , which are constructed linearly to the number of statements in P according to

Figures 4.9 and 4.11, and D = 4 is the number of states of the DFA in Figure 4.12.

Second, the first stage of Algorithm 1 (lines 2-16) runs in O(|L|), where L is the

set of statements in P . Finally, the second stage of Algorithm 1 (lines 17-23) can

be efficiently performed in O(|H|), where H is the set of heap objects in P .

98 Chapter 4 Context Debloating for Object-sensitive Pointer Analysis

4.5 Evaluation

We demonstrate the effectiveness of our Conch approach by addressing the fol-

lowing two research questions:

• RQ1. Is Conch precise and efficient?

• RQ2. Can Conch speed up existing object-sensitive analysis algorithms

significantly?

Implementation. We have implemented Conch in Soot [89], a program anal-

ysis and optimization framework for Java, on top of its context-insensitive Ander-

sen’s pointer analysis, Spark [36] (for computing PTS). Conch is implemented in

about 1500 lines of Java code, which has been released as an open-source tool at

http://www.cse.unsw.edu.au/~corg/conch along with a reproducible artifact in

the form of a Docker image. As described in Section 4.2, Conch aims to boost

the performance of all object-sensitive pointer analysis algorithms. We report and

analyze our results by applying Conch to debloat two representative baselines,

kobj (an object-sensitive version of Spark) and Zipper [40] (the latest version

b83b038, which can deliver the arguably best speedups for kobj among the re-

cent algorithms for supporting selective context-sensitivity [22,29,40,49,74] in our

experimental setting).

Experimental Setting. kobj is a standard in-house implementation of Spark

in Soot [19]. As for Zipper (originally released in Doop [72] but used here to

accelerate kobj in Soot), we have used an analysis setting that is as close as

possible to the one used by Zipper in several major aspects. First, we perform an

exception analysis on the fly with kobj as in Doop by handling exceptions along

the so-called exception-catch links [10]. Second, we use the declared type of an

array element instead of java.lang.Object to filter type-incompatible points-to

http://www.cse.unsw.edu.au/~corg/conch

Chapter 4 Context Debloating for Object-sensitive Pointer Analysis 99

objects. Third, we handle native code by using the summaries provided in Soot.

Fourth, we analyze a static method m by using the contexts of m’s closest callers

that are instance methods (on the call stack) and resolve Java reflection by using

the reflection log generated by Tamiflex [9] as is often done in the pointer analysis

literature [40,73,74,82]. Finally, objects that are instantiated from StringBuilder

and StringBuffer as well as Throwable (including its subtypes) are distinguished

per dynamic type and then analyzed context-insensitively as is done in Doop [11]

and WALA [26].

We have conducted our experiments on an Intel(R) Xeon(R) CPU E5-1660

3.2GHz machine with 256GB of RAM. We have selected a set of 12 popular

Java programs, including 9 benchmarks from DaCapo [7], and 3 Java applications

(checkstyle, JPC and findbugs). The Java library used is jre1.6.0_45. These

are the standard Java programs that are frequently used for evaluating pointer

analysis algorithms [40, 73, 74, 82]. The time budget used for running each pointer

analysis on a program is set as 12 hours. The analysis time of a program is an

average of three runs.

4.5.1 RQ1: Is Conch Precise and Efficient?

Given Base (a baseline pointer analysis) and Base+D (Base with its contexts de-

bloated by Conch), we measure the precision of Conch in terms of precision loss

incurred with respect to a given metric (Metric) when both Base and Base+D are

applied to analyze the same program:

∆ =
Metric(Base+D)− Metric(Base)

Metric(Base) (4.3)

where Metric(Base) and Metric(Base+D) are the metric numbers obtained by Base

and Base+D, respectively. We use four common metrics for measuring the preci-

100 Chapter 4 Context Debloating for Object-sensitive Pointer Analysis

sion of a context-sensitive pointer analysis [40, 49, 73, 86]: #fail-casts, #call-edges,

#poly-calls, and #reachables.

Table 4.1 gives our main results. For kobj, Z-kobj denotes the version of kobj

with selective context-sensitivity provided by Zipper. All the baselines (where

k ∈ {2, 3}) and their debloated versions are compared over the 12 Java programs.

Conch is very precise in terms of supporting context debloating while los-

ing negligible precision. Our approach preserves the precision of all the base-

lines for 10 programs consisting of the 9 DaCapo benchmarks and findbugs.

For checkstyle and JPC, our approach suffers from an average precision loss

of only less than 0.1% (across the four metrics). This happens since a

PropertyChangeEvent object created in method firePropertyChange(...) of

class java.beans.PropertyChangeSupport and a LineReader object created in

method load(InputStream) of java.util.Properties have been misclassified as

being context-independent by Conch as they do not satisfy Obs 4.2.

Conch is also highly efficient (as a pre-analysis). Table 4.2 gives the times spent

by Spark [36], Zipper [40] and Conch. Note that both Zipper and Conch are

designed to be multi-threaded (with 8 threads used in our experiments). Conch

is slightly faster than Zipper and Spark across all the 12 programs. On average,

we have 2.6 seconds (Conch), 10.4 seconds (Zipper) and 12.5 seconds (Spark).

Thus, Conch is efficient enough for supporting context debloating.

4.5.2 RQ2: Can Conch Speed Up Baseline Analyses?

Table 4.1 also gives the analysis times of all the analyses. Conch deliver significant

speedups (geometric means) over all the baselines. For kobj, the speedups of

2obj+D over 2obj range from 1.7x (for pmd) to 9.0x (for findbugs) with an

average of 2.6x. When k = 3, the speedups of 3obj+D over 3obj are more

Chapter 4 Context Debloating for Object-sensitive Pointer Analysis 101

Table 4.1: Main results. In all metrics (except for speedups), smaller
is better. Given an analysis Base, Base+D is its debloated version by
Conch. OoM stands for “Out of Memory”.

Classic kOBJ Selective kOBJ
Prog Metrics 2OBJ 2OBJ+D 3OBJ 3OBJ+D Z2OBJ Z2OBJ+D Z3OBJ Z3OBJ+D

Time (s) 45.4 13.9 (3.3x) 1049.3 185.4 (5.7x) 20.8 7.8 (2.7x) 337.9 32.1 (10.5x)
#fail-casts 509 509 449 449 559 559 507 507
#call-edges 51176 51176 51149 51149 51394 51394 51367 51367
#poly-calls 1622 1622 1615 1615 1643 1643 1636 1636

antlr

#reachables 7804 7804 7803 7803 7842 7842 7841 7841
Time (s) 743.8 359.5 (2.1x) > 12h 4093.7 519.9 279.7 (1.9x) OoM 2771.2
#fail-casts 1314 1314 - 1221 1368 1368 - 1279
#call-edges 56699 56699 - 56464 57192 57192 - 57036
#poly-calls 1695 1695 - 1675 1732 1732 - 1716

bloat

#reachables 9021 9021 - 9005 9093 9093 - 9085
Time (s) 253.0 85.5 (3.0x) OoM 4215.9 34.6 20.3 (1.7x) 573.6 178.3 (3.2x)
#fail-casts 1348 1348 - 1241 1418 1418 1323 1323
#call-edges 72457 72457 - 72023 73123 73123 72738 72738
#poly-calls 2032 2032 - 2008 2060 2060 2040 2040

chart

#reachables 15143 15143 - 15113 15269 15269 15247 15247
Time (s) > 12h 4113.5 OoM OoM 2956.3 2487.7 (1.2x) OoM OoM
#fail-casts - 3215 - - 3357 3357 - -
#call-edges - 145763 - - 146492 146492 - -
#poly-calls - 8720 - - 8737 8737 - -

eclipse

#reachables - 19916 - - 19985 19985 - -
Time (s) 18.6 10.5 (1.8x) 572.3 177.8 (3.2x) 9.2 5.1 (1.8x) 113.3 28.1 (4.0x)
#fail-casts 395 395 336 336 444 444 400 400
#call-edges 34120 34120 34100 34100 34343 34343 34323 34323
#poly-calls 808 808 802 802 832 832 826 826

fop

#reachables 7582 7582 7582 7582 7620 7620 7620 7620
Time (s) 19.4 8.7 (2.2x) 555.3 192.6 (2.9x) 9.4 4.9 (1.9x) 129.5 31.0 (4.2x)
#fail-casts 394 394 340 340 448 448 398 398
#call-edges 33495 33495 33468 33468 33728 33728 33701 33701
#poly-calls 918 918 911 911 944 944 937 937

luindex

#reachables 7017 7017 7016 7016 7057 7057 7056 7056
Time (s) 30.4 11.8 (2.6x) 2225.7 252.1 (8.8x) 13.2 5.2 (2.5x) 622.7 39.2 (15.9x)
#fail-casts 409 409 357 357 466 466 418 418
#call-edges 36377 36377 36350 36350 36605 36605 36578 36578
#poly-calls 1116 1116 1109 1109 1143 1143 1136 1136

lusearch

#reachables 7669 7669 7668 7668 7707 7707 7706 7706
Time (s) 41.6 24.2 (1.7x) 1236.1 257.0 (4.8x) 23.9 14.9 (1.6x) 344.7 52.5 (6.6x)
#fail-casts 1432 1432 1367 1367 1514 1514 1461 1461
#call-edges 59864 59864 59805 59805 60029 60029 59970 59970
#poly-calls 2357 2357 2351 2351 2382 2382 2376 2376

pmd

#reachables 11841 11841 11841 11841 11880 11880 11880 11880
Time (s) 565.3 298.2 (1.9x) OoM 1632.1 230.7 227.5 (1.0x) 2487.7 1125.6 (2.2x)
#fail-casts 600 600 - 546 657 657 609 609
#call-edges 46653 46653 - 46621 46842 46842 46815 46815
#poly-calls 1613 1613 - 1606 1636 1636 1629 1629

xalan

#reachables 9659 9659 - 9657 9701 9701 9700 9700
Time (s) 1014.6 349.1 (2.9x) > 12h OoM 404.4 236.1 (1.7x) OoM 4887.4
#fail-casts 1130 1130 - - 1206 1206 - 1117
#call-edges 67039 67041 - - 67854 67854 - 66892
#poly-calls 2210 2210 - - 2268 2268 - 2211

checkstyle

#reachables 12314 12314 - - 12383 12383 - 12342
Time (s) 106.1 54.6 (1.9x) 2163.3 240.6 (9.0x) 34.4 26.3 (1.3x) 181.0 44.8 (4.0x)
#fail-casts 1356 1356 1206 1206 1431 1431 1278 1278
#call-edges 80965 80978 79297 79310 81616 81629 79932 79945
#poly-calls 4263 4264 4127 4128 4324 4325 4187 4188

JPC

#reachables 15508 15508 15161 15161 15582 15582 15232 15232
Time (s) 1629.6 180.1 (9.0x) OoM 936.3 131.3 50.3 (2.6x) 1890.0 186.8 (10.1x)
#fail-casts 2072 2072 - 1696 2144 2144 1956 1956
#call-edges 87915 87915 - 86993 88567 88567 87741 87741
#poly-calls 3655 3655 - 3621 3670 3670 3643 3643

findbugs

#reachables 16266 16266 - 16219 16315 16315 16287 16287

102 Chapter 4 Context Debloating for Object-sensitive Pointer Analysis

Table 4.2: Times spent by pre-analyses in seconds.

antlr bloat chart eclipse fop luindex lusearch pmd xalan checkstyle JPC findbugs
Spark 8.6 8.9 15.6 25.9 7.6 6.9 7.8 11.7 8.7 14.0 17.4 16.7
Zipper 4.6 6.4 16.4 25.5 4.0 3.7 4.3 9.5 10.2 14.5 9.8 16.2
Conch 1.7 2.0 3.2 6.6 1.5 1.4 1.4 2.2 2.5 2.9 2.6 3.1

impressive, ranging from 2.9x (for luindex) to 9.0x (for JPC) with an average of

5.2x. For Zipper, the speedups of Z2obj+D over Z-2obj range from 1.0x (for

xalan) to 2.7x (for antlr) with an average of 1.8x. When k = 3, the speedups of

Z3obj+D over Z-3obj are also more impressive, ranging from 2.2x (for xalan) to

15.9x (for lusearch) with an average of 5.6x.

These results suggest that the speedups delivered by Conch increase as k

increases, implying that Conch can help all the baselines improve their scalabil-

ity. In particular, 2obj+D scales one more benchmark, i.e., eclipse than 2obj,

3obj+D can scale 4 more benchmarks (bloat, chart, xalan, and findbugs) than

3obj, and Z3obj+D can scale 2 more benchmarks (bloat and checkstyle) than

Z-3obj. In general, an analysis may be unscalable due to running either out of

memory (“OoM”) or the time budget (“> 12h”).

Therefore, Conch can accelerate existing object-sensitive pointer analyses sig-

nificantly with negligible loss in precision. These include not only kobj (the stan-

dard algorithm) but also its variants enabled by, e.g., Zipper [40] (one recent

attempt on applying selective context-sensitivity to improve the performance of

kobj).

Below we analyze in detail why context debloating can enable baseline analy-

ses, kobj and Z-kobj, to improve their efficiency and scalability (as reported in

Table 4.1).

Figure 4.15 depicts the percentage distribution of context-dependent objects

and context-independent objects classified by Conch. Conch has successfully

identified a large percentage of context-independent objects in all the programs,

Chapter 4 Context Debloating for Object-sensitive Pointer Analysis 103

antlr bloat chart eclipse fop luindexlusearch pmd xalan
checkstyle JPC findbugs

0%
20%
40%
60%
80%

100%
Context-Independent Objects Context-Dependent Objects

Figure 4.15: Percentage distribution of the two types of objects.

Table 4.3: Average number of contexts analyzed for a method by kOBJ,
kOBJ+D, ZkOBJ and ZkOBJ+D, where k ∈ {2, 3}.

antlr bloat chart eclipse fop luindex lusearch pmd xalan checkstyle JPC findbugs
2OBJ 27.1 30.3 36.5 - 15.6 17.1 20.0 17.3 50.8 66.4 24.7 37.9

2OBJ+D 13.1 18.3 20.8 31.1 9.2 9.9 10.3 10.3 31.6 41.4 16.0 18.8
Z2OBJ 8.1 14.3 6.9 14.8 4.9 5.6 6.0 6.1 15.3 18.7 7.4 9.6

Z2OBJ+D 4.8 8.7 5.2 12.3 3.6 4.0 4.0 4.4 11.8 14.4 6.1 7.3
3OBJ 99.8 - - - 53.0 58.1 91.5 53.5 - - 87.2 -

3OBJ+D 24.6 39.0 78.9 - 19.1 21.3 22.2 18.7 61.6 - 26.1 29.5
Z3OBJ 26.5 - 21.7 - 14.3 16.7 23.5 17.6 60.7 - 14.5 25.7

Z3OBJ+D 8.2 17.3 12.5 - 6.4 7.1 7.3 7.1 22.6 57.5 7.7 10.8

ranging from 65.6% (in eclipse) to 78.7% (in fop) with an average of 72.4%. Thus,

a large amount of precision-irrelevant contexts has been eliminated via context

debloating.

Table 4.3 compares the baseline analyses (i.e., kobj and Z-kobj) and their

debloated counterparts (i.e., kobj+D and Zkobj+D) in terms of the average

number of contexts analyzed for a method, where k ∈ {2, 3}. The debloated

analyses have achieved a substantial reduction in terms of this important metric

across all the programs, providing the reasons behind the improved efficiency and

scalability via context debloating.

Finally, we can also understand the effectiveness of Conch from a substantial

reduction it has achieved in the number of context-sensitive facts inferred. In Ta-

ble 4.4, #cs-gpts, #cs-pts and #cs-fpts represent the numbers of context-sensitive

objects pointed by global variables (i.e., static fields), local variables and instance

104 Chapter 4 Context Debloating for Object-sensitive Pointer Analysis

Table 4.4: Context-sensitive facts. For all the metrics, smaller is better.

Classic kOBJ Selective kOBJ
Prog Metrics 2OBJ 2OBJ+D 3OBJ 3OBJ+D Z2OBJ Z2OBJ+D Z3OBJ Z3OBJ+D

#cs-gpts 4.9K 2.1K 12.1K 2.5K 5.7K 2.3K 17.6K 2.7K
#cs-pts 19.8M 3.6M 228.8M 32.1M 18.6M 3.3M 205.1M 10.4M
#cs-fpts 0.6M 0.1M 13.6M 6.3M 0.6M 0.1M 13.7M 6.3M
#cs-calls 5.4M 1.3M 87.5M 22.7M 1.9M 0.5M 22.7M 1.1Mantlr

Total 25.8M 5.1M 329.8M 61.1M 21.1M 3.9M 241.6M 17.8M
#cs-gpts 3.1K 1.9K - 2.3K 3.9K 2.0K - 2.4K
#cs-pts 159.8M 68.0M - 325.0M 140.9M 53.6M - 235.0M
#cs-fpts 5.7M 4.6M - 28.8M 6.9M 4.6M - 28.0M
#cs-calls 47.1M 20.9M - 112.0M 38.2M 16.4M - 74.0Mbloat

Total 212.7M 93.5M - 465.8M 186.0M 74.5M - 336.9M
#cs-gpts 12.5K 6.9K - 11.3K 10.1K 5.5K 24.6K 6.9K
#cs-pts 56.9M 20.8M - 944.2M 16.2M 6.9M 166.8M 55.1M
#cs-fpts 1.1M 0.4M - 19.6M 0.7M 0.3M 21.7M 14.0M
#cs-calls 20.0M 8.5M - 332.8M 2.5M 1.4M 26.7M 10.1Mchart

Total 78.0M 29.7M - 1296.6M 19.5M 8.6M 215.3M 79.1M
#cs-gpts - 7.8K - - 21.9K 8.0K - -
#cs-pts - 585.7M - - 601.8M 512.5M - -
#cs-fpts - 12.8M - - 16.7M 13.5M - -
#cs-calls - 345.2M - - 161.2M 147.3M - -eclipse

Total - 943.7M - - 779.7M 673.4M - -
#cs-gpts 2.9K 1.8K 4.3K 2.0K 3.4K 1.9K 9.1K 2.2K
#cs-pts 4.1M 1.2M 67.8M 27.5M 3.7M 1.1M 47.0M 7.9M
#cs-fpts 0.2M 71.4K 8.0M 5.8M 0.2M 76.4K 8.2M 6.2M
#cs-calls 1.3M 0.5M 31.0M 20.0M 0.5M 0.2M 5.1M 0.7Mfop

Total 5.6M 1.8M 106.7M 53.2M 4.4M 1.4M 60.4M 14.8M
#cs-gpts 2.8K 1.6K 4.5K 2.0K 3.7K 1.8K 10.6K 2.2K
#cs-pts 4.4M 1.4M 72.6M 31.4M 4.1M 1.2M 53.0M 8.5M
#cs-fpts 0.2M 73.0K 9.0M 6.6M 0.2M 77.3K 9.0M 6.6M
#cs-calls 1.4M 0.6M 34.1M 22.9M 0.6M 0.3M 5.6M 0.8Mluindex

Total 6.0M 2.0M 115.6M 60.9M 4.9M 1.6M 67.7M 15.9M
#cs-gpts 2.9K 1.6K 4.2K 1.8K 3.7K 1.8K 10.3K 2.1K
#cs-pts 6.8M 1.6M 193.6M 37.8M 5.4M 1.4M 116.5M 10.1M
#cs-fpts 0.2M 77.4K 11.0M 7.9M 0.2M 82.7K 10.3M 7.9M
#cs-calls 3.1M 0.7M 149.3M 27.8M 1.1M 0.3M 41.8M 1.0Mlusearch

Total 10.1M 2.4M 353.9M 73.6M 6.7M 1.8M 168.6M 19.0M
#cs-gpts 3.4K 1.9K 5.1K 2.1K 5.3K 2.1K 21.3K 2.4K
#cs-pts 12.7M 5.1M 142.9M 42.0M 14.9M 4.8M 171.1M 14.8M
#cs-fpts 0.6M 0.3M 13.1M 8.4M 1.1M 0.4M 17.0M 9.0M
#cs-calls 3.9M 2.0M 56.8M 29.1M 2.2M 1.0M 17.4M 1.9Mpmd

Total 17.2M 7.3M 212.8M 79.6M 18.2M 6.2M 205.5M 25.7M
#cs-gpts 4.9K 2.9K - 3.2K 4.2K 2.8K 10.0K 3.2K
#cs-pts 160.4M 49.0M - 161.0M 51.1M 41.5M 517.5M 123.6M
#cs-fpts 6.3M 4.3M - 15.7M 5.4M 4.5M 33.1M 16.0M
#cs-calls 49.6M 21.6M - 103.4M 14.6M 13.7M 86.0M 52.8Mxalan

Total 216.3M 74.9M - 280.2M 71.2M 59.7M 636.6M 192.3M
#cs-gpts 7.7K 3.5K - - 10.8K 4.3K - 5.2K
#cs-pts 166.2M 44.7M - - 130.8M 38.3M - 353.9M
#cs-fpts 1.5M 0.4M - - 2.8M 0.6M - 141.6M
#cs-calls 86.5M 23.2M - - 24.1M 9.0M - 79.8Mcheckstyle

Total 254.2M 68.3M - - 157.6M 47.9M - 575.3M
#cs-gpts 7.3K 4.1K 21.3K 5.7K 7.0K 3.8K 16.4K 4.3K
#cs-pts 27.8M 11.9M 606.3M 48.0M 13.2M 7.0M 67.3M 12.2M
#cs-fpts 0.9M 0.3M 19.3M 7.2M 0.8M 0.3M 11.2M 6.7M
#cs-calls 9.8M 5.5M 93.8M 28.8M 2.8M 2.0M 8.2M 2.0MJPC

Total 38.5M 17.7M 719.5M 84.1M 16.8M 9.4M 86.7M 20.8M
#cs-gpts 34.1K 4.5K - 6.0K 11.0K 4.5K 43.8K 5.9K
#cs-pts 358.2M 41.2M - 126.9M 58.6M 19.5M 553.2M 38.6M
#cs-fpts 18.0M 1.0M - 23.1M 5.0M 1.0M 61.1M 23.9M
#cs-calls 147.2M 13.3M - 84.9M 13.2M 5.8M 101.5M 5.9Mfindbugs

Total 523.5M 55.5M - 234.8M 76.8M 26.2M 715.9M 68.4M

Chapter 4 Context Debloating for Object-sensitive Pointer Analysis 105

fields, respectively, and #cs-calls represents the number of context-sensitive call

edges. In general, the speedups of a pointer analysis over a baseline come from

a significant reduction in the number of context-sensitive facts computed by the

baseline. For example, 2obj+D is significantly faster than 2obj for findbugs

as its number of context-sensitive facts is significantly less than 2obj. Similarly,

Z3obj+D is also much faster than Z-3obj for lusearch. However, the analysis

time of a pointer analysis is not linearly proportional to the number of context-

sensitive facts computed [86]. Consider xalan. Z2obj+D has achieved a reduction

of 16.2% over Z-2obj in terms of the number of facts inferred but their analysis

times are comparable.

4.6 Conclusion

In this chapter, we have partially addressed the context explosion problem in kobj

when analyzing large object-oriented programs by context debloating. Our key

insight is to replace a set of two existing necessary conditions (whose verification is

undecidable) by a set of three necessary conditions that can be linearly verifiable

in terms of the number of statements in the program for determining the context-

dependability of any object. Our evaluation shows that our new approach, Conch,

can improve significantly the efficiency and scalability of not only kobj but also

existing approaches to selective context-sensitivity that can already accelerate the

performance of kobj.

106 Chapter 4 Context Debloating for Object-sensitive Pointer Analysis

Chapter 5

Precision-Preserving Acceleration

for k-CFA

While designing the selective approach, Selectx [48], for accelerating k-CFA, we

did not succeed in preserving the precision of k-CFA since the value flows related

to call graph construction are missing in the traditional CFL-reachability formula-

tion [76] (which Selectx is based on). How to develop a precision-preserving se-

lective approach to accelerate k-CFA remains to be a challenging research problem,

motivating us to design P3Ctx, the third fine-grained pointer analysis technique

introduced in this thesis.

The rest of this chapter is organized as follows. Section 5.1 gives an overview.

Section 5.2 motivates the development of LFCR by highlighting several challenges

faced in its design. Section 5.3 introduces LFCR by explaining how we address these

challenges and providing some insights in understanding its design. Section 5.4

introduces our LFCR-enabled pre-analysis for accelerating k-CFA, and Section 5.5

evaluates P3Ctx. Finally, Section 5.6 concludes this chapter.

107

108 Chapter 5 Precision-Preserving Acceleration for k-CFA

5.1 Overview

For object-oriented languages such as Java, k-callsite-sensitive pointer analysis (ab-

breviated to k-CFA) is either inclusion-based [3] or founded on context-free language

(CFL) reachability [63].

Andersen-style inclusion-based formulation for k-CFA [31, 74, 86] has been

adopted in several pointer analysis frameworks for Java, such as Doop [11],

Soot [89], Wala [26], and Jchord [56]. Given a program, its statements are

modeled as points-to set constraints, its methods’ calling contexts (abstracted by

their last k callsites) are tracked by parameterizing these constraints with context

abstractions, and its call graph is often constructed on the fly in order to achieve

the best precision and efficiency possible [21, 36, 38, 44, 67, 73].

On the other hand, the CFL-reachability formulation for k-CFA [76] has also

been used extensively in understanding and developing a wide range of pointer

analysis algorithms, such as demand-driven pointer/alias analysis [69,76,78,92,96],

context transformations [86], specification inference [6], library-code summarization

[69, 85], information flow analysis [42, 51], and selective context-sensitivity [40, 48].

Given a program, its points-to information is computed by solving a graph reach-

ability problem based on a so-called pointer assignment graph (PAG) [36]. This

consists of reasoning about the intersection of two CFLs, LFC = LF ∩LC , where LF

describes field accesses as balanced parentheses and LC enforces callsite-sensitivity

by matching method calls and returns as also balanced parentheses. However, a

separate algorithm (outside LFC) is used for call graph construction.

Compared with Andersen-style inclusion-based formulation, this LFC-based

CFL-reachability formulation for specifying k-CFA suffers from two serious limi-

tations due to the lack of a built-in call graph construction mechanism. First,

k-CFA may lose precision even if it uses the most precise call graph for a program

Chapter 5 Precision-Preserving Acceleration for k-CFA 109

(built in advance or on the fly). Second, any (meta) analysis that reasons about

CFL-reachability in terms of LFC will fail to make a connection with the value-

flow paths traversed by a separate call graph construction algorithm used, and

consequently, may make optimization decisions that reduce the precision of k-CFA

(among others).

In this chapter, we overcome these two limitations by introducing a complete

CFL-reachability formulation of k-CFA for Java with on-the-fly call graph con-

struction being built-in. We are not aware of any earlier attempt on this in the

literature. Our formulation consists of reasoning about the intersection of three

CFLs, LFCR = LF ∩ LC ∩ LR, where LF specifies not only field accesses as in LF

but also dynamic method dispatch, LC enforces callsite-sensitivity exactly as in LC ,

and LR supports parameter passing in the presence of built-in on-the-fly call graph

construction. We will discuss several challenges faced in designing LFCR and pro-

vide some insights for understanding our formulation. Note that the Melski-Reps

reduction [50] cannot be used to convert the inclusion-based formulation into LFCR

since LFCR is the intersection of three CFLs (rather than just one single CFL).

LFCR can be applied to all the applications that benefit from LFC . By for-

mulating k-CFA completely in terms of CFL-reachability, LFCR can be potentially

more useful than LFC for several recently-studied CFL-reachability-based anal-

yses: specification inference [6], library-code summarization [69, 85], information

flow analysis [42, 51], and selective context-sensitivity [40, 48]. To demonstrate its

utility, we introduce our third fine-grained pointer analysis technique, P3Ctx, the

first LFCR-enabled precision-preserving pre-analysis for accelerating k-CFA for Java

with selective context-sensitivity, which also serves to validate the correctness of

LFCR. In contrast, a recently proposed pre-analysis, Selectx [48], will always lose

precision as it is developed based on LFC [76].

110 Chapter 5 Precision-Preserving Acceleration for k-CFA

In summary, this chapter makes two major contributions:

• We introduce a CFL-reachability formulation LFCR of k-CFA for object-

oriented languages with on-the-fly call graph construction being built into

the formulation itself.

• We introduce an LFCR-enabled precision-preserving pre-analysis for acceler-

ating k-CFA for object-oriented languages with selective context-sensitivity.

Our evaluation, which is conducted in Soot [89] using a set of 12 representa-

tive Java benchmarks and applications, shows that our pre-analysis enables

k-CFA to achieve an average speedup of 3.1x while incurring negligible pre-

analysis overheads (0.8 seconds on average).

5.2 Motivation

To motivate our work, we use a small program (Section 5.2.1). We start with

Andersen-style inclusion-based formulation that comes with its own on-the-fly call

graph construction mechanism (Section 5.2.2). We then examine the limitations of

LFC when such a built-in mechanism is absent (Section 5.2.3). Finally, we discuss

several challenges faced in designing our new CFL-reachability formulation, LFCR,

with on-the-fly call graph construction being built-in (Section 5.2.4).

5.2.1 Example

Consider a Java program in Figure 5.1. Given a class T, we write T:foo() for

method foo() defined in T.

There are five classes, A, B, C, D and O, defined (lines 1-13). B and C are the

subclasses of A, both overriding method foo() defined in A. Method bar() (lines 14-

18) is a wrapper method which first stores whatever object pointed by its parameter

Chapter 5 Precision-Preserving Acceleration for k-CFA 111

1 class A {
2 void foo(D p) {
3 Object v = p.f;
4 }
5 }
6 class B extends A {
7 void foo(D q) { }
8 }
9 class C extends A {

10 void foo(D r) { }
11 }
12 class D { Object f; }
13 class O { }

14 static void bar(A x, O o) {
15 D d = new D(); // D1
16 d. f = o;
17 x.foo(d); // c3
18 }
19 static void main() {
20 O o1 = new O(); // O1
21 O o2 = new O(); // O2
22 A a = new A(); // A1
23 A b = new B(); // B1
24 bar(a, o1); // c1
25 bar(b, o2); // c2
26 }

Figure 5.1: A motivating example.
o into D1.f and then invokes A:foo() or B:foo(), depending on the dynamic type

of the object pointed by its parameter x. In main(), four objects, O1, O2, A1 and

B1, are created, in which A1 and O1 (B1 and O2) are passed into bar() as its first

and second arguments, respectively, at callsite c1 (c2).

Note that C:foo() may be regarded as being called conservatively in line 17

by a pointer analysis algorithm even though this cannot happen during program

execution.

5.2.2 Andersen-Style Inclusion-based Formulation

According to Figure 2.3, [I-VCall] not only discovers dynamically the target meth-

ods dispatched at a virtual callsite but also propagates iteratively the points-to

information inter-procedurally across the call graph thus built on the fly.

Table 5.1 lists the points-to results computed for the program in Figure 5.1

by 2-CFA according to the rules in Figure 2.3. For main(), analyzed under [],

its points-to relations are obtained trivially. As for bar(), there are two calling

contexts, [c1] and [c2]. Under [c1], we have PTS(x, [c1]) = {〈A1, []〉}, PTS(d, [c1]) =

112 Chapter 5 Precision-Preserving Acceleration for k-CFA

Table 5.1: The points-to results for the program in Figure 5.1 computed
by 2-CFA according to the rules in Figure 2.3.

Method Pointers PTS Method Pointers PTS

main()

〈o1, []〉 {〈O1, []〉}

bar()

〈x, [c1]〉 {〈A1, []〉}
〈o2, []〉 {〈O2, []〉} 〈o, [c1]〉 {〈O1, []〉}
〈a, []〉 {〈A1, []〉} 〈d, [c1]〉 {〈D1, [c1]〉}
〈b, []〉 {〈B1, []〉} 〈x, [c2]〉 {〈B1, []〉}

A:foo()
〈this, [c3, c1]〉 {〈A1, []〉} 〈o, [c2]〉 {〈O2, []〉}
〈p, [c3, c1]〉 {〈D1, [c1]〉} 〈d, [c2]〉 {〈D1, [c2]〉}
〈v, [c3, c1]〉 {〈O1, []〉} Field Pointers PTS

B:foo() 〈this, [c3, c2]〉 {〈B1, []〉} f 〈D1.f, [c1]〉 {〈O1, []〉}
〈q, [c3, c2]〉 {〈D1, [c2]〉} 〈D1.f, [c2]〉 {〈O2, []〉}

{〈D1, []〉}, and PTS(D1.f, [c1]) = PTS(o, [c1]) = {〈O1, []〉}. Then A:foo() is found

to be the target invoked by x.foo() at callsite c3 in line 17 ([I-VCall]). Thus,

PTS(p, [c3, c1]) = {〈D1, [c1]〉} and PTS(v, [c3, c1]) = {〈O1, []〉}. Similarly, when

bar() is analyzed under [c2], we have PTS(x, [c2]) = {〈B1, []〉}. Thus, x.foo() at

callsite c3 is now resolved to B:foo(). Note that 2-CFA is precise enough by not

resolving C:foo() as a target at callsite c3.

5.2.3 LFC-based CFL-Reachability Formulation

In this traditional LFC-based framework for solving k-CFA [76], a separate algo-

rithm for call graph construction is used. Thus, for a virtual callsite, parameter

passing that is prescribed by LFC is disconnected both conceptually and algorith-

mically with the dynamic dispatch process done at the callsite. We discuss the

resulting limitations by considering whether the call graph is constructed in ad-

vance and on the fly.

LFC + a Pre-Built Call Graph k-CFA may lose precision even if LFC uses the

mostly precise pre-built call graph possible. In this case, the methods invoked at

Chapter 5 Precision-Preserving Acceleration for k-CFA 113

“x.foo(d); // c3” (line 17) in Figure 5.1 are found to be A:foo() and B:foo().

However, due to the existence of the two LFC-paths:

O1 new−−→ o1 assign−−−→
ĉ1

o store[f]−−−−→ d new−−→ D1 new−−→ d assign−−−→
ĉ3

p load[f]−−−→ v (5.1)

O2 new−−→ o2 assign−−−→
ĉ2

o store[f]−−−−→ d new−−→ D1 new−−→ d assign−−−→
ĉ3

p load[f]−−−→ v (5.2)

This LFC-based CFL-reachability pointer analysis will conclude that v point to

both O1 and O2 although v points to O1 only by 2-CFA (Table 5.1), meaning that

O2 is spurious.

Why is the precision loss? In LFC , parameter passing for a virtual callsite

([P-VCall]) is modeled identically as a static callsite ([P-SCall]) in the form of

inter-procedural assign edges as shown in the two LFC-paths given above, without

being CFL-reachability-related to the receiver objects at the callsite. As a result,

LFC does not really understand that the first (second) LFC-path above can be

established only when x points to the receiver A1 (B1) under context [c1] ([c2]).

If LFC uses a less precise call graph, which is pre-built by, say, CHA [16], then

C:foo() will also be identified as a target method at callsite c3 (line 17). In this

case, r will also be found to point to D1 due to D1 new−−→ d assign−−−→
ĉ3

r. However, r’s

points-to set is empty by 2-CFA (not listed in Table 5.1).

LFC + On-the-Fly Call Graph Construction In solving k-CFA with LFC

on-demand [69,76,92], the methods at a virtual callsite are dispatched only under

a specific context, resulting in on-the-fly call graph construction.

Consider again “x.foo(d); // c3” (line 17) in Figure 5.1. We can now estab-

lish the LFC-path in Equation (5.1) as before but not the one in Equation (5.2) any

more, thereby concluding that v points to O1 only. In the former case, we reach d

114 Chapter 5 Precision-Preserving Acceleration for k-CFA

under context [c1] and then issue a points-to query to find what x points to under

[c1]. As x is found to point to A1 (causing A:foo() to be invoked at callsite c3), we

will continue traversing the remaining LFC-path from d and conclude that v points

to O1. In the latter case, reaching d under [c2] reveals B:foo() as the target at

callsite c3 instead (as x points to B1 under [c2]), thereby causing assign−−−→
ĉ3

p
load[f]−−−→ v

not to be traversed.

While LFC can be used to solve k-CFA on-demand (more precisely than if a

pre-built call graph is used), some precision loss may occur when a callsite has

several dispatch targets under a common calling context. Consider the following

code snippet (which reuses classes A, B, and D from Figure 5.1):

D d = new D(); // D1

if (...)

d.f = a = new A(); // A1

else

d.f = b = new B(); // B1

A x = d.f;

x.foo(null); // c

If we ask a separate call graph construction algorithm to find on-demand the target

methods at “x.foo(null); // c” under a currently given context invoking this

piece of code, A:foo() and B:foo() will be returned. If we then reason about

CFL-reachability with LFC , we will obtain:

A1 new−−→ a store[f]−−−−→ d new−−→ D1 new−−→ d load[f]−−−→ x assign−−−→
ĉ

thisA:foo() (5.3)

B1 new−−→ b store[f]−−−−→ d new−−→ D1 new−−→ d load[f]−−−→ x assign−−−→
ĉ

thisA:foo() (5.4)

Chapter 5 Precision-Preserving Acceleration for k-CFA 115

Call Graph
Construction

(Dynamic Dispatch)

LFC

x.foo(d)A:foo(p)

Find Target Methods

B:foo(q) �

�

�

Figure 5.2: Disconnection in the value flows between parameter passing
in LFC and dynamic dispatch at a virtual callsite.
Both A1 and B1 will flow to thisA:foo although B1 is spurious by [I-VCall] (since

it cannot be a receiver of A:foo()).

We see a loss of precision at such a virtual callsite since LFC does not handle its

receiver variable differently from its other arguments ([P-VCall] in Figure 2.5) un-

like Andersen-style inclusion-based formulation ([I-VCall]). Removing spurious

receiver objects such as B1 as discussed above with brute force, which is specified

formally by neither LFC nor the call graph construction algorithm used, is ad hoc.

Indeed, the LFC-based on-demand algorithm for solving k-CFA (released by the

authors of LFC [76] in Soot [89] and used by many others [69, 91] in the past 15

years) suffers still from this problem.

LFC + Separate Call Graph Construction LFC relies a separate algorithm

for call graph construction. In addition to cause k-CFA to lose precision as discussed

above, LFC suffers from another limitation, as it fails to capture all the value-flow

paths traversed during the analysis (regardless of whether the call graph is built in

advance or on the fly).

Consider again how “x.foo(d)” (line 17) in Figure 5.1 is analyzed. To pass d

to its corresponding parameter for every method invoked at the callsite according

to Andersen-style inclusion-based formulation ([I-VCall]), we must first find the

virtual methods dispatched on the receiver objects pointed by x and then perform

the actual parameter passing (from d to p if A:foo() is dispatched or d to q if

116 Chapter 5 Precision-Preserving Acceleration for k-CFA

B:foo() is dispatched). However, with LFC , as illustrated in Figure 5.2, parameter

passing (realized by inter-procedural assign edges ([P-VCall] in Figure 2.5)) is

both conceptually and algorithmically disconnected (�) with dynamic dispatch

at the callsite, without being CFL-reachability-related to its receiver objects.

As LFC is incomplete, any (meta) analysis that reasons about CFL-reachability

in terms of LFC may make some optimization decisions that reduce the precision

of k-CFA (among others). For example, a recent pre-analysis [48] that is developed

based on LFC for accelerating k-CFA with selective context-sensitivity will cause

k-CFA to lose precision.

5.2.4 LFCR: Necessity and Challenges

We introduce LFCR as the first complete CFL-reachability formulation of k-CFA

with built-in call graph construction, overcoming the limitations of LFC discussed

above. In particular, this enables us to develop the first precision-preserving pre-

analysis for accelerating k-CFA with selective context-sensitivity.

We have designed LFCR as the intersection of three CFLs to facilitate LFCR-

enabled CFL-reachability analyses. By noting that∞-CFA is undecidable and thus

both the LFC- and LFCR-path problems are undecidable (implying that either is

a context-sensitive language rather than a single CFL) [64], we list below three

challenges in handling virtual callsites:

• CHL1. How do we handle parameter passing for a receiver variable at a virtual

callsite precisely by avoiding the precision loss illustrated by the code given in

Sec. 5.2.3?

• CHL2. How do we perform dynamic dispatch at a virtual callsite during param-

eter passing for its non-receiver arguments by reasoning about CFL-reachability

Chapter 5 Precision-Preserving Acceleration for k-CFA 117

from these arguments to its receiver variable (as such a path does not exist in

the LFC-based formulation [76])?

• CHL3. How do we ensure that parameter passing at a virtual callsite (with

dynamic dispatch performed by LFCR itself) happens correctly with respect to

k-CFA [71]?

5.3 LFCR: Design and Insights

When solving a CFL-reachability problem with a CFL, the CFL and its underlying

graph structure are always inter-related and carefully designed together. To break

their cyclic dependencies, we first describe a new PAG representation used for rep-

resenting the value flows in a program (Section 5.3.1). We then formalize LFCR by

explaining how we address the three challenges (CHL1 – CHL3) and providing

some insights in understanding its design (Section 5.3.2).

5.3.1 Pointer Assignment Graph

Figure 5.3 gives the rules for building the PAG for a program. As in the case of

LFC (Figure 2.5), the inverse of a PAG edge is not given explicitly. For each PAG

edge x
ℓ−→
c
y, its inverse edge is defined as y

ℓ−→
c
x as in LFC exactly (Section 5.2.3),

except that a below-edge label can also be ĉ or č (in addition to ĉ and č), in which

case, ĉ = č and č = ĉ , where c signifies a callsite. To trigger dynamic dispatch,

an edge with a boxed below-edge label also represents conceptually a new kind of

inter-procedural value-flow entering into (marked by ĉ) or exiting from (marked

by č) from a method invoked at c.

Our PAG representation (for supporting LFCR) differs from that for supporting

LFC (Figure 2.5) in how virtual callsites are handled. Therefore, [C-Assign], [C-

118 Chapter 5 Precision-Preserving Acceleration for k-CFA

x = new T // O

O
new[T]−−−→ x

[C-New]
x = y

y
assign−−−→ x

[C-Assign]

x = y.f

y
load[f]−−−→ x

[C-Load]
x.f = y

y
store[f]−−−−→ x

[C-Store]

x = m(a1, . . . , an) // c

∀ i ∈ [1, n] : ai
assign−−−→

ĉ
pmi retm

assign−−−→
č

x
[C-SCall]

x = r.m(a1, . . . , an) // c t <: TypeContg(r) m′ = Dispatch(m, t)

∀ i ∈ [1, n] : ai
store[i]−−−→

ĉ
r r

load[0]−−−→
č

x r
assign−−−→ r#c

r
assign−−−→

č
r#c r#c dispatch[t]−−−−−→

ĉ
thism

′

[C-VCall]

M is an instance method

thisM
load[i]−−−→ pMi

[C-Param]
M is an instance method

retM
store[0]−−−−→ thisM

[C-Ret]

Figure 5.3: Rules for building the PAG required by LFCR.
Load], and [C-Store] are identical to [P-Assign], [P-Load], and [P-Store],

respectively. In addition, [C-SCall], which behaves also identically as [P-SCall],

handles parameter passing at a static callsite c simply as assignments in terms of

inter-procedural assign edges, with its entry (exit) context being ĉ (č).

[C-New], [C-VCall], [C-Param], and [C-Ret] build the PAG edges together

to enable LFCR to perform its own on-the-fly call graph construction at virtual

callsites. In [C-New] (unlike [P-New] in Figure 2.5), O
new[t]−−→ x encodes the

dynamic type t of O for supporting dynamic dispatch on O.

Given an instance method M (with thisM denoting its this variable), its i-

th (non-this) parameter pMi (where i starts from 1) and its return variable retM

are modeled as special fields of thisM (identified by their offsets). Thus, we can

initialize pMi with a load thisM
load[i]−−−→ pMi ([C-Param]) and thisM.0 with a store

retM
store[0]−−−−→ thisM ([C-Ret]).

Chapter 5 Precision-Preserving Acceleration for k-CFA 119

[C-VCall] differs fundamentally from [P-VCall] (Figure 2.5) in handling a

virtual callsite “x = r.m(a1, . . . , an) // c”. For convenience, we make use of r#c

(a temporary) to identify uniquely this particular occurrence of r at this callsite

(as r may also be used as a receiver variable elsewhere). When building the PAG,

we over-approximate the set of target methods invoked at each callsite (and conse-

quently, the call graph for the program) by using class hierarchy analysis (CHA) [16]

(due to t <: TypeContg(r) and m′ = Dispatch(m, t)). Note that LFCR will perform

its on-the-fly call graph construction over such an over-approximated PAG. To pass

a non-receiver argument ai (1 6 i 6 n) to its parameter pm
′

i of a target method,

m′, we make use of a store ai
store[i]−−−→

ĉ
r introduced in this rule and a matching

load thism′ load[i]−−−→ pm′
i ([C-Param]). By performing CFL-reachability under LFCR,

traversing such an edge will trigger a search for the dynamic type of every receiver

object pointed to by r (marked by ĉ). Encountering r
assign−−−→

č
r#c dispatch[t]−−−−−→

ĉ
thism′

(introduced in this rule) later signifies that one such a dynamic type t has been

found (marked by č) so that m′, where m′ = Dispatch(m, t), can be dispatched with

ĉ as its entry context (as desired), where c is recovered from c . By definition, a

dispatch edge also serves as an assign edge. As for the receiver variable r, we use

r
assign−−−→ r#c (without a need for searching itself). Finally, we assign retm

′ (saved

earlier in thism.0) ([C-Ret]) to x via a load a0
load[0]−−−→

č
x (introduced in this rule),

where č signifies the end of dynamic dispatch on r on exit from callsite c.

xdD1o

o1O1

o2O2

x#c3

aA1

bB1

thisA:foo() p v

thisB:foo() q

thisC:foo() r

new[O]

new[O]

new[A]

new[B]

new[D]

assign
ĉ1

assign
ĉ1

assign

ĉ2

assign

ĉ2

store[f]

store[1]

ĉ3
assign

č3

assign dispatch[A]

ĉ3

load[1] load[f]

dispatch[B]
ĉ3

load[1]
dispatch[C]
ĉ3

load[1]

Figure 5.4: The PAG constructed for the program given in Figure 5.1.

Figure 5.4 depicts the PAG for the program in Figure 5.1.

120 Chapter 5 Precision-Preserving Acceleration for k-CFA

5.3.2 LFCR

We express LFCR as the intersection of three CFLs, LFCR = LF ∩ LC ∩ LR, with

each specifying a different aspect of k-CFA. In Section 5.3.2.1, we first introduce

LF , which describes field accesses and dynamic dispatch, by addressing CHL1

and CHL2 (Section 5.3.2.1). LC , which is the same LC (Equation (2.10)) using

the below-edge terminals ĉ and č, enforces callsite-sensitivity in the standard man-

ner. In Section 5.3.2.2, we introduce LR (defined over the terminals ĉ and č, ĉ ,

and č), which supports parameter passing in the presence of on-the-fly call graph

construction, by addressing CHL3.

We shall speak of an LFC-path as we do for LFC-path (Section 5.2.3). Similarly,

we shall also speak of an LFCR-path (p such that LF (p) ∈ LF , LC(p) ∈ LC , and

LR(p) ∈ LR).

Given a virtual callsite x = r.m(a1, . . . , an), the basic idea in addressing CHL1

– CHL3 (facilitated by the PAG designed in Figure 5.3) is to first store ai into r.i

(at its special field i), then discover the dynamic type t of every receiver object

pointed to by r and propagate t to this callsite, where m′ = Dispatch(m, t), and

finally, assign thism′ .i to pm
′

i . As discussed earlier, method returns are handled

similarly.

Let Ldd
FC be the demand-driven formulation of LFC for solving k-CFA by using

a separate algorithm for on-the-fly construction under the assumption that it can

handle parameter passing for receiver variables correctly (without suffering from the

precision loss discussed in Sec. 5.2.3). LFCR is designed to solve k-CFA with CFL-

reachability fully by computing the same points-to information as Ldd
FC . Consider

our motivating example in Figure 5.1. As discussed in Sec. 5.2.3, Ldd
FC will assert

that v points to O1 only due to the existence of the LFC-path in Equation (5.1).

Chapter 5 Precision-Preserving Acceleration for k-CFA 121

With LFCR, we will reach the same conclusion according to the LFCR-path:

O1 new[O]−−−→ o1 assign−−−→
ĉ1

o store[f]−−−→ d new[D]−−−→ D1 new[D]−−−→ d

store[1]−−−−→
ĉ3

x assign−−−→
č1

a new[A]−−−→A1 new[A]−−−→ a assign−−−→
ĉ1

x assign−−−→
č3

x#c3

dispatch[A]−−−−−→
ĉ3

thisA:foo() load[1]−−−→ p load[f]−−−→ v

(5.5)

O1 can flow to v only when bar() is called at callsite c1. Between ĉ3 and č3 ,

x points to A1 of type A under context [c1]. We then dispatch A:foo() via x#c3
dispatch[A]−−−−−→

ĉ3
thisA:foo() so that d can be passed to p under [c3, c1], with c3 recovered

from c3 . While Ldd
FC [76] uses [c3] for passing d to p (Equation (5.1)), LFCR uses

[c3, c1] more precisely to indicate that this happens only when x points to A1 under

[c1].

5.3.2.1 The LF Language

This CFL describes not only field(-sensitive) accesses as balanced parentheses as

in LF given in Equation (2.8) but also dynamic dispatch in the language itself:

flowsto −→ new[t] (flows | dispatch[t])∗

flows −→ assign | store[f] alias load[f]

alias −→ flowsto flowsto

flowsto −→ (dispatch[t] | flows)∗ new[t]

flows −→ assign | load[f] alias store[f]

(5.6)

where the set of terminals includes all the above-edge labels (of both regular and

their inverse edges) in the PAG.

122 Chapter 5 Precision-Preserving Acceleration for k-CFA

In designing LF , we have extended LF [76, 78] by preserving its capability

in handling field accesses as balanced parentheses and adding a new capability in

supporting dynamic dispatch, and consequently, on-the-fly call graph construction.

The key novelty in addressing CHL1 and CHL2 is to propagate the type infor-

mation of a receiver object to where dynamic dispatch is triggered by parameter

passing.

CHL1 In addressing this challenge concerning parameter passing at a virtual

callsite, we must distinguish its receiver variable from its other arguments to ensure

that the receiver objects pointed by the receiver variable can only be passed to the

this variable of a method that can be dispatched on these receiver objects. Con-

sider x.foo(null) in the code snippet discussed in Sec. 5.2.3, where x may point

to both A1 and B1. The traditional LFC-based formulation that uses a separate

algorithm for call graph construction (Figure 2.5) will end up passing both A1 and

B1 to thisA:foo() due to the existence of the two LFC-paths given in Equation (5.3)

and Equation (5.4), although B1 is spurious (Figure 2.3).

In LF , we make explicit the dynamic types of objects in the four kinds of

terminals, new[t], new[t], dispatch[t], and dispatch[t]. During a flowsto (flowsto)

traversal, we require the type information in dispatch[t] (dispatch[t]) to be consis-

tent with that in its corresponding new[t] (new[t]). As a result, the two LFC-paths

in Equation (5.3) and Equation (5.4) become:

A1new[A]−−→ a store[f]−−−→ d new[D]−−→ D1 new[D]−−→ d load[f]−−→ x assign−−→x#c dispatch[A]−−−−−→
ĉ

thisA:foo()

B1new[B]−−→ b store[f]−−−→ d new[D]−−→ D1 new[D]−−→ d load[f]−−→ x assign−−→x#c dispatch[A]−−−−−→
ĉ

thisA:foo()

The first is an LF -path since new[A] flows∗ dispatch[A] ∈ LF but the second is not

since new[B] flows∗ dispatch[A] /∈ LF . Thus, B1 cannot flow to thisA:foo() spuriously.

Chapter 5 Precision-Preserving Acceleration for k-CFA 123

Lemma 5.1 Consider a virtual callsite x = r.m(a1, . . . , an). In LF , every object

pointed to by r flows only to the this variable of a method that can be dispatched

on the object.

Proof Sketch. LF requires the type of an object pointed to by r to be used

for dynamic dispatch at the virtual callsite.

CHL2 In addressing this second challenge, we must decide how to trigger dy-

namic dispatch during parameter passing at a virtual callsite. Figure 5.5 illustrates

three different approaches for handling x.foo(d) in Figure 5.1.

A : foo(p)

x.foo(d);

A1

p

(a) Parameter passing without
dispatch

A : foo(p)

x.foo(d);

A1

this p

(b) Dispatch at callsite

A : foo(p)

x.foo(d);

A1

p

(c) Dispatch at allocation site

Figure 5.5: Three different approaches for performing dynamic dispatch
at a virtual callsite during parameter passing.

As discussed in Section 5.2.3, LFC [76] solves k-CFA by using a separate al-

gorithm for call graph construction (Figure 5.5a) and may thus cause k-CFA to

lose precision (either directly (Sec. 5.2.3 and Sec. 5.2.3) or when assisted by a

pre-analysis [48] (illustrated in Figure 5.2 in Sec. 5.2.3)).

In LF , passing d to a parameter at x.foo(d) will trigger immediately a flowsto

traversal looking for a receiver object of x, as symbolized by a red arrow (→)

in Figure 5.5b (for performing dynamic dispatch at this callsite) and Figure 5.5c

(for performing dynamic dispatch at the allocation site of the receiver object).

LF adopts the callsite-based approach since the allocation-site-based approach is

infeasible.

124 Chapter 5 Precision-Preserving Acceleration for k-CFA

To understand our approach, we examine the LFCR-path in Equation (5.5)

by focusing on its sub-path starting from argument d and ending at parameter

p of A:foo(). By considering only its above-edge labels in LF , we start with a

store d store[1]−−−−→ x (→) to trigger a flowsto traversal via x assign−−−→ a new[A]−−−→A1 (→),

return to x via A1 new[A]−−−→ a assign−−−→ x (→), and finally, dispatch at the callsite via

x assign−−−→ x#c3 dispatch[A]−−−−−→ thisA:foo() (99K). If we consider now the below-edge labels

of the entire path in Equation (5.5) (by ignoring ĉ3 and č3 for now), we find

that O1 flows to v under [c3,c1] (as in Equation (5.1)) and d flows to p also under

[c3,c1] (indicating that this parameter passing happens only when x point to A1

under [c1]).

Let us explain why the allocation-site-based dispatch (Figure 5.5c) is infeasible.

To handle parameter passing only (without considering method returns), we need

to extend LF to:

flows −→ · · · | store[m:i] flowsto load[m:i]

flows −→ · · · | load[m:i] flowsto store[m:i]
(5.7)

where store[m:i] (load[m:i]) is used to replace store[i] (load[i]) in Figure 5.3 in

order to encode also the signature of a method invoked at r.m(a1, . . . , an). With

this modified LF language, the LFC-path in Equation (5.1) becomes:

O1 new[O]−−−→ o1 assign−−−→
ĉ1

o store[f]−−−−→ d new[D]−−−→ D1 new[D]−−−→ d

store[foo:1]−−−−−−→ x assign−−−→
č1

a new[A]−−−→A1 load[foo:1]−−−−−−→ p load[f]−−−→ v

(5.8)

where we have d store[foo:1]−−−−−−→ x (→), x assign−−−→
č1

a new[A]−−−→A1 (→), and A1 load[foo:1]−−−−−−→ p (→).

However, O1 flows to v under [] incorrectly (with ĉ1 and č1 being matched).

Chapter 5 Precision-Preserving Acceleration for k-CFA 125

5.3.2.2 The LR Language

Given LF (defined in Equation (5.6)) and LC = LC (defined in Equation (2.10)),

we have obtained a new language: LFC = LF ∩ LC . However, LFC solves k-CFA

soundly but less precisely than Ldd
FC (Lemma 5.2).

We can obtain the points-to set of a variable v, PTS(v, cv), from LFC as follows.

Given an LC-path p with its label being LC(p) = ℓ1, . . . , ℓn, the inverse of p, i.e.,

p has the label LC(p) = ℓn, . . . , ℓ1. By splitting p into a sub-path pex followed by

a sub-path pen, we can define LC
ex(p) = LC(p

ex) and LC
en(p) = LC(p

en), where

LC(p) = LC
ex(p)LC

en(p), such that LC
ex(p) (LC

en(p)) is derived from exit (entry)

in LC ’s grammar (Equation (2.10)). Let s ∈ LC . Let B(s) return the canonical

form of s with all its balanced contexts (i.e., parentheses) removed. If c is a string

of exit contexts of the form č1 . . . čn, we write E (c) = [c1, . . . , cn] to turn it into a

context representation (by noting that E (ϵ) = []).

Given an LFC-path p starting from an object O to a variable v, we can deduce

the following points-to relation:

〈O,E (B(LC
ex(p)))〉 ∈ PTS(v,E (B(LC

en(p)))) (5.9)

Let pO1,v be the LFC-path in Equation (5.5) (by ignoring ĉ3 and č3). By

definition, LC(pO1,v) = ĉ1č1ĉ1ĉ3, where pex
O1,v can be interpreted as the sub-path

from O1 to A1 and pen
O1,v as the sub-path from A1 to v. Thus, LC

ex(pO1,v) = ĉ1č1 and

LC
en(pO1,v) = ĉ1ĉ3. Since E (B(ĉ1č1)) = E (ϵ) = [] and E (B(ĉ1ĉ3)) = E (ĉ1ĉ3) =

E (č3č1) = [c3, c1], we have:

〈O1, []〉 ∈ PTS(v, [c3, c1])

However, relying on LFC for solving k-CFA is insufficient.

126 Chapter 5 Precision-Preserving Acceleration for k-CFA

Lemma 5.2 LFC is sound but less precise than Ldd
FC.

Proof Sketch. In terms of their PAGs used, LFCR differs from Ldd
FC (i.e.,

LFC) only in how virtual callsites are handled. Given a program, its PAG used

by LFC (Figure 5.3), together with LF , ensures that for every virtual callsite

x = r.m(a1, . . . , an), there always exists an LFC-path from its arguments (return

variable) to their parameters (x) for all possible methods invoked at the callsite.

Let PTSL
dd
FC (v, cv) be computed by Ldd

FC . By applying Lemma 5.1 further and

noting the definition of Ldd
FC (stated at the beginning of Section 5.3), we obtain

PTS(v, cv) ⊇ PTSL
dd
FC (v, cv), where ⊇ can be strict, i.e., ⊃.

LFC can lose precision since, for some LFC-paths, its sub-paths responsible

for performing dynamic dispatch can be spurious. Consider a virtual callsite x =

r.m(a1, . . . , an) at a callsite c. Before passing an argument ai into (or receiving

a return value from) a method invoked at this callsite, LFC performs dynamic

dispatch by carrying out the following alias-related traversal on its receiver variable

r:

· · · ℓ−→̂
c
r flowsto O flowsto r′

assign−−−→
ˇ
c′

r′#c′
dispatch[_]−−−−−→

ĉ′
· · · (5.10)

where ℓ is store[i] (in passing ai) or load[0] (in retrieving a return value). Such a

path, which starts from ĉ and ends at č′ , is called a dispatch path. A dispatch

path is said to be valid if the following two conditions are met:

• DP-C1: c = c′ (implying that r = r′), and

• DP-C2: O is pointed by both r and r′ (which are thus aliases) under exactly

the same context.

However, LFC can only ensure that r and r′ are aliases with no guarantee for

the validity of this dispatch path.

Chapter 5 Precision-Preserving Acceleration for k-CFA 127

To filter out all LFC-paths containing invalid dispatch paths, we use a third

CFL LR to enforce DP-C1 and DP-C2, thereby addressing CHL3 by restoring the

context of r:
W −→ W ĉ | W č | W R | ϵ

R −→ ĉ Y č

Y −→ B Y | Y B | č Y ĉ | ϵ

B −→ B B | ĉ B č | R | ϵ

(5.11)

where its terminals are the below-edge labels, ĉ and č, ĉ , and č , in the PAG. The

R-production enforces DP-C1 and the set of Y - and B-productions enforces DP-C2.

Imprecision of LFC We look at two examples to understand why LFC fails to

enforce DP-C1 and DP-C2.

Consider the following simple code snippet:

D d1 = new D(); // D1

D d2 = new D(); // D2

A a = new A(); // A1

a.foo(d1); // c1

a.foo(d2); // c2

where classes A and D are from Figure 5.1. The following path is accepted by LFC

(as an LFC-path) but rejected by LFCR:

D1 new[D]−−−−→ d1 store[1]−−−−→
ĉ1

a new[A]−−−→ A1 new[A]−−−−→ a assign−−−→
č2

a#c2 dispatch[A]−−−−−−→
ĉ2

thisfoo load[1]−−−−→p (5.12)

Its dispatch path is invalid since it violates DP-C1 (due to c1 6= c2). As a result,

LFC allows D1 to flow to p under a wrong context [c2], causing potentially precision

loss.

Consider the second slightly more complex example:

128 Chapter 5 Precision-Preserving Acceleration for k-CFA

1 class A {

2 O id(O p) { return p; } }

3 class O { }

4 static O wid(A a, O o) {

5 O v = a.id(o); // c3

6 return v;

7 }

8 static void main() {

9 A a1 = new A(); // A1

10 O o1 = new O(); // O1

11 O o2 = new O(); // O2

12 O v1 = wid(a1, o1); // c1

13 O v2 = wid(a1, o2); // c2

14 }

The following path is accepted by LFC but not by LFCR:

O1 new[O]−−−→ o1 assign−−−→
ĉ1

o store[1]−−−−→
ĉ3

a assign−−−→
č1

a1 new[A]−−−→ A1 new[A]−−−→ a1 assign−−−→
ĉ2

a

assign−−−→
č3

a#c3 dispatch[A]−−−−−→
ĉ3

thisid load[1]−−−→ p store[0]−−−−→ thisid dispatch[A]−−−−−→
č3

a#c3

assign−−−→
ĉ3

a assign−−−→
č2

a1 new[A]−−−→ A1 new[A]−−−→ a1 assign−−−→
ĉ2

a load[0]−−−→
č3

v assign−−−→
č2

v2

(5.13)

This path contains two dispatch paths for “a.id(o) //c3”, one for passing o to p

and one for returning p back to the same callsite. The first one is invalid, since a

starts with pointing to A1 under [c1] during its flowsto traversal but ends up with

pointing to A1 under [c2] during the ensuing flowsto traversal, violating DP-C2.

Thus, LFC enables O1 passed at callsite c1 to flow into v2 at callsite c2 spuriously.

Precision of LFCR We have designed LR to filter out all LFC-paths containing

invalid dispatch paths. Let us examine its productions by considering a generic

dispatch path given in Equation (5.10). The start symbol W would define a lan-

guage that contains LC if its alternative WR were changed to W . Therefore, LR

comes into play only when a dispatch path is traversed by enforcing simply DP-C1

and DP-C2.

Chapter 5 Precision-Preserving Acceleration for k-CFA 129

To enforce DP-C1, the R-production, R −→ ĉ Y č , states that if we start a

dispatch process at a callsite (flagged by ĉ), we must return to the same callsite

(flagged by č). For the dispatch path in Equation (5.10), we are therefore guaran-

teed that c = c′, and consequently, r = r′. As a result, once ĉ and č are matched,

c is recovered to appear at the ensuing dispatch edge so that dynamic dispatch

can be performed at exactly the same callsite, i.e., c. Let us return to the path

in Equation (5.12) (Sec. 5.3.2.2) but modified now with its two occurrences of c2

being replaced by c1. Due to the R-production, LFCR will accept this modified

path as an LFCR-path.

To enforce DP-C2, we rely on the Y - and B-productions, of which the Y -

production, Y −→ č Y ĉ, plays the key role. Let us explain its theoretical basis by

referring to a generic dispatch path given in Equation (5.10) again. We can express

DP-C2 equivalently as follows. Let pr,O be the flowsto path from r to O. Its inverse

pr,O is naturally a flowsto path. Let pO,r′ be the flowsto path from O to r′. By

Equation (5.9), we obtain:

〈O,E (B(LC
ex(pr,O)))〉 ∈ PTS(r,E (B(LC

en(pr,O))))

〈O,E (B(LC
ex(pO,r′)))〉 ∈ PTS(r′,E (B(LC

en(pO,r′)))
(5.14)

As aliases, r and r′ point to O with the same heap context:

E (B(LC
ex(pr,O))) = E (B(LC

ex(pO,r′))) (5.15)

implying that the entry contexts in B(LC
ex(pr,O)) are fully balanced out by the

exit contexts in B(LC
ex(pO,r′)) in LC :

B
(
B(LC

ex(pr,O))B(LC
ex(pO,r′))

)
= ϵ (5.16)

130 Chapter 5 Precision-Preserving Acceleration for k-CFA

Recall that exit and entry are inverses of each other (Equation (2.10)).

Now, r and r′ have the same context (needed by DP-C2) iff

E (B(LC
en(pr,O))) = E (B(LC

en(pO,r′))) (5.17)

In LR, the exit contexts in B(LC
en(pr,O)) are thus needed to be balanced out by

the entry contexts in B(LC
en(pO,r′):

B
(
B(LC

en(pO,r′)B(LC
en(pr,O))

)
= ϵ (5.18)

We are now ready to explain the Y - and B- productions. When traversing a

dispatch path (Equation (5.10)), Y −→ č Y ĉ serves to enforce DP-C2 via Equa-

tion (5.18), B→ R is used to start traversing another dispatch path (recursively),

the remaining productions serve to skip all balanced contexts. Informally, if we

write down all the unmatched exit contexts we see when moving from r to O

(r flowsto O) as č1, . . . , čn, then all the unmatched entry contexts we see in return-

ing from O to r′ (O flowsto r′) must be ĉn, . . . , ĉ1. (r = r′ due to DP-C1.)

For LFCR, the points-to relation given in Equation (5.9) remains unchanged

except that only LFCR-paths are considered.

Let us return to Equation (5.13) (Sec. 5.3.2.2). For its first dispatch path

launched at callsite c3 starting from a and ending at a#c3, B(LC
en(pa,A1)) = č1

and B(LC
en(pA1,a)) = ĉ2. It is invalid as č1ĉ2 cannot balance out according to

Y −→ č Y ĉ. However, the path in Equation (5.13), once modified with its three

occurrences of c2 replaced by c1, will be an LFCR-path, implying that its first

dispatch path will also become valid.

Chapter 5 Precision-Preserving Acceleration for k-CFA 131

Lemma 5.3 At every virtual callsite, LFCR passes arguments into and receives

return values from exactly the same set of target methods found at the callsite as

Ldd
FC does.

Proof Sketch. LR filters out all and only LFC-paths containing invalid dis-

patch paths (discussed and proved above).

Theorem 5.4 LFCR and Ldd
FC are equally precise.

Proof. Lemmas 5.2 and 5.3.

We can now apply LFCR to compute the points-to information in our motivating

example (Figure 5.1). We have discussed several times earlier one of its LFCR-paths

given in Equation (5.5). Note that C:foo(), which appears in its PAG (Figure 5.4),

can never be called due to on-the-fly call graph construction.

Finally, we conclude this section with one caveat. Ldd
FC (introduced in [76] and

released in Soot [89]) suffers from the precision loss discussed in Sec. 5.2.3 but is

assumed to be free of this issue to facilitate our presentation.

5.3.3 Time Complexities

In general, the LFCR-reachability problem is undecidable as it is the intersection

of three CFLs interleaved with each other [64]. For a single CFL language L ∈

{LF ,LC ,LR}, the time complexity for solving its L-reachability problem is bounded

by O(m3n3) from above, where m is its grammar size and n is the number of the

PAG nodes. LC is a standard Dyck-CFL and its complexity can be reduced to

O(mn3) [33].

132 Chapter 5 Precision-Preserving Acceleration for k-CFA

5.4 P3Ctx: An LFCR Application

To demonstrate the utility of LFCR, we consider one significant application by

introducing the first LFCR-enabled pre-analysis, P3Ctx, for accelerating k-CFA

(implemented as a whole-program analysis in terms of the rules in Figure 2.3) with

selective context-sensitivity while always preserving its precision. This also serves

to validate the correctness of LFCR. In contrast, Selectx, a recently proposed

pre-analysis developed based on LFC [48], is not precision-preserving.

5.4.1 CFL-Reachability-Guided Selections

We have developed P3Ctx by following the same basic principle introduced in [48]

for developing Selectx. The basic idea in applying LFC to develop Selectx [48]

is simple. Let pO,n,v be a flowsto path operated by LFC from some object O to

some variable v, where n is a variable/object accessed in a method M. Let pO,n

be its sub-path from O to n and pn,v its sub-path from n to v. Then n requires

context-sensitivity (to prevent k-CFA from potentially losing precision) only if :

CS-C1 : LF (pO,n,v) ∈ LF

CS-C2 : ∧ LC(pO,n) ∈ LC ∧ LC(pn,v) ∈ LC

CS-C3 : ∧ Len
C (pO,n) 6= ϵ ∧ Lex

C (pn,v) 6= ϵ

(5.19)

In this case, O from outside M flows into n along pO,n context-sensitively and n

flows out of M into v along pn,v context-sensitively, via M’s parameters (or return

variable) along each path. Note that pO,n,v itself is not required to be an LFC-path.

Selectx will select n to be context-sensitive if CS-C1– CS-C3 hold. By inter-

preting these conditions as being sufficient (rather than just necessary), Selectx

Chapter 5 Precision-Preserving Acceleration for k-CFA 133

is conservative as it may select some n to be context-sensitive even though k-CFA

loses no precision if it is analyzed context-insensitively.

However, Selectx may cause k-CFA to lose precision. Consider our moti-

vating example (Figure 5.1), for which whether v points to O2 spuriously or not

hinges on whether d, o, x, and D1 in bar() (containing a virtual callsite x.foo(d))

are analyzed context-sensitively or not. Selectx will select all the four to be

context-insensitive (causing v to point to O2), as none can flow out of bar() via

its parameter x (which is also the receiver variable of x.foo(d)) in the PAG op-

erated by LFC (as revealed by Equation (5.1) and Equation (5.2) for d, o, and D1

and the paths for x that are not given explicitly but can be constructed easily).

Thus, CS-C3 fails to hold. In LFC , which uses a separate algorithm for call graph

construction, its PAG representation contains no dispatch paths that allow these

four variables/objects to flow outside bar() via x (Figure 5.2).

P3Ctx will always be precision-preserving as it leverages CS-C1– CS-C3 by

setting LC = LC but substituting LF for LF , with LFC operating on a PAG

representation including explicitly the dispatch paths for all virtual callsites in the

program. Consider our motivating example again. In LF , parameter passing for

d at x.foo(d) is CFL-reachability-related to its receiver variable x. Let pO1,n,v

be the path in Equation (5.5) (which happens to be an LFC-path). Let n ∈

{d, o, x, D1}. P3Ctx will select every n to be context-sensitive, since pO1,n,v is an

LF -path (CS-C1), and both pO1,n and pn,v are LC-paths (CS-C2), and LC
en(pO1,n) =

ĉ1 6= ϵ and LC
ex(pn,v) = č1 6= ϵ (CS-C3).

5.4.2 Regularization of LF into LF r

As LFC ⊇ LFCR (Lemma 5.2 and Theorem 5.4), it suffices to use LFC in place

of LFC in Equation (5.19) in developing our precision-preserving pre-analysis (by

134 Chapter 5 Precision-Preserving Acceleration for k-CFA

noting that LC = LC). As the LFC-problem is also undecidable [64], we follow [48]

to regularize LF into LF r and thus over-approximate LFC to LF rC = LF r ∩LC , so

that we can verify CS-C1– CS-C3 efficiently by using LF rC .

We start with L0 = LF , where LF is given in Equation (5.6). Next, we over-

approximate L0 by disregarding its field-sensitivity requirement and thus obtain

L1 given below:

flowsto −→ new (flows | dispatch)∗

flows −→ assign | store flowsto flowsto load

flowsto −→ (dispatch | flows)∗ new

flows −→ assign | load flowsto flowsto store

(5.20)

In the absence of field-sensitivity, a dispatch (dispatch) edge behaves just like an

assign (assign) edge and can thus be interpreted this way. As a result, we obtain

L2 below:
flowsto −→ new flows∗

flowsto −→ flows∗ new

flows −→ assign | store flowsto flowsto load

flows −→ assign | load flowsto flowsto store

(5.21)

Our approximation goes further by treating a load (load) edge as also an assign

(assign). As a result, we will no longer require a store (load) edge to be matched

by a load (store) edge. This will give rise to L3 below:

flowsto −→ new flows∗

flowsto −→ flows∗ new

flows −→ assign | store flowsto flowsto

flows −→ assign | flowsto flowsto store

(5.22)

Chapter 5 Precision-Preserving Acceleration for k-CFA 135

Ostart

flows flows

newnew
assignass

ign

store

balanced

Figure 5.6: A DFA for accepting LF r .
Finally, we obtain LF r = L4 given below by no longer distinguishing a store

edge from its inverse, store, so that we can represent both types of edges as a store

edge:

flowsto −→ new flows∗

flowsto −→ flows∗ new

flows −→ assign | store assign∗ new new

flows −→ assign | new new assign∗ store

(5.23)

Lemma 5.5 LF ⊂ LF r .

Proof. Follows from the fact that Li ⊆ Li+1.

While LF r is identical to LR regularized from LF in Selectx [48], our PAG

representation (Figure 5.3), which makes all dynamic dispatch paths explicitly,

differs fundamentally from the one operated by LFC (Figure 2.5). Let G = (N,E)

be the PAG of a program. We use Andersen’s algorithm [3] instead of CHA [16] to

build its underlying call graph in order to sharpen the precision of P3Ctx.

5.4.3 P3Ctx

We use a simple DFA in Figure 5.6 designed to accept LF r exactly. P3Ctx is

inter-procedural running in linear time of the number of the PAG edges in G. To

deal with LC , we make use of summary edges added into the PAG (facilitated by

the transition labeled by balanced).

136 Chapter 5 Precision-Preserving Acceleration for k-CFA

Let Q = {O, flows, flows} be the set of states and δ : Q × Σ 7→ Q the state

transition function. Given a PAG edge n1
ℓ−→ n2 ∈ E in G with its state transition

δ(q1, ℓ) = q2, we define (n1, q1) � (n2, q2) as a one-step transition. The transitive

closure of �, denoted by �+, represents a multiple-step transition. As flowsto

and flowsto in LF r are symmetric, the following two properties about this DFA are

immediate:

• PROP-O. Let O be an object created in a method M. Then 〈thisM, flows〉 �+

〈O,O〉 ⇐⇒ 〈O,O〉�+ 〈thisM, flows〉.

• PROP-V. Let v be a variable defined in a method M. Then 〈thisM, flows〉 �+

〈v, q〉 ⇐⇒ 〈v, q〉 �+ 〈thisM, flows〉, where q ∈ {flows, flows} (since v is a

variable).

To handle static callsites (methods) uniformly as virtual callsites (methods), we

assume that a static callsite is invoked on a unique dummy receiver object. Thus,

in our PAG representation (Figure 5.3), passing arguments and receiving return

values for a method must all flow through its this variable.

To verify CS-C1 in Equation (5.19), where LF is now replaced by LF r , we do

not have to start from an object to track its flowsto paths. For each method, we

can start from its this variable by assuming reasonably and over-approximately

that there always exists some object O that can flow into it.

To verify CS-C2, we take advantage of summary edges to verify the balanced-

parentheses property in LC-paths.

To verify CS-C3, we check if there exists q ∈ Q such that

〈thisM, flows〉�+ 〈n, q〉�+ 〈thisM, flows〉 (5.24)

Chapter 5 Precision-Preserving Acceleration for k-CFA 137

n1
_−→̂
c

thisM ∈ E

thisM ∈ R(flows) flows ∈ R−1(thisM)
[F-Init]

n1
ℓ−→ n2 ∈ E q1 ∈ R−1(n1) δ(q1, ℓ) = q2 q2 /∈ R−1(n2)

n2 ∈ R(q2) q2 ∈ R−1(n2)
[F-Propa]

n1
_−→̂
c

thisM ∈ E thisM _−→̌
c

n2 ∈ E flows ∈ R−1(thisM)

n1
balanced−−−−→ n2 ∈ E

[F-Sum]

Figure 5.7: Rules for conducting P3Ctx over G = (N,E).
where M is the containing method of n. This implies that n lies on an LF r -path

collecting some values coming from outside M via thisM and pumping them out of

M via thisM.

Figure 5.7 gives our P3Ctx pre-analysis, which checks CS-C1– CS-C3 by check-

ing the following condition efficiently:

n ∈ R(O) ∨ n ∈ R(flows) ∩R(flows) (5.25)

where R : Q 7→ ℘(N) returns the set of nodes in G reached at a given state q ∈ Q

and R−1 : N 7→ ℘(Q) is the inverse of R, which are computed by performing a

simple inter-procedural reachability analysis in G. [F-Init] does the initializations

needed, [F-Propa] computes the reachable states for each node iteratively, and

[F-Sum] performs a standard context-sensitive summary for a callsite invoking

M [66] by adding a summary edge n1
balanced−−−−→ n2 in G to capture inter-procedural

reachability across the callsite.

P3Ctx checks CS-C1– CS-C3 as follows. For CS-C1, we rely on a simple DFA for

accepting LF r . For CS-C2, we verify the balanced-parentheses property in LC by us-

ing summary edges. For CS-C3 (i.e., Equation (5.24)), we resort to Equation (5.25).

Its first disjunct says that if an object n is in R(O), then Equation (5.24) holds due

138 Chapter 5 Precision-Preserving Acceleration for k-CFA

to PROP-O. Its second disjunct says that if a variable n is in R(flows) ∩ R(flows),

then Equation (5.24) holds (due to PROP-V).

Theorem 5.6 k-CFA (performed in terms of the rules in Figure 2.3) produces

exactly the same points-to information when performed with selective context-

sensitivity under P3Ctx.

Proof. Follows from the facts that (1) Equation (5.19) provides a set of nec-

essary conditions for supporting selective context-sensitive, (2) LFCR provides a

complete specification of k-CFA via CFL-reachability, (3) LF rC ⊇ LFC ⊇ LFCR,

and (4) [F-Init] has weakened CS-C1 by starting from the this variable of every

method instead of every object O.

The worst-case time complexity of P3Ctx in analyzing a program on G =

(N,E) is O(|E|× |Q|), which is linear to |E|, where |Q| = 3 is the number of states

in our DFA.

5.5 Evaluation

We demonstrate that P3Ctx can enable k-CFA to run substantially faster while

preserving its precision. We do not compare with Selectx [48] as it is not

precision-preserving.

5.5.1 Experimental Setup

Implementation We have implemented k-CFA and P3Ctx (Figure 5.7) in Soot

[89] on top of its context-insensitive Andersen’s pointer analysis, Spark [36], which

is used for building the PAG of a program (including its call graph) for P3Ctx. We

follow a few common practices adopted in the literature [1,2,47–49,59,82]. We use

Chapter 5 Precision-Preserving Acceleration for k-CFA 139

a reflection log generated by a dynamic reflection analysis tool, TamiFlex [9] for

resolving Java reflection. For native code, we use the method summaries provided

in Soot. String factory objects and exception-like objects are distinguished per

dynamic type and analyzed context-insensitively. Our implementation of P3Ctx

will soon be released as an open-source tool at http://www.cse.unsw.edu.au/

~corg/p3ctx.

Benchmarks We have selected 12 large Java programs, including 9 benchmarks

from DaCapo-2006-10-MR2 [7] and 3 popular Java applications, checkstyle,

findbugs, and JPC, together with a large Java library (JDK1.6.0_45), which are

frequently used in evaluating pointer analysis algorithms for Java [31,40,74,82]. For

DaCapo, luindex is excluded as it is similar to lusearch. We have also excluded

jython as its reflection log is overly conservative [86].

Platform We have carried out all our experiments on an Intel(R) Xeon(R) W-

2245 3.90GHz machine with 512GB of RAM, running on Ubuntu 20.04.3 LTS (Focal

Fossa).

5.5.2 Results

Table 5.2 contains the results for k-CFA, and Pk-CFA (i.e., k-CFA accelerated by

P3Ctx), where k ∈ {1, 2}. Table 5.3 gives the analysis times of Spark and

P3Ctx.

Precision We measure the precision of a pointer analysis by considering four

commonly used metrics [24, 40, 49, 73, 82]: “#call-edges”, “#poly-calls”, “#fail-

casts”, and “#avg-pts”.

http://www.cse.unsw.edu.au/~corg/p3ctx
http://www.cse.unsw.edu.au/~corg/p3ctx

140 Chapter 5 Precision-Preserving Acceleration for k-CFA

Table 5.2: The precision and efficiency of k-CFA, and Pk-CFA. For all
the metrics except speedup, smaller is better.

Prog. Metrics 1CFA P1-CFA 2CFA P2-CFA
Time(secs) 10.5 3.2 (3.3x) 292.0 99.1 (2.9x)
#call-edges 55069 55069 54212 54212

antlr #poly-calls 1922 1922 1861 1861
#fail-casts 910 910 841 841
#avg-pts 10.69 10.69 9.50 9.50
Time(secs) 18.2 8.2 (2.2x) 902.6 572.7 (1.6x)
#call-edges 64253 64253 63160 63160

bloat #poly-calls 2054 2054 1993 1993
#fail-casts 1871 1871 1793 1793
#avg-pts 47.70 47.70 45.63 45.63
Time(secs) 28.6 8.7 (3.3x) 671.0 181.2 (3.7x)
#call-edges 72489 72489 71080 71080

chart #poly-calls 2380 2380 2290 2290
#fail-casts 1925 1925 1819 1819
#avg-pts 51.00 51.00 45.95 45.95
Time(secs) 14.5 4.5 (3.2x) 453.9 126.9 (3.6x)
#call-edges 53274 53274 52069 52069

eclipse #poly-calls 1620 1620 1551 1551
#fail-casts 1309 1309 1237 1237
#avg-pts 22.82 22.82 21.39 21.39
Time(secs) 9.9 3.0 (3.3x) 364.3 101.1 (3.6x)
#call-edges 38116 38116 37264 37264

fop #poly-calls 1143 1143 1082 1082
#fail-casts 694 694 637 637
#avg-pts 16.99 16.99 15.06 15.06
Time(secs) 8.8 2.5 (3.5x) 285.1 99.2 (2.9x)
#call-edges 38733 38733 37565 37565

hsqldb #poly-calls 1136 1136 1065 1065
#fail-casts 689 689 635 635
#avg-pts 11.90 11.90 10.13 10.13
Time(secs) 7.0 2.4 (2.9x) 239.1 91.5 (2.6x)
#call-edges 35012 35012 34159 34159

lusearch #poly-calls 1092 1092 1031 1031
#fail-casts 659 659 602 602
#avg-pts 11.73 11.73 10.35 10.35
Time(secs) 28.2 6.4 (4.4x) 923.4 280.6 (3.3x)
#call-edges 66865 66865 65877 65877

pmd #poly-calls 2840 2840 2782 2782
#fail-casts 2010 2010 1941 1941
#avg-pts 26.74 26.74 24.38 24.38
Time(secs) 9.9 3.1 (3.2x) 296.5 102.1 (2.9x)
#call-edges 41525 41525 40645 40645

xalan #poly-calls 1321 1321 1260 1260
#fail-casts 800 800 742 742
#avg-pts 17.51 17.51 15.72 15.72
Time(secs) 25.3 7.4 (3.4x) 876.6 335.7 (2.6x)
#call-edges 76463 76463 74792 74792

checkstyle #poly-calls 2630 2630 2564 2564
#fail-casts 1640 1640 1549 1549
#avg-pts 24.84 24.84 21.85 21.85
Time(secs) 35.9 8.8 (4.1x) 944.7 289.3 (3.3x)
#call-edges 79361 79361 77133 77133

findbugs #poly-calls 3183 3183 3043 3043
#fail-casts 2091 2091 1972 1972
#avg-pts 33.41 33.41 30.84 30.84
Time(secs) 25.7 7.1 (3.6x) 530.5 158.7 (3.3x)
#call-edges 69137 69137 67989 67989

JPC #poly-calls 2761 2761 2667 2667
#fail-casts 1768 1768 1658 1658
#avg-pts 32.13 32.13 29.27 29.27

Chapter 5 Precision-Preserving Acceleration for k-CFA 141

Pk-CFA produces the same points-to results as k-CFA as proved in Theorem 5.6

and validated in Table 5.2.

Efficiency We measure the efficiency of a pointer analysis by the time elapsed

in analyzing a program (as an average of 3 runs). As shown in Table 5.2, Pk-CFA

delivers significant speedups (geometric means) over k-CFA while preserving its

precision. The speedups of P1-CFA over 1-CFA range from 2.2x (for bloat) to 4.4x

(for pmd) with an average of 3.3x. When k = 2, the speedups are also impressive,

ranging from 1.6x (for bloat) to 3.7x (for chart) with an average of 3.0x. Overall,

an average speedup of 3.1x is achieved.

Table 5.3: The analysis times of Spark and P3Ctx in seconds.

Prog. antlr bloat chart eclipse fop hsqldb lusearch pmd xalan checkstyle findbugs JPC
Spark 4.8 5.6 8.5 5.7 4.3 4.1 3.9 7.6 4.6 8.0 9.1 7.7
P3Ctx 0.7 0.8 1.0 0.8 0.6 0.6 0.5 0.9 0.7 1.0 1.0 0.9

Effectiveness According to Table 5.3, P3Ctx is effective as a pre-analysis as it

is lightweight (running in linear time of the PAG edges in a program). In terms of

the average analysis time spent on analyzing the 12 programs, we have 5.9 seconds

for Spark but only 0.8 seconds for P3Ctx.

5.6 Conclusion

In this chapter, we have introduced LFCR, a new CFL-reachability formulation for

supporting k-callsite-based context-sensitive pointer analysis (k-CFA) with its own

built-in call graph construction mechanism for handling dynamic dispatch. Based

on this new CFL-reachability formulation, we have also introduced P3Ctx for

accelerating k-CFA while preserving its precision.

142 Chapter 5 Precision-Preserving Acceleration for k-CFA

Chapter 6

Related Work

There is a great deal of work related to this thesis. Along the way, we have discussed

some of the most relevant work. In this chapter, we briefly review more related

work.

6.1 Selective Context-Sensitivity

Context sensitivity is a significant factor in developing highly precise pointer

analysis techniques for object-oriented languages like Java. The traditional ap-

proaches [31, 38, 53, 54, 73], which blindly apply context-sensitivity to all analyzed

methods, are less efficient in analyzing reasonable large applications.

To further tap the performance potential of context-sensitive analysis, many

approaches on selective context-sensitivity, which select a subset of precision-

critical methods/variables for context-sensitive analysis, have been proposed re-

cently [22, 24, 27, 29, 40, 41, 47–49, 74]. Based on their designing principles, these

approaches can be roughly classified into three categories: (1) heuristic- or pattern-

based approaches [22, 40, 41, 74], (2) data-driven approaches [27, 29], and (3) CFL-

reachability-guided approaches [24, 47–49].

143

144 Chapter 6 Related Work

Heuristic- or pattern-based approaches rely on empirical heuristics or commonly

used patterns for selecting the set of precision-critical methods/variables to be an-

alyzed context-sensitively. For example, [22,74] leverage manually-selected metrics

to define some heuristics to guide context selection. Zipper [40,41] makes its con-

text selection by determining whether a method contains variables/objects on some

paths of specific value-flow patterns.

Data-driven approaches [27,29] apply machine learning to learn a set of heuristic

formulas from small test cases for guiding context selection. Unlike the tools in-

troduced in this thesis (e.g., Turner, Conch, and P3Ctx), which consume only

some negligible amount of time in their pre-analysis stages, data-driven approaches

can cost substantially longer training times before their main analyses.

CFL-reachability-guided approaches [24,47–49] rely on some CFL formulations

of pointer analysis for making context selection systematically. Eagle [47,49] rep-

resents a precision-preserving acceleration for object-sensitivity [53, 54]. In Chap-

ter 3, Turner [24] explores a better efficiency and precision trade-off by exploiting

object containment and reachability. Selectx [48] represents the first attempt for

accelerating k-CFA with CFL-reachability. However, it cannot preserve the base-

line’s precision due to a lack of a call graph construction mechanism built-into the

conventional CFL formulation [76,78]. In Chapter 5, we have designed a new CFL-

based formulation to overcome this limitation and also has implemented P3Ctx,

the first precision-preserving acceleration technique for k-CFA.

6.2 Other Efficient Pointer Analysis Techniques

There are other types of efficient pointer analysis techniques for Java.

Chapter 6 Related Work 145

Mahjong [82] sacrifices the precision of alias analysis (by merging objects of

the same dynamic type) in order to improve the efficiency of pointer analyses at a

small loss of precision for a class of so-called type-dependent clients, such as call

graph construction, may-fail casting, and polymorphic call detection.

Thiessen and Lhoták [86] propose to use context transformations rather than

context strings as a new context abstraction for pointer analyses, making it theo-

retically possible for pointer analyses to run more efficiently with better precision.

Tian et al. [83] propose retrieving back the precision of kobj by unleashing

the precision potential of a set of selective context-sensitive pointer analyses which

may lose precision but in an orthogonal manner. In contrast, all the approaches

introduced in this thesis are almost precision-preserving for a few commonly used

precision metrics in the literature.

Jeon et al. [28] have recently undertaken some research investigating whether

object sensitivity is indeed superior to call-site sensitivity for object-oriented pro-

grams.

Finally, unlike whole-program analyses [11, 36, 39, 54, 73, 90] considered in this

thesis, demand-driven pointer analyses [69, 75, 76, 78, 80, 92] improve the efficiency

by typically only computing the points-to information for program points that may

affect a particular site of interest for specific clients.

6.3 CFL-Reachability

In program analysis, CFL-reachability [63,66] was initially introduced for support-

ing inter-procedural dataflow analysis. It has since been used in tacking many

other problems such as pointer analysis [12,47,49,69,76,78,91,92,94,96], informa-

tion flow [42,51,52], and type inference [58,60]. For callsite-based context-sensitive

146 Chapter 6 Related Work

pointer analysis [69,76,92], the CFL-reachability formulation used so far relies on a

separate mechanism for call graph construction (in advance or on the fly). In this

thesis, we introduce a CFL-reachability formulation with such a mechanism built

in, by using a new language LFCR expressed as the intersection of three CFLs.

Another line of research on CFL-reachability focuses on its computational

complexity. In general, the all-pairs CFL-reachability problem can be solved in

O(m3n3) time, where m is the size of its underlying CFL grammar and n is the

number of its underlying graph nodes. Kodumal et. al [33] solve the Dyck-CFL-

reachability more efficiently in O(mn3). Later, Chaudhuri [13] shows that the

general CFL-reachability algorithm can be optimized into a subcubic one by ex-

ploiting the well-known Four Russians’ Trick [34]. Recently, Zhang et. al [94] show

that bidirected Dyck-CFL reachability can be solved in O(n+ p log p) (where p is

the number of its underlying graph edges) by noting that the reachability relation

in a bidirected graph is an equivalence relation and Chatterjee et. al [12] improve

the problem further by proposing an optimal algorithm solved in O(p + n · α(n)),

where α(n) is the inverse Ackermann function. In Chapter 5, we introduce P3Ctx

as an LFCR-enabled pre-analysis that is linear in terms of the number of PAG edges

in a program for accelerating k-CFA without any precision loss.

For a CFL-reachability-based formulation [49] proposed recently for supporting

object-sensitive pointer analysis [53, 54], call graph construction is built-in natu-

rally since object-sensitivity uses receiver objects as context elements. For callsite-

sensitivity, however, incorporating call graph construction into the traditional CFL-

reachability formulation [69, 76, 92] is non-trivial (Section 5.2). To the best of our

knowledge, LFCR represents the first such a solution.

Chapter 6 Related Work 147

6.4 IFDS Analysis

IFDS dataflow analyses are widely used in software testing, program verification,

understanding and maintenance, and compiler optimization. Reps et al. [66] ini-

tially introduced an efficient framework for solving the IFDS problems and sub-

sequently generalized it to the IDE framework [68] for interprocedural distributed

environment problems, where the dataflow facts are maps (“environments”) from

some finite set of symbols to some (possibly infinite) set of values. Later, Naeem

et al. [55] give several extensions, making it applicable to a broader class of inter-

procedural dataflow problems, and also introduced a concurrent alternative imple-

mented based on Scala’s actor framework. WALA [26] contains a memory-efficient

bit-vector-based IFDS algorithm. Recently, Bodden [8] has provided a generic

(multi-threaded) implementation of a generic IFDS/IDE solver in Soot [89] and

our previous work [23] exploits the sparsity of flow graph to improve IFDS al-

gorithm’s performance in an orthogonal way. In this thesis, we apply the IFDS

algorithm to a different underlying graph structure (e.g., PAG) to assist Conch

to identify context-independent objects efficiently.

148 Chapter 6 Related Work

Chapter 7

Summary and Future Directions

Designing a precise and efficient pointer analysis for the real world is urgently

required but challenging. The theoretical formulations for Java pointer analysis,

either in inclusion-style or CFL-reachability style, have been proven to be undecid-

able [64]. That is why practical implementations have to resort to regularization

in order to boost performance. For example, the inclusion-based formulation reg-

ularizes context-sensitivity by applying the k-limiting technique [54, 54, 73], and

the CFL-reachability formulation normalizes LF by losing partial field sensitiv-

ity [47,49,76,78]. Despite such approximations, existing pointer analysis algorithms

are still impractical for some large programs, in practice.

Regarding the precision of pointer analysis for object-oriented languages. field

sensitivity is more significant than context sensitivity, which is more effective than

flow sensitivity. To make pointer analysis as practical as possible, the mainstream

pointer analysis frameworks choose to support field sensitivity fully and context

sensitivity locally (by limiting context stacks with k most recent context elements)

but no flow sensitivity. However, the local context sensitivity (by k-limiting) can

only be considered as a good heuristic at best. As observed by many existing

149

150 Chapter 7 Summary and Future Directions

works [29,40,49,74], only a small set of methods, variables, and objects benefit from

context-sensitivity. Among these, the context lengths required by them may also

vary drastically across different parts of the program. Blindly applying contexts

to all variables and objects with a uniform context length often makes existing

context-sensitive pointer analyses less efficient and practically unusable without

introducing much additional precision.

This thesis makes its contributions by proposing three efficient fine-grained

pointer analysis techniques for Java. They all achieve promising speedups than the

state of the art by selecting a large set of precision-uncritical variables/objects to be

analyzed context-insensitively. In Chapter 3, we propose the first intra-procedural

pre-analysis for selecting precision-uncritical variables/objects by exploiting object

containment and reachability. In Chapter 4, we partially address the context ex-

plosion problem in kobj by context debloating and propose three linearly verifiable

conditions for identifying context-independent objects. In Chapter 5, we propose

the first precision-preserving acceleration technique for k-CFA based on a newly de-

signed CFL-reachability formulation for supporting k-CFA with built-in call graph

construction mechanism for handling dynamic dispatch.

Despite the advances made in this thesis, Java pointer analysis is far from

practically usable for some large programs. We want to highlight that the three

tools, i.e., Turner, Conch, and P3Ctx, are all designed as open-source tools

and have been/will be released at:

• Turner: http://www.cse.unsw.edu.au/∼corg/turner

• Conch: http://www.cse.unsw.edu.au/∼corg/conch

• P3Ctx: http://www.cse.unsw.edu.au/∼corg/p3ctx

http://www.cse.unsw.edu.au/~corg/turner
http://www.cse.unsw.edu.au/~corg/conch
http://www.cse.unsw.edu.au/~corg/p3ctx

Chapter 7 Summary and Future Directions 151

We hope the researchers and practitioners in the program analysis community will

find these tools to be useful in their future research.

Below, we discuss some future directions we would like to pursue. We also hope

that these ideas can inspire future researchers to work in this challenging area.

7.1 Fine-Grained Pointer Analysis with Variable-

Level Context Lengths

The three fine-grained pointer analysis techniques proposed in this thesis analyze a

subset of variables and objects context-sensitively while others context-insensitively.

A further extension could be specifying different context lengths for different vari-

ables/objects, thus potentially enabling better performance speedups to be achieved

in the future.

A theoretical context length required by a variable/object could be deduced

from the CFL-reachability formulations. Let LFC(O, v)n be an LFC path from O

to v that passes through n. The context transformation [86] (i.e., the realized

context string with balanced context elements elided out) from O to n and from n

to v are respectively denoted as ČOĈn and ČnĈv. Then, the context length required

by n along this specific path is the number of context elements in Ĉn that would

be balanced out in Čn. Given that all LFC paths that pass through n are available,

the context length of n is naturally defined as the context length of the path with

the maximum number of balanced-out context elements.

However, developing a practical pre-analysis for determining the context length

of each variable/object is quite challenging: LFC is undecidable, and overapprox-

imation approaches (like regularization) could not give rise to desirable results.

Based on our existing research experience on Java pointer analysis, the vari-

152 Chapter 7 Summary and Future Directions

ables/objects that require variable-level context lengths should generally reside in

a small part of a given program. In the future, it would be interesting to develop

an approach to find such code snippets and apply LFC only to them to further

improve the performance of pointer analysis without much pre-analysis overhead.

7.2 Design-Pattern-based Acceleration technique

for Pointer Analysis

Real-world Java applications are usually designed by following different kinds of

design patterns. For example, compiler parsers often use visiter and factory pat-

terns, and the iterator patterns and proxy patterns are prevalent in the standard

JDK library.

While many real-world Java programs are becoming increasingly large and com-

plex, the design patterns used in these programs are finite (e.g., the popular GitHub

repository, java-design-patterns1, so far only record 148 patterns). The finite

design patterns may suggest that the cases where context sensitivity is necessary

are also finite. Therefore, it may be possible to develop an efficient and precise

pointer analysis technique based on the features from these design patterns.

In the future, it would be interesting to develop a design-pattern-based accel-

eration technique for Java pointer analysis.

7.3 Client-Oriented Pointer Analysis

Pointer analysis should be a means to an end, not a stand-alone research field.

The goal of pointer analysis is to provide alias information and points-to informa-

1https://github.com/iluwatar/java-design-patterns

Chapter 7 Summary and Future Directions 153

tion for many clients, such as compiler optimization, bug detection and security

analysis. For a specific client, its unique properties and characteristics may offer

opportunities for pointer analysis to deliver enough precise points-to information

while consuming some acceptable amounts of time/memory resources.

Unfortunately, except for Mahjong [82] (which is designed for type-dependent

clients), almost all other Java pointer analysis techniques are designed for general

purposes, resulting in some client-specific optimization opportunities to be missed.

In the future, we foresee that more client-oriented pointer analysis techniques

will be designed to satisfy the maximum precision requirement of clients while

significantly cutting down analysis overhead.

7.4 Context Debloating for Other Context-

Sensitive Program Analysis

The context debloating technique proposed in Chapter 4 is for object-sensitive

pointer analysis only. However, the idea of this approach may be also effective

in other context-sensitive analyses like the callsite-sensitive pointer analysis [70],

context-transformation-based pointer analysis [86], taint analysis [4] and data-

dependence analysis [95]. Thus, it may be worth investigating context debloating

techniques for these context-sensitive analyses in order to improve their efficiency

and scalability, particularly for large codebases.

7.5 Other Potential Directions

There are potentially some other directions of interest.

154 Chapter 7 Summary and Future Directions

When designing our fine-grained techniques, we have observed that variables

and objects selected by our tools do not affect equally the performance of pointer

analysis. Only a small part of variables and objects analyzed context-insensitively

can improve significantly the efficiency of pointer analysis. In the future, it would

be interesting to identify what these variables/objects are and why they affect

substantially the performance of pointer analysis.

In addition, we hope that LFCR (introduced in Chapter 5) can provide some new

insights on understanding k-CFA, especially its demand-driven incarnations [76,78,

92], and developing new algorithmic solutions. In addition to selective context-

sensitivity, leveraging LFCR in library-code summarization [69,85] and information

flow analysis [42, 51] also merits extensive investigation.

Bibliography

[1] K. Ali and O. Lhoták. Application-only call graph construction. In ECOOP

2012 – Object-Oriented Programming, pages 688–712, Berlin, Heidelberg, 2012.

Springer Berlin Heidelberg.

[2] K. Ali and O. Lhoták. Averroes: Whole-program analysis without the whole

program. In European Conference on Object-Oriented Programming, pages

378–400, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg.

[3] L. O. Andersen. Program analysis and specialization for the C programming

language. PhD thesis, University of Cophenhagen, 1994.

[4] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein, Y. Le Traon,

D. Octeau, and P. McDaniel. FlowDroid: Precise context, flow, field, object-

sensitive and lifecycle-aware taint analysis for Android apps. In Proceedings of

the 35th ACM SIGPLAN Conference on Programming Language Design and

Implementation, page 259–269, New York, NY, USA, 2014. Association for

Computing Machinery.

[5] D. F. Bacon and P. F. Sweeney. Fast static analysis of c++ virtual function

calls. In Proceedings of the 11th ACM SIGPLAN conference on Object-oriented

programming, systems, languages, and applications, pages 324–341, New York,

NY, USA, 1996. Association for Computing Machinery.

155

156 BIBLIOGRAPHY

[6] O. Bastani, S. Anand, and A. Aiken. Specification inference using context-free

language reachability. In Proceedings of the 42nd Annual ACM SIGPLAN-

SIGACT Symposium on Principles of Programming Languages, POPL ’15,

page 553–566, New York, NY, USA, 2015. Association for Computing Ma-

chinery.

[7] S. M. Blackburn, R. Garner, C. Hoffmann, A. M. Khang, K. S. McKinley,

R. Bentzur, A. Diwan, D. Feinberg, D. Frampton, S. Z. Guyer, M. Hirzel,

A. Hosking, M. Jump, H. Lee, J. E. B. Moss, A. Phansalkar, D. Stefanović,

T. VanDrunen, D. von Dincklage, and B. Wiedermann. The DaCapo bench-

marks: Java benchmarking development and analysis. In Proceedings of the

21st annual ACM SIGPLAN conference on Object-oriented programming sys-

tems, languages, and applications, pages 169–190, New York, NY, USA, 2006.

Association for Computing Machinery.

[8] E. Bodden. Inter-procedural data-flow analysis with IFDS/IDE and Soot. In

Proceedings of the ACM SIGPLAN International Workshop on State of the

Art in Java Program analysis, pages 3–8, 2012.

[9] E. Bodden, A. Sewe, J. Sinschek, H. Oueslati, and M. Mezini. Taming re-

flection: Aiding static analysis in the presence of reflection and custom class

loaders. In Proceedings of the 33rd International Conference on Software En-

gineering, pages 241–250, Honolulu, HI, USA, 2011. IEEE.

[10] M. Bravenboer and Y. Smaragdakis. Exception analysis and points-to anal-

ysis: Better together. In Proceedings of the 18th International Symposium

on Software Testing and Analysis, page 1–12, New York, NY, USA, 2009.

Association for Computing Machinery.

BIBLIOGRAPHY 157

[11] M. Bravenboer and Y. Smaragdakis. Strictly declarative specification of so-

phisticated points-to analyses. In Proceedings of the 24th ACM SIGPLAN

conference on Object oriented programming systems languages and applica-

tions, pages 243–262, New York, NY, USA, 2009. Association for Computing

Machinery.

[12] K. Chatterjee, B. Choudhary, and A. Pavlogiannis. Optimal dyck reachability

for data-dependence and alias analysis. Proceedings of the ACM on Program-

ming Languages, 2(POPL):1–30, 2017.

[13] S. Chaudhuri. Subcubic algorithms for recursive state machines. In Proceed-

ings of the 35th annual ACM SIGPLAN-SIGACT symposium on Principles of

programming languages, pages 159–169, New York, NY, USA, 2008. Associa-

tion for Computing Machinery.

[14] F. Chow, S. Chan, S.-M. Liu, R. Lo, and M. Streich. Effective representa-

tion of aliases and indirect memory operations in SSA form. In International

Conference on Compiler Construction, pages 253–267, 1996.

[15] J. Da Silva and J. G. Steffan. A probabilistic pointer analysis for speculative

optimizations. In Proceedings of the 12th International Conference on Ar-

chitectural Support for Programming Languages and Operating Systems, page

416–425, New York, NY, USA, 2006. Association for Computing Machinery.

[16] J. Dean, D. Grove, and C. Chambers. Optimization of object-oriented pro-

grams using static class hierarchy analysis. In European Conference on Object-

Oriented Programming, pages 77–101, Berlin, Heidelberg, 1995. Springer,

Springer Berlin Heidelberg.

158 BIBLIOGRAPHY

[17] G. Fan, R. Wu, Q. Shi, X. Xiao, J. Zhou, and C. Zhang. Smoke: Scalable

path-sensitive memory leak detection for millions of lines of code. In 2019

IEEE/ACM 41st International Conference on Software Engineering (ICSE),

pages 72–82, New York, NY, USA, 2019. IEEE.

[18] X. Fan, Y. Sui, X. Liao, and J. Xue. Boosting the precision of virtual call

integrity protection with partial pointer analysis for c++. In Proceedings of

the 26th ACM SIGSOFT International Symposium on Software Testing and

Analysis, page 329–340, New York, NY, USA, 2017. Association for Computing

Machinery.

[19] M. I. Gordon, D. Kim, J. H. Perkins, L. Gilham, N. Nguyen, and M. C.

Rinard. Information flow analysis of Android applications in DroidSafe. In

NDSS, volume 15, page 110, USA, 2015. The Internet Society.

[20] N. Grech and Y. Smaragdakis. P/taint: Unified points-to and taint analysis.

Proceedings of the ACM on Programming Languages, 1(OOPSLA), Oct. 2017.

[21] D. Grove and C. Chambers. A framework for call graph construction al-

gorithms. ACM Transactions on Programming Languages and Systems

(TOPLAS), 23(6):685–746, 2001.

[22] B. Hassanshahi, R. K. Ramesh, P. Krishnan, B. Scholz, and Y. Lu. An efficient

tunable selective points-to analysis for large codebases. In Proceedings of the

6th ACM SIGPLAN International Workshop on State Of the Art in Program

Analysis, page 13–18, New York, NY, USA, 2017. Association for Computing

Machinery.

[23] D. He, H. Li, L. Wang, H. Meng, H. Zheng, J. Liu, S. Hu, L. Li, and J. Xue.

Performance-boosting sparsification of the ifds algorithm with applications to

BIBLIOGRAPHY 159

taint analysis. In 2019 34th IEEE/ACM International Conference on Au-

tomated Software Engineering (ASE), pages 267–279, San Diego, CA, USA,

2019. IEEE.

[24] D. He, J. Lu, Y. Gao, and J. Xue. Accelerating object-sensitive pointer analysis

by exploiting object containment and reachability. In Proceedings of the 35th

European Conference on Object-Oriented Programming (ECOOP 2021), pages

18:1–18:31, Dagstuhl, Germany, 2021. Schloss Dagstuhl–Leibniz-Zentrum fuer

Informatik.

[25] D. He, J. Lu, and J. Xue. Context debloating for object-sensitive pointer

analysis. In 2021 36th IEEE/ACM International Conference on Automated

Software Engineering (ASE), pages 79–91. IEEE, 2021.

[26] IBM. WALA: T.J. Watson Libraries for Analysis, 2020.

[27] M. Jeon, S. Jeong, and H. Oh. Precise and scalable points-to analysis via data-

driven context tunneling. Proceedings of the ACM on Programming Languages,

2(OOPSLA):1–29, 2018.

[28] M. Jeon and H. Oh. Return of cfa: Call-site sensitivity can be superior to

object sensitivity even for object-oriented programs. Proceedings of the ACM

on Programming Languages, 5(POPL):1–28, 2022.

[29] S. Jeong, M. Jeon, S. Cha, and H. Oh. Data-driven context-sensitivity for

points-to analysis. Proceedings of the ACM on Programming Languages,

1(OOPSLA):100, 2017.

[30] T. Kapus and C. Cadar. A segmented memory model for symbolic execution.

In Proceedings of the 2019 27th ACM Joint Meeting on European Software

160 BIBLIOGRAPHY

Engineering Conference and Symposium on the Foundations of Software Engi-

neering, page 774–784, New York, NY, USA, 2019. Association for Computing

Machinery.

[31] G. Kastrinis and Y. Smaragdakis. Hybrid context-sensitivity for points-to

analysis. In Proceedings of the 34th ACM SIGPLAN Conference on Program-

ming Language Design and Implementation, page 423–434, New York, NY,

USA, 2013. Association for Computing Machinery.

[32] J. Kodumal and A. Aiken. The set constraint/cfl reachability connection in

practice. In Proceedings of the ACM SIGPLAN 2004 Conference on Program-

ming Language Design and Implementation, pages 207–218, New York, NY,

USA, 2004. ACM.

[33] J. Kodumal and A. Aiken. The set constraint/cfl reachability connection in

practice. ACM Sigplan Notices, 39(6):207–218, 2004.

[34] V. A. E. D. M. Kronrod and I. Faradzev. On economic construction of the

transitive closure of a directred graph. In Dokl. Acad. Nauk SSSR, pages

487–88, 1970.

[35] C. Lattner and V. Adve. Llvm: a compilation framework for lifelong program

analysis amp; transformation. In International Symposium on Code Genera-

tion and Optimization, 2004. CGO 2004., pages 75–86, 2004.

[36] O. Lhoták and L. Hendren. Scaling Java points-to analysis using Spark. In

International Conference on Compiler Construction, pages 153–169, Berlin,

Heidelberg, 2003. Springer Berlin Heidelberg.

BIBLIOGRAPHY 161

[37] O. Lhoták and L. Hendren. Evaluating the benefits of context-sensitive points-

to analysis using a bdd-based implementation. ACM Trans. Softw. Eng.

Methodol., 18(1), Oct. 2008.

[38] O. Lhoták and L. Hendren. Evaluating the benefits of context-sensitive points-

to analysis using a bdd-based implementation. ACM Transactions on Software

Engineering and Methodology (TOSEM), 18(1):1–53, 2008.

[39] L. Li, C. Cifuentes, and N. Keynes. Boosting the performance of flow-sensitive

points-to analysis using value flow. In Proceedings of the 19th ACM SIGSOFT

symposium and the 13th European conference on Foundations of software engi-

neering, pages 343–353, New York, NY, USA, 2011. Association for Computing

Machinery.

[40] Y. Li, T. Tan, A. Møller, and Y. Smaragdakis. Precision-guided context sen-

sitivity for pointer analysis. Proceedings of the ACM on Programming Lan-

guages, 2(OOPSLA):1–29, 2018.

[41] Y. Li, T. Tan, A. Møller, and Y. Smaragdakis. A principled approach to

selective context sensitivity for pointer analysis. ACM Transactions on Pro-

gramming Languages and Systems, 42(TOPLAS):1–40, 2020.

[42] Y. Li, Q. Zhang, and T. Reps. Fast graph simplification for interleaved dyck-

reachability. In Proceedings of the 41st ACM SIGPLAN Conference on Pro-

gramming Language Design and Implementation, pages 780–793, New York,

NY, USA, 2020. Association for Computing Machinery.

[43] B. Liu and J. Huang. D4: Fast concurrency debugging with parallel differential

analysis. In Proceedings of the 39th ACM SIGPLAN Conference on Program-

162 BIBLIOGRAPHY

ming Language Design and Implementation, page 359–373, New York, NY,

USA, 2018. Association for Computing Machinery.

[44] B. Liu, J. Huang, and L. Rauchwerger. Rethinking incremental and parallel

pointer analysis. ACM Transactions on Programming Languages and Systems

(TOPLAS), 41(1):1–31, 2019.

[45] B. Livshits, M. Sridharan, Y. Smaragdakis, O. Lhoták, J. N. Amaral, B.-Y. E.

Chang, S. Z. Guyer, U. P. Khedker, A. Møller, and D. Vardoulakis. In defense

of soundiness: A manifesto. Communications of the ACM, 58(2):44–46, 2015.

[46] LLVM discussions on pointer analysis, 2016.

[47] J. Lu, D. He, and J. Xue. Eagle: Cfl-reachability-based precision-preserving

acceleration of object-sensitive pointer analysis with partial context sensitiv-

ity. ACM Transactions on Software Engineering and Methodology (TOSEM),

30(4):1–46, 2021.

[48] J. Lu, D. He, and J. Xue. Selective context-sensitivity for k-cfa with cfl-

reachability. In International Static Analysis Symposium, pages 261–285.

Springer, 2021.

[49] J. Lu and J. Xue. Precision-preserving yet fast object-sensitive pointer analysis

with partial context sensitivity. Proceedings of the ACM on Programming

Languages, 3(OOPSLA):1–29, 2019.

[50] D. Melski and T. Reps. Interconvertibility of a class of set constraints and

context-free-language reachability. Theoretical Computer Science, 248(1-2):29–

98, 2000.

BIBLIOGRAPHY 163

[51] A. Milanova. Flowcfl: generalized type-based reachability analysis: graph

reduction and equivalence of cfl-based and type-based reachability. Proceedings

of the ACM on Programming Languages, 4(OOPSLA):1–29, 2020.

[52] A. Milanova, W. Huang, and Y. Dong. Cfl-reachability and context-sensitive

integrity types. In Proceedings of the 2014 International Conference on Prin-

ciples and Practices of Programming on the Java platform: Virtual machines,

Languages, and Tools, pages 99–109, New York, NY, USA, 2014. Association

for Computing Machinery.

[53] A. Milanova, A. Rountev, and B. G. Ryder. Parameterized object sensitivity

for points-to and side-effect analyses for Java. In Proceedings of the 2002 ACM

SIGSOFT international symposium on Software testing and analysis, pages 1–

11, New York, NY, USA, 2002. Association for Computing Machinery.

[54] A. Milanova, A. Rountev, and B. G. Ryder. Parameterized object sensitivity

for points-to analysis for Java. ACM Transactions on Software Engineering

and Methodology, 14(1):1–41, 2005.

[55] N. A. Naeem, O. Lhoták, and J. Rodriguez. Practical extensions to the IFDS

algorithm. In International Conference on Compiler Construction, pages 124–

144, 2010.

[56] M. Naik, A. Aiken, and J. Whaley. Effective static race detection for Java.

In Proceedings of the 27th ACM SIGPLAN Conference on Programming Lan-

guage Design and Implementation, pages 308–319, New York, NY, USA, 2006.

Association for Computing Machinery.

[57] Z. Porkoláb, T. Brunner, D. Krupp, and M. Csordás. Codecompass: An open

software comprehension framework for industrial usage. In Proceedings of the

164 BIBLIOGRAPHY

26th Conference on Program Comprehension, page 361–369, New York, NY,

USA, 2018. Association for Computing Machinery.

[58] P. Pratikakis, J. S. Foster, and M. Hicks. Existential label flow inference via

cfl reachability. In International Static Analysis Symposium, pages 88–106,

Berlin, Heidelberg, 2006. Springer, Springer Berlin Heidelberg.

[59] M. Raghothaman, S. Kulkarni, K. Heo, and M. Naik. User-guided program

reasoning using bayesian inference. In Proceedings of the 39th ACM SIGPLAN

Conference on Programming Language Design and Implementation, pages 722–

735, New York, NY, USA, 2018. Association for Computing Machinery.

[60] J. Rehof and M. Fähndrich. Type-based flow analysis: from polymorphic

subtyping to cfl-reachability. ACM SIGPLAN Notices, 36(3):54–66, 2001.

[61] M. Reif, M. Eichberg, B. Hermann, J. Lerch, and M. Mezini. Call graph

construction for java libraries. In Proceedings of the 2016 24th ACM SIGSOFT

International Symposium on Foundations of Software Engineering, page 474–

486, New York, NY, USA, 2016. Association for Computing Machinery.

[62] T. Reps. Program analysis via graph reachability. Information and Software

Technology, 40(11):701–726, 1998.

[63] T. Reps. Program analysis via graph reachability. Information and software

technology, 40(11-12):701–726, 1998.

[64] T. Reps. Undecidability of context-sensitive data-dependence analysis. ACM

Transactions on Programming Languages and Systems, 22(1):162–186, 2000.

[65] T. Reps, S. Horwitz, and M. Sagiv. Precise interprocedural dataflow analysis

via graph reachability. In Proceedings of the 22nd ACM SIGPLAN-SIGACT

BIBLIOGRAPHY 165

Symposium on Principles of Programming Languages, POPL ’95, page 49–61,

New York, NY, USA, 1995. Association for Computing Machinery.

[66] T. Reps, S. Horwitz, and M. Sagiv. Precise interprocedural dataflow analysis

via graph reachability. In Proceedings of the 22nd ACM SIGPLAN-SIGACT

symposium on Principles of programming languages, pages 49–61, 1995.

[67] B. G. Ryder. Dimensions of precision in reference analysis of object-oriented

programming languages. In International Conference on Compiler Construc-

tion, pages 126–137, Berlin, Heidelberg, 2003. Springer, Springer Berlin Hei-

delberg.

[68] M. Sagiv, T. Reps, and S. Horwitz. Precise interprocedural dataflow analysis

with applications to constant propagation. Theoretical Computer Science,

167(1-2):131–170, 1996.

[69] L. Shang, X. Xie, and J. Xue. On-demand dynamic summary-based points-

to analysis. In Proceedings of the Tenth International Symposium on Code

Generation and Optimization, pages 264–274, New York, NY, USA, 2012.

Association for Computing Machinery.

[70] M. Sharir and A. Pnueli. Two approaches to interprocedural data flow analysis.

New York University. Courant Institute of Mathematical Sciences , New York,

NY, USA, 1978.

[71] O. Shivers. Control-flow analysis of higher-order languages. PhD thesis, Cite-

seer, 1991.

[72] Y. Smaragdakis. Doop-framework for Java pointer and taint analysis (using

p/taint), 2021.

166 BIBLIOGRAPHY

[73] Y. Smaragdakis, M. Bravenboer, and O. Lhoták. Pick your contexts well:

understanding object-sensitivity. In Proceedings of the 38th annual ACM

SIGPLAN-SIGACT symposium on Principles of programming languages,

pages 17–30, New York, NY, USA, 2011. Association for Computing Machin-

ery.

[74] Y. Smaragdakis, G. Kastrinis, and G. Balatsouras. Introspective analysis:

context-sensitivity, across the board. In Proceedings of the 35th ACM SIG-

PLAN Conference on Programming Language Design and Implementation,

pages 485–495, New York, NY, USA, 2014. Association for Computing Ma-

chinery.

[75] J. Späth, L. Nguyen Quang Do, K. Ali, and E. Bodden. Boomerang: Demand-

driven flow-and context-sensitive pointer analysis for Java. In 30th European

Conference on Object-Oriented Programming, pages 22:1–22:26, Dagstuhl,

Germany, 2016. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

[76] M. Sridharan and R. Bodík. Refinement-based context-sensitive points-to anal-

ysis for Java. In Proceedings of the 27th ACM SIGPLAN Conference on Pro-

gramming Language Design and Implementation, page 387–400, New York,

NY, USA, 2006. Association for Computing Machinery.

[77] M. Sridharan, S. J. Fink, and R. Bodik. Thin slicing. In Proceedings of

the 28th ACM SIGPLAN Conference on Programming Language Design and

Implementation, pages 112–122, New York, NY, USA, 2007. Association for

Computing Machinery.

[78] M. Sridharan, D. Gopan, L. Shan, and R. Bodík. Demand-driven points-to

analysis for Java. In Proceedings of the 20th Annual ACM SIGPLAN Confer-

BIBLIOGRAPHY 167

ence on Object-Oriented Programming, Systems, Languages, and Applications,

page 59–76, New York, NY, USA, 2005. Association for Computing Machinery.

[79] Y. Sui, Y. Li, and J. Xue. Query-directed adaptive heap cloning for optimizing

compilers. In Proceedings of the 2013 IEEE/ACM International Symposium

on Code Generation and Optimization (CGO), pages 1–11, New York, NY,

USA, 2013. IEEE.

[80] Y. Sui and J. Xue. On-demand strong update analysis via value-flow refine-

ment. In Proceedings of the 2016 24th ACM SIGSOFT international sympo-

sium on foundations of software engineering, pages 460–473, New York, NY,

USA, 2016. Association for Computing Machinery.

[81] V. Sundaresan, L. Hendren, C. Razafimahefa, R. Vallée-Rai, P. Lam,

E. Gagnon, and C. Godin. Practical virtual method call resolution for java.

ACM SIGPLAN Notices, 35(10):264–280, 2000.

[82] T. Tan, Y. Li and J. Xue. Efficient and precise points-to analysis: modeling

the heap by merging equivalent automata. In Proceedings of the 38th ACM

SIGPLAN Conference on Programming Language Design and Implementa-

tion, pages 278–291, New York, NY, USA, 2017. Association for Computing

Machinery.

[83] T. Tan, Y. Li, X. Ma, C. Xu, and Y. Smaragdakis. Making pointer analysis

more precise by unleashing the power of selective context sensitivity. Proceed-

ings of the ACM on Programming Languages, 5(OOPSLA):1–27, 2021.

[84] T. Tan, Y. Li, and J. Xue. Making k-object-sensitive pointer analysis more

precise with still k-limiting. In International Static Analysis Symposium, pages

489–510, Berlin, Heidelberg, 2016. Springer Berlin Heidelberg.

168 BIBLIOGRAPHY

[85] H. Tang, X. Wang, L. Zhang, B. Xie, L. Zhang, and H. Mei. Summary-based

context-sensitive data-dependence analysis in presence of callbacks. In Pro-

ceedings of the 42Nd Annual ACM SIGPLAN-SIGACT Symposium on Prin-

ciples of Programming Languages, pages 83–95, New York, NY, USA, 2015.

Association for Computing Machinery.

[86] R. Thiessen and O. Lhoták. Context transformations for pointer analysis. In

Proceedings of the 38th ACM SIGPLAN Conference on Programming Lan-

guage Design and Implementation, page 263–277, New York, NY, USA, 2017.

Association for Computing Machinery.

[87] D. Trabish, T. Kapus, N. Rinetzky, and C. Cadar. Past-sensitive pointer anal-

ysis for symbolic execution. In Proceedings of the 28th ACM Joint Meeting

on European Software Engineering Conference and Symposium on the Foun-

dations of Software Engineering, page 197–208, New York, NY, USA, 2020.

Association for Computing Machinery.

[88] D. Trabish, A. Mattavelli, N. Rinetzky, and C. Cadar. Chopped symbolic

execution. In Proceedings of the 40th International Conference on Software

Engineering, page 350–360, New York, NY, USA, 2018. Association for Com-

puting Machinery.

[89] R. Vallée-Rai, P. Co, E. Gagnon, L. Hendren, P. Lam, and V. Sundaresan.

Soot: A Java bytecode optimization framework. In CASCON First Decade

High Impact Papers, pages 214–224. IBM Corp., USA, 2010.

[90] J. Whaley and M. S. Lam. Cloning-based context-sensitive pointer alias anal-

ysis using binary decision diagrams. In Proceedings of the ACM SIGPLAN

2004 conference on Programming language design and implementation, pages

131–144, New York, NY, USA, 2004. Association for Computing Machinery.

BIBLIOGRAPHY 169

[91] G. Xu, A. Rountev, and M. Sridharan. Scaling cfl-reachability-based points-to

analysis using context-sensitive must-not-alias analysis. In European Confer-

ence on Object-Oriented Programming, pages 98–122, Berlin, Heidelberg, 2009.

Springer Berlin Heidelberg.

[92] D. Yan, G. Xu, and A. Rountev. Demand-driven context-sensitive alias analy-

sis for Java. In Proceedings of the 2011 International Symposium on Software

Testing and Analysis, pages 155–165, New York, NY, USA, 2011. Association

for Computing Machinery.

[93] H. Yan, Y. Sui, S. Chen, and J. Xue. Spatio-temporal context reduction: A

pointer-analysis-based static approach for detecting use-after-free vulnerabil-

ities. In 2018 IEEE/ACM 40th International Conference on Software Engi-

neering (ICSE), pages 327–337, New York, NY, USA, 2018. IEEE.

[94] Q. Zhang, M. R. Lyu, H. Yuan, and Z. Su. Fast algorithms for dyck-cfl-

reachability with applications to alias analysis. In Proceedings of the 34th

ACM SIGPLAN Conference on Programming Language Design and Implemen-

tation, pages 435–446, New York, NY, USA, 2013. Association for Computing

Machinery.

[95] Q. Zhang and Z. Su. Context-sensitive data-dependence analysis via linear

conjunctive language reachability. In Proceedings of the 44th ACM SIGPLAN

Symposium on Principles of Programming Languages, pages 344–358, New

York, NY, USA, 2017. Association for Computing Machinery.

[96] X. Zheng and R. Rugina. Demand-driven alias analysis for C. In Proceedings

of the 35th annual ACM SIGPLAN-SIGACT symposium on Principles of pro-

gramming languages, pages 197–208, New York, NY, USA, 2008. Association

for Computing Machinery.

	Abstract
	Publications
	Acknowledgments
	List of Figures
	List of Tables
	List of Algorithms
	Introduction
	Preliminaries
	Pointer Analysis black in a Nutshell
	Context Sensitivity
	CFL-Reachability

	Contribution Overview
	Accelerating kOBJ by Exploiting Object Containment and Reachability
	Context Debloating for Object-Sensitive Pointer Analysis
	Precision-Preserving Acceleration for -CFA

	Publications and Organization

	Background
	A Simplified Java Language
	Pointer Analysisblack : Concepts and Measurements
	Inclusion-based Formulation
	Notations
	Andersen-Style Inclusion-based Formulation
	Inclusion-based Formulation with Context Sensitivity
	Fine-Grained Context-sensitive Pointer Analysis

	CFL-Reachability Formulation
	Callsite-based CFL-Reachability Formulation
	Object-based CFL-Reachability Formulation

	Accelerating kOBJ by Exploiting Object Containment and Reachability
	Overview
	Motivation
	Challenges
	Example
	Turner: Our Approach

	Turner
	Object Containment
	Object Reachability
	Time Complexity

	Evaluation
	RQ1: Precision
	RQ2: Efficiency
	RQ3: Effectiveness

	Conclusion

	Context Debloating for Object-sensitive Pointer Analysis
	Overview
	Motivation
	Object Sensitivity
	Limitations of Existing Algorithms
	Conch: Our Context Debloating Approach

	Context Debloating
	Conch
	Verifying observation1
	Verifying observation2
	Verifying Observation 4.3
	Soundness and Time Complexity

	Evaluation
	RQ1: Is Conch Precise and Efficient?
	RQ2: Can Conch Speed Up Baseline Analyses?

	Conclusion

	Precision-Preserving Acceleration for k-CFA
	Overview
	Motivation
	Example
	Andersen-Style Inclusion-based Formulation
	LFC-based CFL-Reachability Formulation
	LFCR: Necessity and Challenges

	LFCR: Design and Insights
	Pointer Assignment Graph
	
	Time Complexities

	 : An Application
	CFL-Reachability-Guided Selections
	Regularization of into
	P3Ctx

	Evaluation
	Experimental Setup
	Results

	Conclusion

	Related Work
	Selective Context-Sensitivity
	Other Efficient Pointer Analysis Techniques
	CFL-Reachability
	IFDS Analysis

	Summary and Future Directions
	Fine-Grained Pointer Analysis with Variable-Level Context Lengths
	Design-Pattern-based Acceleration technique for Pointer Analysis
	Client-Oriented Pointer Analysis
	Context Debloating for Other Context-Sensitive Program Analysis
	Other Potential Directions

	Bibliography

