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A Container-Usage-Pa�ern-Based Context Debloating
Approach for Object-Sensitive Pointer Analysis
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and JINGLING XUE, University of New South Wales, Australia

In this paper, we introduce DebloaterX, a new approach for automatically identifying context-independent

objects to debloat contexts in object-sensitive pointer analysis (:obj). Object sensitivity achieves high precision,
but its context construction mechanism combines objects with their contexts indiscriminately. This leads

to a combinatorial explosion of contexts in large programs, resulting in ine�ciency. Previous research has

proposed a context-debloating approach that inhibits a pre-selected set of context-independent objects from

forming new contexts, improving the e�ciency of :obj. However, this earlier context-debloating approach
under-approximates the set of context-independent objects identi�ed, limiting performance speedups.

We introduce a novel context-debloating pre-analysis approach that identi�es objects as context-dependent

only when they are potentially precision-critical to :obj based on three general container-usage patterns.

Our research �nds that objects containing no �elds of "abstract" (i.e., open) types can be analyzed context-

insensitively with negligible precision loss in real-world applications. We provide clear rules and e�cient

algorithms to recognize these patterns, selecting more context-independent objects for better debloating.

We have implemented DebloaterX in the Qilin framework and will release it as an open-source tool. Our

experimental results on 12 standard Java benchmarks and real-world programs show that DebloaterX selects

92.4% of objects to be context-independent on average, enabling :obj to run signi�cantly faster (an average of

19.3× when : = 2 and 150.2× when : = 3) and scale up to 8 more programs when : = 3, with only a negligible

loss of precision (less than 0.2%). Compared to state-of-the-art alternative pre-analyses in accelerating :obj,
DebloaterX outperforms Zipper signi�cantly in both precision and e�ciency, and outperforms Conch (the

earlier context-debloating approach) in e�ciency substantially while achieving nearly the same precision.
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1 INTRODUCTION

Pointer analysis, which statically and conservatively estimates which heap objects pointer variables
may refer to at runtime, is a key component of various software analysis techniques such as
compiler optimization [Phulia et al. 2020], bug detection [Cai et al. 2022], program understanding
[Sridharan et al. 2007], program veri�cation [Garcia-Contreras et al. 2022], and symbolic execution
[Trabish et al. 2020]. The success of these techniques ultimately depends on the precision and
e�ciency of the underlying pointer analysis algorithm used.
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For object-oriented languages like Java, object-sensitivity [Milanova et al. 2002, 2005] is an
essential technique for ensuring high precision in Java pointer analyses and is widely adopted in
several Java pointer analysis frameworks, such as Qilin [He et al. 2022], Doop [Bravenboer and
Smaragdakis 2009], andWala [WALA 2023]. Under :-limiting, the method context of a :-object-
sensitive analysis (with a (:−1)-context-sensitive heap), denoted :obj, is represented by a sequence
of : context elements, [>1, ..., >: ], where >1 is the receiver object of some method being analyzing
and >8 is a receiver object of the method where >8−1 is allocated [Smaragdakis et al. 2011].
However, scaling :obj for reasonably large programs when : ⩾ 3 can be di�cult, and even

when it is scalable, it can be time-consuming [He et al. 2021b; Jeon et al. 2018; Li et al. 2018;
Thiessen and Lhoták 2017]. To address this issue, He et al. [2021a, 2023a] recently proposed a
context-debloating approach, which functions as a pre-analysis, to debloat contexts for :obj. They
identi�ed the primary reason for the ine�ciency of :obj as the context combinatorial explosion
issue caused by its context construction mechanism, which combines objects indiscriminately with
their contexts to form new contexts. However, in practice, the majority of objects in a program
are context-independent rather than context-dependent. Allowing these objects to combine with
contexts to form new contexts only serves to increase the number of contexts that need to be
analyzed, without providing any signi�cant precision bene�ts. The de�nitions and explanations of
context-dependent and context-independent objects can be found in Section 2. Unlike selective
context-sensitivity approaches (which are also performed as a pre-analysis) [Hassanshahi et al.
2017; He et al. 2021b; Jeong et al. 2017; Li et al. 2018, 2020; Lu et al. 2021a; Lu and Xue 2019;
Smaragdakis et al. 2014], which aim to reduce the number of methods or program elements that
require context-sensitivity, context-debloating approaches are theoretically more advantageous
in boosting the performance of :obj since they can signi�cantly reduce the number of contexts
formed for not only context-independent objects but also context-dependent objects.
To improve context-debloating even further, the challenge is to design a pre-analysis that can

identify as many context-independent objects (or as few context-dependent objects) as possible
while also being both precise and e�cient. However, verifying the context-dependability of an
object by checking two CFL-reachability-based necessary conditions (i.e., CFL-P1 and CFL-P2 intro-
duced in [Lu et al. 2021a]) is theoretically undecidable [Reps 2000]. Therefore, determining which
objects are context-dependent requires approximations. The �rst context-debloating technique
introduced in [He et al. 2021a, 2023a], Conch, approximates the two necessary conditions for
context-dependability using three linear veri�able conditions. While Conch is already e�cient, its
�eld-insensitive algorithm selects context-dependent objects highly over-approximately, which
limits its potential to further improve the performance of :obj.
We present DebloaterX, a novel context-debloating approach for :obj based on container-

usage patterns. Our approach is designed to leverage the existence of real-world usage patterns,
recognizing that despite the theoretical complexity of determining context-dependability, the usage
patterns of context-dependent objects are �nite. We identify three general container-usage patterns
that dominate the real-world distribution of context-dependent objects: (1) inner containers, which
save data from their outer containers, (2) factory-created containers, which are created by a factory
method and used under di�erent contexts to store and retrieve data, and (3) container wrappers,
such as iterators and enumerators, that encapsulate a container and provide APIs for retrieving
data. To e�ciently and accurately identify these patterns, we have developed a set of e�cient rules
and algorithms that support a certain degree of �eld sensitivity while controlling pre-analysis time
within acceptable limits. Our approach utilizes a specially designed graph structure called XPAG,
which over-approximates value �ows at virtual calls. We apply a set of �nite-state automata to
independently check the value �ows of all object �elds, allowing for parallelism and supporting
1-limited �eld sensitivity. By over-approximating value �ows during the design of XPAG, we ensure
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1 class Client { // handcrafted

2 void foo () {
3 Object o1 = new Object() ; // O1

4 HashSet s1 = Sets .newHashSet();
5 s1 .add(o1) ;
6 Object [] a1 = s1 . toArray ()
7 Object v1 = a1 [0];
8 }
9 void bar () {
10 Object o2 = new Object() ; // O2

11 HashSet s2 = Sets .newHashSet();
12 s2 .add(o2) ;
13 Object [] a2 = s2 . toArray ()
14 Object v2 = a2 [0];
15 }}
16 // in com.google.common.collect;

17 class Sets {
18 static HashSet newHashSet() {
19 return new HashSet(); // S

20 }}
21 class HashSet { // in java.util;
22 HashMap map;
23 static Object g = new Object() ; // O3

24 HashSet() {
25 this .map = new HashMap(); // M

26 }
27 void add(Object p) {
28 this .map.put(p, g) ;
29 }
30 Iterator iterator () {
31 return this .map.keySet() . iterator () ;
32 }
33 Object [] toArray () {
34 Object [] r = new Object[5]; // [O]

35 r [0] = this . iterator () .next () ;
36 return r ;
37 }}

38 class HashMap { // in java.util

39 Entry[] table ;
40 Set keySet ;
41 HashMap() {
42 this . table = new Entry[5]; // [E]

43 }
44 Set keySet () {
45 Set s = this . keySet ;
46 if ( s == null) {
47 s = new KeySet(this); // KS

48 this . keySet = s ;
49 }
50 return s ;
51 }
52 void put(Object q1, Object q2) {
53 this . table [0] = new Entry(q1, q2) ; // E

54 }
55 class KeyIterator {
56 HashMap m1;
57 KeyIterator (HashMap m3) { this.m1 = m3; }
58 Object next () {
59 return this .m1.table [0]. key;
60 }}
61 class Entry {
62 Object key, value ;
63 Entry(Object p1, Object p2) {
64 this . key = p1; this . value = p2
65 }}
66 class KeySet {
67 HashMap m2;
68 KeySet(HashMap m4) { this.m2 = m4; }
69 Iterator iterator () {
70 HashMap m5 = this.m2;
71 return new KeyIterator(m5); // KI

72 }}}

73 new Client() . foo () ; // C1
74 new Client() . bar () ; // C2

Fig. 1. An example, where all objects except O1, O2, O3, C1, and C2 are context-dependent. S is a factory-created
container, M, [E] and E are inner containers, and [O] and KI are container wrappers. KS is both an inner
container and a container wrapper. Lines 73-74 in the orange box may be analyzed under contexts 21, ..., 2= .

that automaton checking can be performed in time linear in the program statement size. To the
best of our knowledge, our approach is the �rst pre-analysis to support �eld sensitivity within
reasonable analysis time for accelerating :obj while causing it to su�er from minor precision loss.
We have implemented DebloaterX in Qilin, a Java pointer analysis framework designed

for supporting �ne-grained context-sensitivity [He et al. 2022], and evaluated it on 12 standard
Java benchmarks and real-world programs. Our results demonstrate that DebloaterX identi�es
an average of 92.4% context-independent objects, enabling :obj to run signi�cantly faster with
speedups ranging from one to two orders of magnitude. Speci�cally, DebloaterX speeds up 2obj by
19.3× on average and 3obj by 150.2× on average. In addition, DebloaterX enables 3obj to scale to 8
more programs. The precision loss caused by DebloaterX is almost negligible, with less than 0.2%
reduction in precision. We have also compared DebloaterX with two state-of-the-art pre-analyses
for accelerating :obj: Zipper [Li et al. 2018, 2020] and Conch [He et al. 2021a, 2023a]. Our results
indicate that DebloaterX outperforms Zipper signi�cantly in both precision and e�ciency and
outperforms Conch in e�ciency signi�cantly while achieving nearly the same precision.
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In summary, this paper makes the following main contributions:
• The identi�cation of three general container-usage patterns that can potentially identify
almost all context-dependent objects for :obj in real-world Java programs (Section 2).
• The introduction of DebloaterX, a precise yet e�cient context-debloating approach for
:obj, which leverages these three container-usage patterns (Section 4).
• The implementation of DebloaterX in Qilin and its open-source release at https://github.
com/DongjieHe/DebloaterX.git.
• The extensive evaluation of DebloaterX, which demonstrates its e�ectiveness and practical
signi�cance for real-world programs, outperforming state-of-the-art alternatives (Section 5).

2 DEBLOATERX: AN OVERVIEW

We use an example Java program, as shown in Figure 1, which is abstracted from real-world code.
This program serves to illustrate the challenges of verifying an object’s context-dependability
or context-independability. We also aim to demonstrate the limitations of existing work while
reviewing object sensitivity and context debloating for :obj. The example may appear slightly
complex, but it is designed to be complex enough to motivate our DebloaterX approach.

In this work, :obj operates on an intermediate representation of a Java program where generic
types have been erased and are therefore not directly considered by :obj. As an example, in Figure 1,
HashSet<T> is simpli�ed to HashSet<Object> or simply HashSet for ease of understanding.
Example Program. In Figure 1, there are seven classes in total. The Sets class (lines 16-20) is

from the third-party library Google Collect, while the HashSet class (lines 21-37) and HashMap

class (lines 38-72, including its three inner classes: KeyIterator (lines 55-60), Entry (lines 61-65),
and KeySet (lines 66-72)) are from the standard JDK library. The handcrafted class Client (lines 1-
15) includes two logically equivalent methods, foo() and bar(). In foo() (bar()), the object O1
(O2) created in line 3 (10) is added into a HashSet (i.e., S, created by a call to the factory method
newHashSet() in line 4 (line 11)) and later loaded into v1 (v2) after a call to the toArray()method
in line 6 (13) and followed by a load. In the orange box (lines 73-74), two Client objects, C1 and C2,
are created and used as the receiver object to invoke foo() and bar(), respectively.

Object Sensitivity. Figure 2 depicts the Object Allocation Graph (OAG) [Tan et al. 2016] for our
example. Here, an edge=1 → =2 indicates that object=1 is a receiver object of amethodwhere=2 is al-
located. Assuming for now that the code in the orange box resides in main() and thus analyzed only
once under the empty context [ ], we can ignore all the OAG edges originating from 21, ..., 2= . In :obj,
a method can be analyzed under di�erent calling contexts determined by the paths to its receiver ob-
jects. For example, add() (lines 27-29) is invoked in lines 5 and 12, both with S as its receiver object.
As there are two paths to object S, add() will be analyzed separately under two di�erent contexts,
[S, C1] and [S, C2]. For this particular example, all other methods except foo() and bar() will also
be analyzed under two di�erent contexts. Let pts(=, 2) be the set of context-sensitive objects pointed
by a pointer variable = under context 2 . Then, we have pts(v1, [C1]) = pts([O].arr, [S, C1]) =

pts(E.key, [M, S, C1]) = pts(q1, [M, S, C1]) = pts(p, [S, C1]) = pts(o1, [C1]) = {⟨O1, [C1]⟩}, and
pts(v2, [C2]) = pts([O].arr, [S, C2]) = pts(E.key, [M, S, C2]) = pts(q1, [M, S, C2]) =

pts(p, [S, C2]) = pts(o2, [C2]) = {⟨O2, [C2]⟩}, where arr is a special �eld introduced for modeling
an array object monolithically as is standard [Sridharan and Bodík 2006; Sridharan et al. 2005].
Therefore, v1 only points to O1 and v2 only points to O2 as expected. However, if any object in
{S, M, [O], [E], E, KS, KI} is analyzed context-insensitively, then v1 (v2) will be found to also point
to O2 (O1) spuriously.

Context-Dependability and Context-Independability. Let us introduce the formal de�nitions
for these two concepts. Consider applying :obj to analyze a program % that includes an object > .
We de�ne :obj> as a version of :obj that analyzes object > context-insensitively while analyzing
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S

C1 C2

O1 O2

[O]M

[E] E KS

KI

O3

21 22 · · · 2=−1 2=

Fig. 2. The object allocation graph for the program shown in Figure 1 (with 21, ..., 2= being the contexts of C1
and C2), where only the red edges will remain a�er context debloating has been performed.

all other objects in % context-sensitively. For clarity, we write ?CB:obj (E, 2) to represent the context-
sensitive points-to set computed by :obj for a pointer variable E under a context 2 (i.e., ?CB (E, 2)
de�ned earlier for :obj in this section). Let ?CB:obj (E) be the corresponding points-to set with
the context information being dropped, given by ?CB:obj (E) = ∪2∈2CG (E) {> | ⟨>, 2

′⟩ ∈ ?CB:obj (E, 2)},
where 2CG (E) is the set of all contexts of E . Similarly, we de�ne ?CB:obj> (E, 2) and ?CB:obj> (E).

Now, object > is said to be context-independent if and only if for every pointer variable E in % ,
?CB:obj (E) = ?CB:obj> (E) holds for all values of : . Conversely, object > is context-dependent if and
only if there exists a pointer variable E in % such that ?CB:obj (E) ≠ ?CB:obj> (E) for some value of : .
Context Debloating. The idea behind context debloating is simple: objects in a program are

categorized as either context-dependent or context-independent. During :obj, context-independent
objects are analyzed context-insensitively and are not di�erentiated under di�erent calling contexts.
This approach e�ectively reduces the number of contexts that would otherwise be formed and used
in analyzing a method, signi�cantly improving the e�ciency and scalability of :obj.
Let us return to Figure 1 assuming that the code in the orange box is now analyzed under =

di�erent contexts, 21, ..., 2= . If context debloating is not used, objects C1 and C2 will combine with
every context 28 to form new contexts [C1, 28 ] and [C2, 28 ] used for analyzing foo() and bar(),
respectively, causing each of these two methods to be analyzed a total of = times, and every other
method in the program to be analyzed a total of 2= times. However, such over analysis brings no
bene�ts for precision. Suppose we know that O1, O2, O3, C1, and C2 in the program are context-
independent, while the other objects are context-dependent. By using context debloating, all edges
to a context-independent object in the OAG given in Figure 2 are removed, resulting in a debloated
OAG consisting of only the red edges. This leads to a more e�cient :obj while achieving the same
precision when analyzing our example with its contexts debloated this way.
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Challenges. Developing a precise context-debloating technique is a theoretically challenging
task. Lu et al. [2021a] have recently proposed two necessary conditions (as shown in their Figure 2)
for determining whether an object should be analyzed context-sensitively or not. However, verifying
these two necessary conditions requires computing the reachability problem of the intersection of
two interleaved context-free languages (CFLs), which is an undecidable problem [Reps 2000].
Limitations of Existing Work. Eagle [Lu et al. 2021a; Lu and Xue 2019] weakens the two

necessary conditions by regularizing one of the two CFLs involved, leading to a conservative iden-
ti�cation of almost all non-trivial context-independent objects as context-dependent objects. While
Eagle maintains precision, it can only provide a speedup of approximately 1.5× for :obj [He et al.
2022]. In contrast, Conch [He et al. 2021a, 2023a], which is the �rst context-debloating approach for
:obj, uses three linearly veri�able conditions to determine an object’s context-dependability. While
Conch is already highly e�cient, it selects context-dependent objects in an over-approximate
manner, which limits its ability to further improve the performance of :obj.

Consider object C1 in our example program, which both Eagle and Conch can correctly identify
as context-independent. However, if we make the following slight modi�cation, both approaches
will fail to do so, despite no change to the context-dependability of any object. Suppose we introduce
a new �eld “Object f” in Client, add a parameter “Object t1” and two statements “this.f =

t1” and “t2 = this.f” to foo(), and encapsulate line 73 in a new method that returns C1. In this
modi�ed example, Conch will falsely identify C1 as context-dependent, as it satis�es all three of
its veri�cation conditions, but the value from t1 can never �ow out of foo() (thus violating the
set of two necessary conditions proposed in Lu et al. [2021a] as mentioned above).

Our solution. Due to the theoretical complexity of verifying an object’s context-dependability,
we propose to rely on real-world usage patterns to identify context-dependent objects, which has
not been done before. Our solution is a novel approach called DebloaterX, which leverages three
general container-usage patterns to debloat contexts for :obj.

In the example shown in Figure 1, there are seven context-dependent objects: S, M, [O], [E], KS,
E, and KI. Each of these objects is a container, as de�ned in De�nition 1, which stores data that is
�rst retrieved from outside the container and later accessed outside the container. For instance, M is
a container because it stores O1 (O2) in M.table.arr.key and later provides it to v1 (v2). Similarly,
KI is also a container because it stores M (along with all the data in M) in KI.m1 and later exposes
KI.m1.key to r[0] in line 35. As for array objects, [O] and [E], they are naturally containers
because they are frequently subject to stores and loads. Our de�nition of containers di�ers from
informal de�nitions used in the literature, as we require the existence of speci�c incoming and
outgoing value �ows outside the containers via their �eld accesses (De�nition 1).

Furthermore, we have discovered that container objects are context-dependent only when used
in terms of certain usage patterns. Based on our observations, we have identi�ed three general
container usage patterns that are associated with context-dependent objects:

• Inner Containers. These are containers that are typically accessed by their outer containers
via a �eld (or precisely a �eld access path) and are used by their outer containers for storing
and retrieving data. Example inner containers in Figure 1 include M, [E], KS, and E.
• Factory-Created Containers. Some containers, such as S in Figure 1, are created by factory
methods. These methods are typically static and invoked under di�erent calling contexts. By
ensuring context-dependability of these containers, we can guarantee that the data stored in
them under di�erent contexts will not be con�ated, preserving the precision of the analysis.
• Container Wrappers. These are objects that wrap around other containers and are returned
directly by their allocating methods, responsible for storing data in their �elds and providing
APIs for accessing the data. Examples in Figure 1 include [O], KS, and KI. In general, iterator
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Will Be Debloated

DebloaterX

Fig. 3. Overview of DebloaterX for debloating contexts for :obj.

and enumerator objects, which are prevalent in the JDK library, third-party libraries, and
regular Java applications, are representative examples of container wrappers.

Note that there may be some overlap between inner containers and container wrappers, as
shown by the existence of KS in Figure 1 being classi�ed as both. However, as our evaluation in
Section 5 demonstrates, such overlap is not necessarily common, in practice.

Although we anticipated that the number of container-usage patterns would be �nite, we were
surprised by the small number of patterns we have discovered. Despite this, identifying only these
three patterns is su�cient to preserve the 99.8% precision of :obj, in practice (Section 5).

Figure 3 provides a high-level overview of DebloaterX. DebloaterX �rst identi�es container
objects in a program and then checks whether their usage matches any of the three patterns outlined
earlier to determine their context-dependability. DebloaterX utilizes points-to information that
is pre-computed by a context-insensitive pointer analysis and serves to improve the e�ciency of
:obj by instructing it to analyze the context-independent objects in a context-insensitive manner.

For our example given in Figure 1 and the modi�ed version discussed above, DebloaterX can
accurately distinguish between context-independent and context-dependent objects.

The precise yet e�cient identi�cation of container objects and the three usage patterns remains a
signi�cant challenge. To address this, we have developed several sophisticated �nite-state automata,
along with e�cient rules and algorithms. We defer their technical details to Section 4.

3 PRELIMINARIES

We introduce some notations used in the paper (Section 3.1) and provide a brief review of a formal-
ization of object-sensitive pointer analysis (:obj) with support for context debloating (Section 3.2).
This forms the basis for understanding our pre-analysis, DebloaterX, introduced in Section 4.

3.1 Notations

Given a Java program % , let T,H,M, F,V, L be the domains of types, heap objects, methods, instance
�elds, variables, and statement labels, respectively. For :obj, we write C = H

0 ∪ H1 ∪ H2 · · · to
represent the domain of contexts. Given a context 2 = [41, · · · , 4=] ∈ C and a context element
4 ∈ H, we write 4 :: 2 for [4, 41, · · · , 4=] and ⌈2⌉: for [41, · · · , 4: ]. Given an instance method<, we
write this< , ?<8 and ret< for the “this” variable, 8-th parameter and return variable (i.e., a unique
variable introduced for storing all returned values) of<, respectively. Static �elds and methods
are omitted. Static �elds can be treated as regular variables, even though they are always analyzed
context-insensitively. Static methods are handled in the standard manner [He et al. 2022].

In addition, the following seven auxiliary functions are used: (1) fields : T∪H ↩→ P(F) returns
a set of �elds accessed by a heap object or any instance object of a class, (2) methodof : H ↩→ M

gives the allocating method of a heap object, (3) typeof : F∪H ↩→ T gives the declaring type of an
instance �eld or the dynamic type of a heap object, (4) pts : V∪H×F ↩→ P(H) records the points-
to information found context-insensitively (e.g., by a context-insensitive pointer analysis like Spark
[Lhoták and Hendren 2003]) for a variable or an object’s �eld, (5) methodsInvokedOn : H ↩→ P(M)

returns the set of methods that can be invoked on a receiver object (computed by, say, Spark), (6)
params : M ↩→ P(V) returns the set of parameters (including the this variable) of a method, and
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G = new T // $ in< 2 ∈ contexts(<)

2′ = if $ ∈ I then [ ] else ⌈2⌉:−1

⟨$, 2′⟩ ∈ pts(G, 2)
[New]

G = ~ in<
2 ∈ contexts(<)

pts(~, 2) ⊆ pts(G, 2)
[Assign]

G = ~.5 in< 2 ∈ contexts(<)

⟨$, 2′⟩ ∈ pts(~, 2)

pts($.5 , 2′) ⊆ pts(G, 2)
[Load]

G .5 = ~ in< 2 ∈ contexts(<)

⟨$, 2′⟩ ∈ pts(G, 2)

pts(~, 2) ⊆ pts($.5 , 2′)
[Store]

; : G = ~.<′ (01, ..., 0=) in< 2 ∈ contexts(<)

⟨$, 2′⟩ ∈ pts(~, 2) <′′ = dispatch($, ;) 2′′ = $ :: 2′

2′′ ∈ contexts(<′′) ∀8 ∈ [1, =] : pts(08 , 2) ⊆ pts(?<
′

8 , 2′′)

⟨$, 2′⟩ ∈ pts(this<
′′

, 2′′) pts(ret<
′′
, 2′′) ⊆ pts(G, 2)

[Call]

Fig. 4. Rules for :obj with support for context debloating.< is the method containing the statements analyzed.

�nally, (7) paramsAndRet : M ↩→ P(V) returns the set of the parameters and return variable of a
method. Additional notations and functions will be introduced as required.

3.2 Object-Sensitive Pointer Analysis with Support for Context Debloating

Figure 4 gives a set of �ve rules for performing :obj on a Java program consisting of �ve kinds of
statements. Three auxiliary functions are used: (1) contexts : M ↩→ P(C) maintains the contexts
used in analyzing a method, (2) dispatch : H × L ↩→ M resolves an instance call to a target
method, and (3) pts : (V ∪ H × F) × C ↩→ P(H × C) records the points-to information found
context-sensitively for a variable or an object’s �eld. All �ve rules except the premise enclosed in
the dashed box of [New] are standard. Note that the “this” variable in [Call] is handled di�erently
from the other parameters and 2′′ ∈ contexts(<′′) in the conclusion of [Call] reveals how the
contexts of a method are maintained. Static methods are analyzed using the contexts of their closest
callers, which are instance methods (on the call stack) [He et al. 2022; Smaragdakis et al. 2011].
In [New], 2′ is known as the heap context of $ . The premise enclosed in the dashed box is

speci�c to context debloating. Here, I denotes the set of context-independent objects identi�ed by
a context debloating approach such as Conch [He et al. 2021a, 2023a] or DebloaterX, which will
be introduced in Section 4. Hence, the objects in H \ I are considered context-dependent objects.
For a context-independent object in I, we instruct :obj to analyze it context-insensitively by
setting its heap context as 2′ = [ ]. This eliminates the context explosion problem that would have
occurred when the object is used as a receiver object of an invoked method. For a context-dependent
object, we apply the same truncation rule as :obj by reducing the context length to : − 1. Thus, the
traditional :obj [Milanova et al. 2002, 2005] is a special case of this formalization where I = ∅.

4 DEBLOATERX: A CONTAINER-USAGE-PATTERN-BASED APPROACH

We present DebloaterX, our approach for identifying context-independent objects to enable
context debloating for :obj. Algorithm 1 outlines the four steps taken by DebloaterX to achieve
this goal. Step 1 (Section 4.1) involves encoding a program % into a graph called the DebloaterX
Pointer Assignment Graph (XPAG). In Step 2 (Section 4.2), DebloaterX �nds a set of container
objects, denoted by containers, in XPAG. This involves computing openTypes, a set of “abstract”
types de�ned precisely below, as well as inParams and outParamsRets, two mappings from an
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Algorithm 1: DebloaterX: �nding context-independent objects for context debloating.

Input :% (Input Program)
Output :I (Context-Independent Objects)

1 begin

2 Step 1: Build XPAG (Figure 5).

3 Step 2: Find container objects in % .
4 Step 2.1: Compute openTypes (Figure 6).

5 Step 2.2: Compute inParams and outParamsRets (Algorithm 2).

6 Step 2.3: Collect containers (Figure 8).

7 Step 3: Find context-dependent objects according to container-usage patterns.
8 D ← ∅

9 foreach object > ∈ containers do

10 Step 3.1: Pattern 1: Inner containers.

11 if isAnInnerContainer(>) then D ∋ > ;

12 Step 3.2: Pattern 2: Factory-Created Containers.

13 if isAFactoryCreatedContainer(>) then D ∋ > ;

14 Step 3.3: Pattern 3: Container Wrappers.

15 if isAContainerWrapper(>) then D ∋ > ;

16 Step 4: Return the set of context-independent objects for context debloating
17 foreach object > ∉ D do I ∋ > ;

18 return I

object �eld f to the set of parameters whose values may be stored into this.f.* and the set of
parameters and return variables whose values may be retrieved from this.f.*, respectively. Here,
this represents the this variable of some method and * in this.f.* denotes a sequence of zero or
more �elds. Based on these analysis results, DebloaterX then determines whether an object is a
container or not. In Step 3 (Section 4.3), DebloaterX identi�es the usage patterns of container
objects and determines which ones are context-dependent. Finally, in Step 4, DebloaterX simply
returns the set of context-independent objects, denoted by I, whose contexts will be debloated.

4.1 Step 1: Building the DebloaterX Pointer Assignment Graph (XPAG)

Given a program, its XPAG representation is a form of pointer assignment graph (PAG) [Lhoták and
Hendren 2003]. This graph encodes how objects �ow in the program and is speci�cally tailored for
our analysis purposes. Figure 5 gives the rules for building XPAG. We have designed XPAG this way
since it allows us to accurately and e�ciently identify context-independent objects in % .
Rules [X-New], [X-Assign], [X-Load], and [X-Store] handle new statements, assignment state-

ments, load and store statements, respectively, and are standard as in [He et al. 2021a; Lu et al.
2021a; Sridharan and Bodík 2006]. For instance calls, we use [X-Special] and [X-Virtual] to
handle special calls (i.e., invocations to private methods and constructors via invokespecial in
the JVM) and virtual/interface calls (i.e., invocations to virtual methods/interface methods via
invokevirtual/invokeinterface), respectively. In [X-Special], the parameter passing is modeled
as assign (as in [Sridharan and Bodík 2006]) because the unique calling target for a special call is
statically known. In [X-Virtual], the parameter passing is modeled as cstore and cload, similarly
to [He et al. 2021b], but with no parameter-speci�c �elds being introduced. Therefore, we assume
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G = new T // $

$
new
−−−→ G

[X-New]
G = ~

~
assign
−−−−→ G

[X-Assign]

?<8
param
←−−−− ?<8

[X-Param]
ret<

return
−−−−→ ret<

[X-Return]

G = ~.5

~
load[f]
−−−−−→ G

[X-Load]
G .5 = ~

~
store[f]
−−−−−→ G

[X-Store]

< is an instance method

this<
this
−−→ R this<

param
−−−−→ this<

[X-This]

; : G = ~.<′ (01, ..., 0=) is a special call

~
assign
−−−−→ this<

′

ret<
′ assign
−−−−→ G for 1 ≤ 8 ≤ =, 08

assign
−−−−→ ?<

′

8

[X-Special]

; : G = 00.<
′ (01, ..., 0=) is a virtual call or an interface call

for 0 ≤ 8 ≤ =, 08
cstore
−−−−→ 00 00

cload
−−−−→ G

[X-Virtual]

Fig. 5. Rules for constructing the XPAG. Rules for static calls are similar to [X-Special] and elided.

that an argument (a returned value) at a virtual/interface call is stored into (loaded from) any

�eld of its receiver variable. That is, 08
cstore
−−−−→ 00 implies 00.∗ = 08 and 00

cload
−−−−→ G implies G = 00 .∗.

The over-approximation is required for e�ciently computing inParams and outParamsRets in
Step 2.2 of Algorithm 1 without determining the calling targets for virtual/interface calls. This
approximation enables an estimated calculation of what �ows into a method via its parameters
and what may �ow out of it via its parameters or return variable. Otherwise, tracking such an
interprocedural value �ow more precisely by using the calling targets computed by a context-
insensitive pointer analysis like Spark [Lhoták and Hendren 2003] would signi�cantly increase
DebloaterX’s analysis time, making it unsuitable as a pre-analysis. It is important to mention that
static calls are handled in a similar manner to [X-Special], which signi�cantly contributes to the
e�ectiveness of DebloaterX. Without this handling, if special and static calls were processed using
[X-VIRTUAL] as described in [He et al. 2021b], Algorithm 2 would become a fully intra-procedural
analysis. This would lead to over-approximated computations of inParams and outParamsRets

in Step 2.2 . In addition, [X-Param], [X-Return], and [X-This] add self-loop edges to mark nodes
as parameters, return variables, and this variables, respectively. In [X-This], the special node R
connects all this variables in instance methods. DebloaterX analyzes object �elds individually,
so adding R is merely for convenience and does not a�ect the analysis’s precision, as is clear later.

As XPAG is a form of PAG [Lhoták and Hendren 2003], all edges have their corresponding inverse

edges, too. For a regular edge, G
;
−→ ~, its inverse is ~

;
−→ G , which is omitted in Figure 5.

4.2 Step 2: Finding Container Objects

We de�ne container objects by building upon the concept of open types, which are essentially a
version of abstract types to be introduced below in Section 4.2.1 for debloating contexts in :obj.

Definition 1 (Container objects). An object $ is considered a container object if it has at least
one pointer �eld 5 of an open type that receives an incoming value �ow in some method< such that
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C ∈ T is java.lang.Object

C ∈ openTypes

C ∈ T is an abstract type

C ∈ openTypes

C ∈ T is an interface type

C ∈ openTypes

C ∈ openTypes

[C] ∈ openTypes

C ∈ T 5 ∈ fields(C) typeof(5 ) = C ′ C ′ ∈ openTypes

C ∈ openTypes

Fig. 6. Rules for defining open types.

this< .5 .∗ = ? , where ? is a parameter of<, and returns an outgoing value �ow in some method<′

such that E .∗ = this<
′

.5 .∗, where E is either the return variable or a parameter of<′. Both< and<′

are methods invoked on$ (i.e., in methodsInvokedOn($)), and<′ may or may not be the same as<.

According to this de�nition, an object $ is considered a container object if it has a pointer �eld
of an open type (Section 4.2.1) whose value is both received and returned by methods invoked
on $ . However, precisely identifying container objects in a program requires some degree of
�eld sensitivity, which can be prohibitively time-consuming. To address this challenge, we use
�nite-state automata that support 1-limited �eld-sensitivity and enable parallelism to analyze each
object �eld individually and reason about its incoming and outgoing value �ows (Section 4.2.2). In
Section 4.2.3, we introduce the rules for determining whether an object is a container object.

4.2.1 Open Types. A type is considered an open type if it is either an abstract type itself (including
java.lang.Object) or contains at least one �eld of an abstract type. In De�nition 1, we require
a container object to have at least one �eld of an open type. This de�nition is based on our
practical experience and observations rather than any theoretical guarantees. It is worth noting
that modern Java pointer analysis frameworks, such as Qilin [He et al. 2022], Doop [Bravenboer
and Smaragdakis 2009], andWala [WALA 2023], all support type �ltering, which prevents type-
incompatible objects from being assigned to a pointer variable. For a program that only contains
objects with non-open-type �elds, moving from context insensitivity to object sensitivity does
not lead to a signi�cant improvement in precision. This is because, in real-world applications,
when dealing with a pointer variable of a non-open type, the object-sensitive pointer analysis
typically �lters out numerous spurious objects that end up in its points-to set. Our evaluation in
Section 5 con�rms the e�ectiveness of this �ltering process, as our context-debloating approach
demonstrates nearly precision-preserving results for a set of commonly used metrics. However,
there are rare cases, highlighted in Figure 17, where solely relying on the �ltering process may not
be su�cient.

Figure 6 gives the �ve rules for de�ning open types. According to the three rules on the top, the
java.lang.Object type, as well as abstract types and interface types, are considered open types.
In addition, if a type C is an open type, its array form [C] is also an open type. Note that an array
$ of type [C] is modeled to have a special �eld arr of type C such that $.arr stores its elements.
Finally, if a �eld 5 declared in C or any supertype of C (without being overridden) is an open type,
then C is considered an open type. All open types in a program are collected in the set openTypes.

Example 4.1. In Figure 1, the types [Object] and Entry are open types because they contain a �eld

of the java.lang.Object type. Similarly, [Entry], HashMap, HashSet, KeyIterator, and KeySet

are also considered open types because each of them contains at least one open-type �eld.

4.2.2 Incoming and Outgoing Value Flow Analyses. To determine if an object is a container object
as speci�ed in De�nition 1 according to the rules in Figure 8, we conduct incoming and outgoing
value �ow analyses to track the �ow of values through this<.f.* starting or ending at parameters
and return variables, for every method<. To ensure both precision and e�ciency, DebloaterX
processes each object �eld in the program individually, supporting 1-limited �eld sensitivity and
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O

flow

flow

assign | load[_] | cload

sto
re[_]

|csto
re

sto
re[_]

|csto
re

assign | load[_]| cload

ne
w

new

(a) A2><<

THIS

Sstart
flow

flow

O

E

th
is

assig
n

lo
ad
[f
]

store[f]

assign | load[_] | cload

sto
re[_]

|csto
re

sto
re[_]

|csto
re

assign | load[_]| cload

param

ne
w

new

(b) A
5
8=

E

flow

flow

O

THIS

Sstart

th
is

assign

load[f]

assign | load[_] | cload

sto
re[_]

|csto
re

sto
re[_]

|csto
re

re
tu
rn

assign | load[_]| cload

param ne
w

new

(c) A
5
>DC

Fig. 7. DFAs for performing the incoming and outgoing value flow analyses for a field 5 .A
5
8= checks whether

the objects stored in this.f.* can originate from any parameter andA
5
>DC checks whether the objects stored

in this.f.* can be returned by any return variable or parameter. A2><< represents their common part.

allowing for parallelism. For each object �eld 5 , we determine the set of parameters (of all methods
in the program) whose values may �ow into this<.f.* in the incoming value-�ow analysis, and
the set of parameters or return variables (of all methods in the program) that may store the values
recorded in this<.f.* in the outgoing value-�ow analysis, for every method<. To accomplish

this goal, DebloaterX has designed two deterministic �nite automata (DFAs) for each �eld 5 : A
5
8=

(Figure 7b) for the incoming analysis and A
5
>DC (Figure 7c) for the outgoing analysis.

We begin by introducing a separate DFA, referred to as A2><< , which is a shared component

of both A
5
8= and A

5
>DC and is illustrated in Figure 7a. To construct A2><< , we utilize a standard

CFL-reachability formulation (i.e., !�) in [Sridharan et al. 2005]) and regularize it through a series
of similar approximation steps as outlined in [He et al. 2021b], using a standard regularization
approximation algorithm for context-free grammar [Mohri and Nederhof 2001]. It is worth noting
that A2><< is intentionally designed to over-approximate both the incoming and outgoing value-
�ows of object �elds, including the related aliases, in XPAG for the speci�c purpose of determining
whether an object is a container or not based on De�nition 1.

Let us take a closer look at A
5
8= , which is responsible for performing the incoming value-�ow

analysis for �eld 5 . Given an edge '
this
−−→ this< for some method< in XPAG, this DFA starts at

its start state S and then transits to state THIS, which has two non-self-loop outgoing transitions.
If a load[f] edge is encountered, the DFA enters state flow to check which variables retrieve the
objects stored in this< .f.* and which parameters can have their values stored into the objects

pointed by these variables. If a store[f] edge is encountered, the DFA enters state flow to check if a

value stored in this< .f.* comes from any parameter. If A
5
8= eventually reaches the �nal state E

via a param edge, then we have found a parameter whose value can be stored into this< .f.*.

A
5
>DC works similarly to A

5
8= , but with a focus on performing the outgoing value-�ow analysis

for �eld 5 . Given an edge '
this
−−→ this< in XPAG, A

5
>DC starts at its start state S and can only transit

to state flow via a load[f] edge. It then checks to see whether the objects stored in this< .f.* can
�ow to any return variable or any parameter of some method in the program.
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Algorithm 2: Computing inParams and outParamsRets.

Input : Program % and its XPAG

1 foreach �eld 5 appearing in % do

2 inParams(5 ) = runDFAandCollect(A
5
8=)

3 outParamsRets(5 ) = runDFAandCollect(A
5
>DC)

4 function nextNodeStates(A, =>34 , BC0C4):
5 =4GCB ← ∅, let X be the transition function of A

6 foreach =>34
4364:8=3
−−−−−−−→ =>34′ in XPAG do

7 BC0C4′ = X (BC0C4, 4364:8=3 )

8 if BC0C4′ ≠ Err then =4GCB ∋ ⟨=>34′, BC0C4′ ⟩ ;

9 return =4GCB

Output : inParams, outParamsRets

10 function runDFAandCollect(A):
11 W← {⟨R, S⟩} , A ← E8B8C ← ∅

12 while W ≠ ∅ do
13 ⟨=, B ⟩ ← poll(W)

14 if B = E then A ∋ =;

15 for ⟨=′, B′ ⟩ ∈ nextNodeStates(A, =, B) do
16 if ⟨=′, B′ ⟩ ∉ E8B8C then
17 W ∋ ⟨=′, B′ ⟩, E8B8C ∋ ⟨=′, B′ ⟩

18 return A

As is clear in Figures 7b and 7c, each DFA only supports 1-limited �eld-sensitivity for the this
variable of a method. Despite this limitation, DebloaterX is currently the only pre-analysis that
provides a certain degree of �eld sensitivity for improving the e�ectiveness of :obj, resulting in
the best precision and e�ciency trade-o�s, as demonstrated in Section 5.
We have devised an algorithm that e�ciently computes inParams and outParamsRets in

Step 2.2 of Algorithm 1. As shown in lines 2-3 of Algorithm 2, we use runDFAandCollect(A
5
8=)

(runDFAandCollect(A
5
>DC)) to compute inParams(f) (outParamsRets(f)) for each object �eld 5

in a program % . Here, runDFAandCollect (lines 10-18) is a standard worklist algorithm that tra-
verses all reachable node-state pairs starting from ⟨R, S⟩ (where R is the special node introduced in
Figure 5). Whenever a node = ∈ XPAG is reachable under the �nal state E, = is added to inParams(f)
or outParamsRets(f) (depending on which DFA is used). The nextNodeStates function (lines 4-9)
simply returns the set of node-state pairs reached from a given node-state pair, as is standard.

Example 4.2. For the example given in Figure 1, there are seven open-type �elds: map, table,

keySet, m1, m2, key, and value. All instance calls (except those to constructors) are modeled as

virtual calls by [X-Virtual]. According to Algorithm 2, their inParams sets are respectively {p},

{q1, q2, p1, p2}, {thiskeySet}, {m3, thisKeySet:iterator}, {m4, thiskeySet}, {p1, q1}, and {p2, q2}, and

their outParamsRets sets are respectively {retHashSet:iterator, p}, {q1, q2}, {retkeySet}, {retnext},

{retKeySet:iterator}, ∅, and ∅. The state transition path below explains why q1 ∈ inParams(table)

(computed by Algorithm 2 in terms of its corresponding DFA Atable
8= ), which is the most complex

transition path for all seven �elds:

⟨R, S⟩
this
−−→ ⟨thisput, THIS⟩

load[table]
−−−−−−−−−→ ⟨C1, flow⟩

store[_]
−−−−−→ ⟨C2, flow⟩

new
−−−→ ⟨E,O⟩

new
−−−→

⟨C2, flow⟩
assign
−−−−→ ⟨thisEntry, flow⟩

store[_]
−−−−−→ ⟨p1, flow⟩

assign
−−−−→ ⟨q1, flow⟩

param
−−−−→ ⟨q1, E⟩

(1)

where t1 and t2 are two temporary variables introduced for transforming line 53 into t1 = this.table,

t2 = new Entry(q1, q2), and t1[0] = t2 (as three address statements are required in Figure 5).

Note that p1 and p2 in inParams(table) are not parameters of any methods declared in HashMap.

So they do not a�ect how container objects are identi�ed as shown in Figure 8, according to De�nition 1.

4.2.3 Collecting Container Objects. We are now introducing the rules in Figure 8 for identifying
container objects in a program. The two rules in [Con] are used for this purpose. For the left rule, an
object$ is considered a container object if it satis�es De�nition 1. That is,$ must contain an open-
type �eld 5 with both an incoming and outgoing value �ow (happening when hasInFlow (O, f) and
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$ ∈ H C = typeof($) C is an instance type
5 ∈ fields($) C ′ = typeof(5 ) C ′ ∈ openTypes

hasInFlow (O, f) hasOutFlow (O, f)

$ ∈ containers

$ ∈ H C = typeof($)

C is an array type C ∈ openTypes

$ ∈ containers
[Con]

< ∈ methodsInvokedOn($) 5 ∈ fields($)

? ∈ params(<) ∩ inParams(5 )

hasInFlow($, 5 )

0.5 = _ is a store in method< $ ∈ pts(0)

$ not allocated in< 0 ∉ assign∗ (this<)

hasInFlow($, 5 )
[In]

< ∈ methodsInvokedOn($) 5 ∈ fields($)

E ∈ paramsRet(<) ∩ outParamsRets(5 )

hasOutFlow($, 5 )

_ = 0.5 is a load in method< $ ∈ pts(0)

$ not allocated in< 0 ∉ assign∗ (this<)

hasOutFlow($, 5 )
[Out]

Fig. 8. Rules for defining container objects, where ‘_’ is a placeholder whose content is not of our concern.

hasOutFlow (O, f) hold, respectively). For the right rule, any array object used to store elements of
an open type is always considered a container object, without having to verify hasInFlow (O, f)
and hasOutFlow (O, f). This is because these two kinds of value �ow typically exist in practice.

Given a node = ∈ XPAG of a program, we de�ne assign∗(=) to be the set of all reachable nodes in
XPAG from = by traversing only the assign edges (i.e., the edges labeled with assign). In all these
rules, pts(E) gives the points-to set computed by a context-insensitive pointer analysis.
In [In], we provide two rules for checking whether an object $ has an incoming value �ow on

�eld 5 . For the left rule, we apply the corresponding constraint speci�ed in De�nition 1 directly. For
the right rule, we assume that hasInFlow($, 5 ) holds conservatively, based on a crucial observation
made in applying :obj to analyze many Java codebases. More speci�cally, if there exists a store state-
ment 0.5 = ... in method<, where $ ∈ pts(0) is not allocated in<, such that 0 ∉ assign∗ (this<)

(otherwise, the left rule may be applicable), then we assume that hasInFlow($, 5 ) holds.
Similarly, in [Out], we provide two rules for checking whether an object$ has an outgoing value

�ow on �eld 5 . For the left rule, we apply the corresponding constraint in De�nition 1 directly. For
the right rule, we assume that hasOutFlow($, 5 ) holds when checking the existence of an outgoing
value �ow for $.5 due to a similar observation as discussed above for the right rule of [In].

The left rule in [In] ([Out]) is more commonly used than the right rule in object-oriented
languages, accounting for an average of 91.7% of container objects found in our evaluation.

Example 4.3. In Figure 1, O1, O2, O3, C1, and C2 are not containers because they do not have any

instance �elds. [O] and [E] are containers because they are open-type arrays. S is a container as it

satis�es the following three conditions: (1) its �eld map is of an open type, (2) hasInFlow (S, map) holds

due to add() being invoked on S and the parameter p ∈ inParams(map), (3) hasOutFlow (S, map) holds

due to HashSet:iterator() being invoked on S and retHashSet:iterator ∈ outParamsRets(map).

For M, KS, and KI, we similarly conclude that they are containers. Note that hasOutFlow (M, table)

holds due to both q1 ∈ outParamsRets(table) and the load to table in line 59. The latter is expected

while the former is a false positive due to the limitation of our automata (which over-approximates

value �ow by using, for example, 1-limited �eld sensitivity). E is a container due to (1) the �eld key

is of an open type, (2) hasInFlow (E, key) holds since p1 ∈ inParams(key), and (3) hasOutFlow (E,

key) holds since there is a load to key in line 59 of Figure 1 where the load base is not a this variable.

4.3 Step 3: Finding Context-Dependent Objects Based on Container-Usage Pa�erns

We now provide e�cient rules and algorithms for identifying three container-usage patterns.
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$ ∈ H < = methodof($) < is an instance method 5 ∈ objectStoredInto($) C = typeof(5 )

C ∈ openTypes $ ′ ∈ receiverObjects(<) hasInFlow($ ′, 5 ) hasOutFlow($ ′, 5 )

isAnInnerContainer($)

Fig. 9. Rule for identifying inner containers.

Ostart

flow

flow

THIS E

assign

store[_]

store[f]

assign | load[_]

load[f
]new

new

assign

this

Fig. 10. An NFA for checking whether an object $ can be stored into this.f.*.

4.3.1 Pa�ern 1: Inner Containers. Figure 9 provides a rule for identifying inner containers. A
container object $ allocated in an instance method < is considered an inner container if there
exists a receiver object $ ′ ∈ receiverObjects(<) satisfying that (1) $ can be stored into $ ′ .5 .∗
via this< .5 .∗ (due to 5 ∈ objectStoredInto($)) and (2) $ ′ is a container object as per De�ni-
tion 1 (due to C = typeof(5 ), C ∈ openTypes, hasInFlow($ ′, 5 ), and hasOutFlow($ ′, 5 )). Here,
objectStoredInto is a mapping from an object > ′ allocated in method<′ to the set of �elds 5 ′

such that > ′ can be stored into this<
′

.5 ′ .∗. Its construction is explained below.
We begin with an NFA (Non-Deterministic Finite Automaton), depicted in Figure 10, to determine

whether an object $ can be stored into this.f.*, where this can refer to the this variable of any
method being analyzed. We then re�ne these analysis results by constructing objectStoredInto.
The NFA starts with an object $ ∈ XPAG from its start state O and transits to state flow by

following a sequence of XPAG edges (starting with a new edge) until reaching a node G ∈ XPAG.

Suppose a store edge G
store[f]
−−−−−→ ~ exists in XPAG. If the NFA can eventually transit to the �nal state E,

then we know that $ has been stored into some this.f.* (due to [X-This] in Figure 5). Otherwise,

the NFA can also transit to state flow. If the NFA can eventually transit from flow to state THIS via

an load[f] edge and then reach the �nal state E, we can conclude that $ has been stored into some

this.f.*. However, if the NFA reaches a node $ ′ by transitting from flow to state O such that
$ ′ .∗ = $ , it will check whether $ ′ can be stored into some this.f.*. To prevent false positives,
we have constructed the NFA to disregard all cstore and cload edges (and their inverses) in XPAG.
This balance between e�ciency and precision has been extensively tested and proven e�ective,
with only a negligible loss of precision in rare real-world scenarios, as demonstrated in Figure 17c.

Based on this NFA, we can construct objectStoredInto, as shown in Algorithm 3, by ensuring
that if 5 ∈ objectStoredInto($) (lines 18-19), then$ may be stored into this< .5 .∗, where this<

is the this variable of the method< in which $ is allocated (lines 5 and 17).

4.3.2 Pa�ern 2: Factory-Created Containers. As shown in Figure 11, identifying factory-created
containers is straightforward. An object $ allocated in method< is a factory-created container if<
is a static method and $ can be directly returned in< (i.e., when isDirectlyReturned($) holds).
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Algorithm 3: Computing objectStoredInto.

Input : Program % , its XPAG, and the NFA N in Figure 10

1 foreach object$ allocated in % do

2 objectStoredInto($) = runNFAandCollect($)

3 function runNFAandCollect($):

4 W← {⟨$, S⟩} , A ← E8B8C ← ∅,< ← methodof($ ) ,

5 Cℎ8B�;80B ← assign∗ (this< )

6 while W ≠ ∅ do

7 ⟨=, B ⟩ ← poll(W)

8 for ⟨=′, B′ ⟩ ∈ nextNodeStates(Cℎ8B�;80B , =, B , A) do

9 if ⟨=′, B′ ⟩ ∉ E8B8C then W ∋ ⟨=′, B′ ⟩, E8B8C ∋ ⟨=′, B′ ⟩;

10 return A

Output :objectStoredInto

11 function nextNodeStates(Cℎ8B�;80B , =>34 , BC0C4 , A):
12 =4GCB ← ∅, let X be the transition function of N

13 foreach =>34
4364:8=3
−−−−−−−→ =>34′ in XPAG do

14 =4GC(C0C4B = X (BC0C4, 4364:8=3 )

15 foreach BC0C4′ ∈ =4GC(C0C4B do
16 if BC0C4′ ≠ Err then =4GCB ∋ ⟨=>34′, BC0C4′ ⟩ ;

17 if BC0C4′ = THIS and =>34′ ∈ Cℎ8B�;80B then

18 assert 4364:8=3 = store[f] or load[f]

19 A ∋ f

20 return =4GCB

< is a static method < = methodof($)

isDirectlyReturned(O)

isAFactoryCreatedContainer($)

$
new
−−−→ G is an edge in XPAG

< = methodof($) ret< ∈ assign∗ (G)

isDirectlyReturned($)

Fig. 11. Rules for identifying factory-created containers.

4.3.3 Pa�ern 3: Container Wrappers. In Figure 12, we give the rules for identifying container
wrappers. A container object $ is considered a container wrapper if it is allocated in an instance
method<, directly returned in< (i.e., when isDirectlyReturned($) holds), and contains a �eld
whose content comes from a parameter of< (i.e., when isContentFromParam ($) holds).

Given a node = ∈ XPAG, we de�ne load∗(=) to be the set of all reachable nodes in XPAG from = by
traversing only assign, load[_], and cload edges. We de�ne isContentFromParam by distinguishing
two cases. If $ is an array object, isContentFromParam ($) holds if there exists a store edge

~
store[_]
−−−−−→ 1 in XPAG and a parameter ? of< such that ~ ∈ load∗ (?) (i.e., ~ = ?.∗) and 1 ∈ assign∗ (G)

(i.e., the value of 1 comes directly from G ), where G = new $ . On the other hand, if$ is a non-array
object, isContentFromParam ($) holds if three conditions are satis�ed: (1) $ is a container object
(due to C ′ = typeof(5 ), C ′ ∈ openTypes, hasInFlow($, 5 ), hasOutFlow($, 5 )), (2) the value of 5
comes from a parameter ?<

′′

8 (i.e., ?<
′′

8 ∈ inParams(5 )), where method <′′ is invoked at a call
site ; : 1.<′ (01, · · · , 0=) in< with the value of 1 directly coming from $ (i.e., 1 ∈ assign∗ (G) and
G = new $), and (3) 08 ∈ load

∗ (?), where ? is a parameter of<.

Example 4.4. For the example in Figure 1, the identi�ed inner containers include M, [E], KS, and

E, while the container wrappers include [O], KS, and KI. Only S is a factory-created container, and

all the other objects are selected to be context-independent. Here, we use KS as a representative to

explain our rules. First, since keySet ∈ objectStoredInto(KS) (due to line 48), M is a receiver object

of keySet(), and both hasInFlow (M, keySet) and hasOutFlow (M, keySet) hold, all premises in

Figure 9 are satis�ed, making KS an inner container. Second, since KS can be directly returned in

keySet() and thiskeySet can be saved into KS.m2 via line 47, according to the rules in Figure 12, KS

is also a container wrapper. As shown in Figure 13 in our experimental evaluation, the overlap between

inner containers and container wrappers is generally small in real-world Java programs.

4.4 Soundness and Complexity Analysis

We discuss the soundness as well as the time and space complexities of DebloaterX.
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< = methodof($) < is an instance method
isDirectlyReturned($) isContentFromParam($)

isAContainerWrapper($)

$
new
−−−→ G is an edge in XPAG 1 ∈ assign∗ (G) C = typeof($) t is an array type

< = methodof($) ? ∈ params(<) ~ ∈ load∗ (?) ~
store[_]
−−−−−→ 1 is an edge in XPAG

isContentFromParam($)

$
new
−−−→ G is an edge in XPAG 1 ∈ assign∗ (G) C = typeof($) t is a non-array type

< = methodof($) ? ∈ params(<) ; : 1.<′ (01, · · · , 0=) is a call in<
08 ∈ load

∗ (?) 5 ∈ F C ′ = typeof(5 ) C ′ ∈ openTypes

<′′ = dispatch($, ;) ?<
′′

8 ∈ inParams(5 ) hasInFlow($, 5 ) hasOutFlow($, 5 )

isContentFromParam($)

Fig. 12. Rules for identifying container wrappers.

Soundness. Let I in [New] of Figure 4 be computed by DebloaterX using Algorithm 1. No
matter whatI is,:obj remains sound, because the objects inI will be analyzed context-insensitively
after debloating, ensuring soundness, albeit with possible imprecision.

ComplexityAnalysis.Table 1 shows the time and space complexities of each step inDebloaterX.
The overall time and space complexities are$ (( |F| + |H| ·U? ) · |L|) + |H| · |FC | · |HA |) and$ (U? · ( |L| +
|F| · |M|)), respectively. For Java, U? , and |FC | are considered as constants, and we have HA ≤ H ≤ L.
Thus, the complexities can be simpli�ed to $ (( |F| + |H|) · |L|) and $ ( |L| + |F| · |M|). All the rules
and algorithms given in Algorithm 2 and Figures 8, 9, 11 and 12 can run concurrently, reducing the
time complexity to $ ( |L|) if $ ( |F| + |H|) CPU cores are available. As the size of XPAG is $ (L), the
time complexity of DebloaterX in the concurrent setting is linear to the size of XPAG.

Table 1. Time and space complexities of DebloaterX. Here, U? is the maximum number of parameters of a
method, and |FC | is the maximum number of fields that can be accessed by an instance object of a type C , and
|HA | is the maximum number of receiver objects of a method in a program.

Steps Time Complexity Space Complexity

Step 1 Figure 5 $ ( |L| · U? + |M| · U? ) $ ( |L| · U? + |M| · U? )

Figure 6 $ ( |T| · |FC |) $ ( |T|)

Algorithm 2 $ ( |F| · |L|) $ ( |F| · U? · |M| + |L|)Step 2
Figure 8 $ ( |H| · |FC |) $ ( |H|)

Figure 9 $ ( |H| · |FC | · |HA |) $ ( |H|)

Algorithm 3 $ ( |H| · |L|) $ ( |L| + |FC |)

Figure 11 $ ( |H| · |L|) $ ( |H| + |L|)
Step 3

Figure 12 $ ( |H| · ( |L| + |L| · U? )) $ ( |H| + |L|)

Step 4 $ ( |H|) $ ( |H|)

As previously discussed in Section 4.1, we can modify our approach to be implemented purely
intra-procedurally. This can be achieved by treating special calls and static calls as [X-Virtual],
following a similar methodology as described in [He et al. 2021b] when constructing XPAG according
to Figure 5. However, it is important to note that such an implementation would result in signi�cant
over-approximation when computing inParams and outParamsRets in Step 2.2. As a consequence,
this implementation would incorrectly classify a larger number of context-independent objects as
context-dependent. Consequently, the e�ectiveness of DebloaterX would be greatly diminished.
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5 EVALUATION

We evaluate the e�ectiveness of our context-debloating approach by addressing four RQs:

• RQ1. Does DebloaterX e�ectively debloat :obj by signi�cantly improving its e�ciency
while maintaining its precision in a robust manner?
• RQ2. How does DebloaterX compare to state-of-the-art pre-analysis techniques, such as
Zipper [Li et al. 2018] and Conch [He et al. 2021a], in terms of precision and e�ciency?
• RQ3. How does DebloaterX compare to a simplistic approach that identi�es context-
dependent objects solely based on whether they are containers, which are essentially deter-
mined by their relation to java.util.Object and java.util.Collection?
• RQ4. What causes the slight precision decrease and scalability issues of the debloated :obj?

We compare - -:obj with / -:obj, �-:obj, and (-:obj by using :obj as the baseline. In this
comparison, / -:obj represents the version of :obj with selective context sensitivity achieved
through Zipper [Li et al. 2018], while - -:obj and �-:obj are the versions of :obj with debloated
contexts using DebloaterX and Conch [He et al. 2021a], respectively. Finally, (-:obj is the version
of :obj debloated using a simplistic pre-analysis approach that determines context-dependability
based on whether an object is a container type or not, as de�ned below. According to this approach,
a class is considered a container if it has a java.lang.Object �eld or a container �eld, or if it
implements java.util.Collection or is nested in a class implementing java.util.Collection.
We do not compare - -:obj with any :CFA-based pointer analysis and its context reduction

techniques (e.g., Zipper-guided :CFA [Li et al. 2020]) since they are known to underperform :obj
in terms of both precision and e�ciency. We also do not compare - -:obj with techniques such as
context tunnelling [Jeon et al. 2018] that have distinct design objectives with us.

An analysis is scalable for a program if it can be completed within a given time/memory budget.
Implementation. We have implemented DebloaterX in Qilin [He et al. 2022], an open-source

Java pointer analysis framework that supports �ne-grained selective context-sensitivity on top of
Soot [Vallée-Rai et al. 2010]. Our implementation is compact, with less than 1500 lines of Java code at
its core, thanks to our insightful approach, straightforward rules, and e�cient algorithms. To ensure
reproducibility, we have released its source code at https://github.com/DongjieHe/DebloaterX and
a Docker image at Docker Hub. Additionally, within Qilin, we have implemented the simplistic
java.lang.Collection-based pre-analysis approach to obtain (-:obj in approximately 200 lines
of Java code. The other tools used here, such as Spark (a context-insensitive pointer analysis), :obj,
Conch, and Zipper, are already available in Qilin.

Experimental Setup.We have conducted all experiments on a machine with an Intel(R) Xeon(R)
W-2245 3.90GHz CPU and 512GB memory, with a time budget of 12 hours per program. To ensure
fairness in comparing Conch and Zipper, we have used the same analysis setting as Conch, which
closely matches the one used in Zipper [Li et al. 2018]. Speci�cally, native code is handled using hard-
coded summaries provided in Soot, and Java re�ection is resolved using Tamiflex logs [Bodden
et al. 2011]. We follow the practice of distinguishing objects instantiated from StringBuilder,
StringBuffer, and Throwable (including its subtypes) by their dynamic types, and then analyzing
them context-insensitively, as done in Qilin [He et al. 2022], Doop [Bravenboer and Smaragdakis
2009], andWala [WALA 2023]. If this manual heuristic is disabled, DebloaterX would perform
even more impressively, as it would automatically identify such objects as context-independent.

Benchmark Selection.We have selected 12 popular Java programs for our evaluation, including
5 benchmarks (the �rst �ve in Table 2) from DaCapo2006 [Blackburn et al. 2006], 2 real-world Java
applications (the middle two in Table 2), and 5 benchmarks (the last �ve in Table 2) from a more
recent version of DaCapo (DaCapo-9.12) downloaded from Doop benchmarks. For the DaCapo2006
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benchmarks and real-world applications, we use jre1.6.0_45, while for the DaCapo-9.12 bench-
marks, we use jre1.8.0_121_debug, a relatively larger and more complex Java library, and the
default Java re�ection log (with the su�x -tamiflex-default.log). Our benchmark selection
criteria include the availability of diverse benchmarks to appraise the robustness of DebloaterX,
program size (in terms of the number of reachable methods computed by Spark), and a balanced
ratio among the three benchmark sources. We have included checkstyle because it is the only
one that can be analyzed by - -3obj but not by �-3obj. We utilize a subset of the benchmarks
from DaCapo-9.12 because neither 3obj nor / -3obj can analyze any benchmarks in DaCapo-9.12

scalably. While this further demonstrates the superiority of DebloaterX in accelerating 3obj, it
makes evaluating DebloaterX against 3obj and / -3obj in terms of precision to be impossible.
Our main results are given in Table 2, which includes the performance of the baseline :obj,

as well as / -:obj, (-:obj, �-:obj, and - -:obj for each : ∈ {2, 3}. We have omitted the results of
Eagle, a precision-preserving pre-analysis for :obj [Lu and Xue 2019], in Table 2 because (1) the
precision of �-:obj (the version of :obj obtained by Eagle) can be read o� from that of :obj, and
(2) �-:obj is the slowest of the four pre-analysis techniques in terms of e�ciency.

We evaluate the e�ciency of all the pointer analyses considered in terms of analysis time and
speedup compared to the baseline :obj. For measuring precision, we consider four commonly used
metrics [He et al. 2021b; Jeon et al. 2020; Jeon and Oh 2022; Li et al. 2022]: (1) #fail-casts, which
measures the number of type casts that may fail, (2) #call-edges, which counts the number of
discovered call graph edges, (3) #reachables, which measures the number of reachable methods,
and (4) #poly-calls, which counts the number of discovered polymorphic calls.

Let A: ∈ {Spark, :obj, / -:obj, (-:obj,�-:obj, - -:obj}, where : ∈ {2, 3}, denote a pointer anal-
ysis evaluated in Table 2, and let"A: denote the result of a precision metric" obtained by A: .

We de�ne the precision loss of A: with respect to the baseline :obj on metric" as:

Δ
"
A: =

("Spark −":obj) − ("Spark −"A: )

"Spark −":obj
=

"A: −":obj

"Spark −":obj
(2)

Obviously, we have Δ"
:obj

= 0% and Δ
"
Spark = 100%. The precision loss of / -:obj, (-:obj, �-:obj,

and - -:obj lies in between, as they are di�erent versions of :obj with potential precision loss.

5.1 RQ1: The Precision, E�iciency, and Robustness of - -:obj

DebloaterX is highly e�ective as - -:obj improves :obj signi�cantly in terms of the three criteria.
Precision. DebloaterX achieves nearly identical precision as :obj for every metric in every

program. When : = 2, the average precision losses of - -2obj with respect to 2obj are Δ#fail-casts
- -2obj

=

0.2%, Δ#call-edges

- -2obj
= 0.0%, Δ#reachables

- -2obj
= 0.2%, and Δ#poly-calls

- -2obj
= 0.1%, with an overall precision loss

of only 0.1%. When : = 3, 3obj can analyze only four benchmarks (antlr, fop, hsqldb, and JPC)
scalably, for which the average precision losses of - -3objwith respect to 3obj areΔ#fail-casts

- -3obj
= 0.0%,

Δ
#call-edges

- -3obj
= 0.1%, Δ#reachables

- -3obj
= 0.1%, and Δ

#poly-calls

- -3obj
= 0.7%, with an overall precision loss of

only 0.2%. Therefore, DebloaterX is capable of preserving nearly all of the precision of :obj.
DebloaterX achieves almost the same level of precision as :obj by exploiting object sensitivity

where it is most e�ective, namely in scenarios where containers are used according to the three
container-usage patterns introduced in Section 2. Moreover, DebloaterX allows :obj to avoid
context sensitivity for objects that do not have �elds of open types, resulting in only negligible
precision loss. This is an interesting new discovery that sheds light on the role of context sensitivity
in object-sensitive pointer analysis. The rare cases that cause DebloaterX to lose a negligible
amount of precision will be discussed by using several examples in RQ4 (Section 5.4).
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Table 2. Main analysis results. The results of Spark are also included. OoM and OoT respectively stand for
“Out of Memory” and “Out of Time”. For all metrics, smaller is be�er.

Program Metrics Spark 2obj Z-2obj S-2obj C-2obj X-2obj 3obj Z-3obj S-3obj C-3obj X-3obj

Time (s) 6.9 51.0 25.5 10.7 12.8 10.5 2201.3 504.2 11.6 292.6 14.7

#fail-casts 1127 511 529 597 511 511 451 474 540 451 451

#call-edges 57472 51319 51446 51433 51319 51319 51292 51419 51394 51292 51295

#reachables 8194 7806 7836 7834 7806 7806 7805 7835 7834 7805 7805

antlr

#poly-calls 1987 1643 1662 1659 1643 1643 1636 1655 1642 1636 1639

Time (s) 8.3 2245.4 1743.2 1612.0 1395.4 26.0 OoT 36961.7 28733.0 14547.8 34.4

#fail-casts 2088 1316 1337 1500 1316 1316 - 1247 1421 1223 1223

#call-edges 67856 56837 57044 57427 56837 56839 - 56809 57169 56602 56607

#reachables 9464 9021 9063 9069 9021 9021 - 9047 9053 9005 9005

bloat

#poly-calls 2344 1714 1745 1750 1714 1714 - 1725 1720 1694 1697

Time (s) 31.7 8268.5 2674.7 3097.2 4509.2 1497.4 OoM OoM OoM OoM OoM

#fail-casts 5114 3648 3688 3974 3648 3648 - - - - -

#call-edges 183288 162934 163089 163074 162934 162934 - - - - -

#reachables 23387 22628 22644 22654 22628 22628 - - - - -

eclipse

#poly-calls 10738 9773 9800 9799 9773 9773 - - - - -

Time (s) 5.8 19.7 8.6 4.5 6.4 4.9 1643.0 262.2 5.3 258.4 8.3

#fail-casts 914 396 416 472 396 396 337 370 414 337 337

#call-edges 40558 34424 34556 34527 34424 34424 34404 34536 34491 34404 34406

#reachables 8001 7591 7621 7619 7591 7591 7591 7621 7619 7591 7591

fop

#poly-calls 1223 842 864 856 842 842 836 858 840 836 838

Time (s) 5.9 23.1 9.2 4.5 7.4 5.2 2834.0 347.2 5.6 438.6 9.5

#fail-casts 922 408 428 498 408 408 356 381 449 356 356

#call-edges 41841 34936 35075 35052 34936 34936 34909 35048 35013 34909 34912

#reachables 7389 6981 7015 7009 6981 6981 6980 7014 7009 6980 6980

D
aC

ap
o
20
06

hsqldb

#poly-calls 1213 859 880 875 859 859 852 873 858 852 855

Time (s) 11.0 9542.1 2759.3 6148.1 6396.0 33.0 OoM OoT OoM OoT 47.0

#fail-casts 1941 1117 1139 1120 1117 1117 - - - - 1005

#call-edges 80291 67285 67474 67355 67285 67285 - - - - 66543

#reachables 12773 12315 12350 12341 12315 12315 - - - - 12268

checkstyle

#poly-calls 2778 2241 2270 2244 2241 2241 - - - - 2197

Time (s) 13.7 137.3 42.5 73.0 68.5 61.8 4537.5 368.3 726.7 419.3 78.8

#fail-casts 2254 1357 1379 1359 1357 1357 1207 1239 1207 1207 1207

#call-edges 95055 81465 81653 81562 81478 81488 79797 79985 79874 79810 79818

#reachables 16144 15556 15585 15580 15556 15557 15209 15236 15233 15209 15210

N
o
n
-D

aC
ap
o
A
p
p
s

JPC

#poly-calls 4960 4282 4318 4303 4283 4288 4146 4183 4157 4147 4150

Time (s) 10.3 336.3 213.2 11.4 18.5 11.5 OoM OoM 14.8 2292.9 21.5

#fail-casts 1215 659 712 723 663 663 - - 653 584 584

#call-edges 60549 53799 53871 53810 53799 53799 - - 53701 53677 53679

#reachables 12181 11828 11836 11828 11828 11828 - - 11818 11817 11817

avrora

#poly-calls 1573 1247 1275 1248 1247 1247 - - 1222 1219 1221

Time (s) 11.1 466.9 279.0 193.8 169.7 14.2 OoM OoM 167.1 3246.6 25.0

#fail-casts 1732 1054 1099 1213 1054 1054 - - 1127 961 963

#call-edges 60980 53167 53215 53213 53167 53167 - - 53111 53049 53051

#reachables 11427 11058 11064 11064 11058 11058 - - 11060 11053 11053

pmd

#poly-calls 1976 1537 1561 1559 1537 1537 - - 1543 1519 1521

Time (s) 16.5 922.0 574.2 23.7 28.4 21.7 OoM OoM 126.8 2233.2 44.6

#fail-casts 2269 1384 1452 1553 1388 1388 - - 1471 1291 1291

#call-edges 80511 70122 70179 70165 70123 70127 - - 69829 69787 69793

#reachables 15733 15289 15295 15291 15289 15290 - - 15273 15272 15273

sun�ow

#poly-calls 2832 2360 2390 2364 2360 2360 - - 2341 2335 2337

Time (s) 10.5 1066.3 634.1 13.9 22.8 14.9 OoM OoM 18.3 6105.6 32.7

#fail-casts 1262 648 713 726 652 653 - - 653 564 565

#call-edges 57400 49476 49645 49579 49476 49476 - - 49161 49070 49072

#reachables 10438 10009 10016 10017 10009 10009 - - 9986 9979 9979

tradebeans

#poly-calls 1742 1416 1460 1425 1416 1416 - - 1406 1400 1402

Time (s) 14.7 1142.9 675.0 276.7 713.0 33.7 OoM OoM 717.7 4579.2 50.8

#fail-casts 2033 1142 1206 1387 1146 1146 - - 1315 1065 1065

#call-edges 80874 71864 71947 71898 71864 71864 - - 71767 71717 71719

#reachables 14219 13808 13815 13808 13808 13808 - - 13801 13800 13800

D
aC

ap
o
-9
.1
2

xalan

#poly-calls 3863 3349 3392 3352 3349 3349 - - 3335 3330 3332
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Fig. 13. Percentages of di�erent categories of objects in a program.

E�ciency. Table 2 reports the analysis times of - -:obj and :obj. Our results demonstrate
that - -:obj delivers signi�cant speedups (geometric means) over :obj for both : = 2 and : = 3.
Speci�cally, when : = 2, the speedups of - -2obj over 2obj range from 2.2× (for JPC) to 289.2×
(for checkstyle), with an average of 19.3×. When : = 3, the speedups on the four benchmarks
(antlr, fop, hsqldb, and JPC) that can be analyzed scalably by 3obj are impressive, ranging from
57.6× to 298.3×, with an average speedup of 150.2×. For the remaining eight benchmarks, 3obj has
failed to analyze them due to either running out of time or memory. In contrast, - -3obj can analyze
seven of them within 1–2 minutes. Only eclipse cannot be analyzed successfully by - -3obj due
to running out of memory, as will be discussed further in RQ4 (Section 5.4). Compared to Spark,
the average time used by - -:obj on all scalable con�gurations has only increased to 2.5×.
The impressive acceleration achieved by - -:obj over :obj is primarily due to DebloaterX’s

precise selection of a smaller set of objects for context-sensitive analysis performed by - -:obj.
As shown in Figure 13a, DebloaterX identi�es only 26.6% of objects as containers and 7.6% of
objects as context-dependent, making it possible to debloat contexts in :obj for approximately
92.4% of objects, on average. Furthermore, Figure 13b highlights the distribution of these context-
dependent objects according to the three container-usage patterns, where on average, 4.8% are
inner containers, 1.7% are container wrappers, and 1.2% are factory-created containers. Note that
container wrappers are mutually exclusive with factory-created containers, but have a slight overlap
with inner containers (0.2% on average), resulting in the sum of all three categories representing
nearly the percentage of context-dependent objects in a program, on average.
We have three additional pieces of evidence to provide support for the impressive acceleration

achieved by DebloaterX when comparing - -2obj with 2obj as the normalized baseline, as shown
in Figure 14. On average,- -2obj experiences a signi�cant reduction of 90.2% for the number of OAG
edges due to context debloating, resulting in substantially fewer contexts being generated (by 61.5%
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Fig. 14. The reduction ratios of - -2obj relative to 2obj in terms of the number of OAG edges, the average
number of calling contexts analyzed per method, and the (context-sensitive) points-to relations.

per method), and consequently, an average reduction of 88.7% for the number of (context-sensitive)
points-to relations in a program.We have computed the Spearman rank-order correlation coe�cient
between the speedups and points-to-relation reduction using scipy.stats.spearmanr in Python,
which yields a high positive correlation of 0.85 with a p-value of 0.05%.

We have conducted additional investigations into bloat in order to understand the exceptional
performance of - -2obj on speci�c benchmarks such as bloat and checkstyle. Our �ndings re-
vealed that DebloaterX e�ectively detected approximately 200 additional context-independent
objects allocated within the EDU.purdue.cs.bloat.tree package compared to Conch [He et al.
2021a, 2023a]. However, performing context-sensitive analysis on these 200 objects would sub-
stantially increase the number of contexts associated with - -2obj from 98,610 to 150,069 (an
increase of 52.8%), resulting in prolonged analysis time with limited precision improvement. This
phenomenon on bloat reveals two facts: (1) the context-dependent objects, which impact the
performance of object-sensitive pointer analysis, distribute unevenly within the program; and (2)
when analyzed with context-sensitivity, interactions among a limited number of objects can trigger
a context-explosion issue, leading to a substantial increase in analysis time.

Robustness.We assess the robustness of DebloaterXmainly by checking if the precision losses
of - -:obj relative to :obj on the three groups of benchmarks from di�erent sources are within an
acceptable level (e.g., ≤ 0.5%). Note that a signi�cance test in statistics cannot be performed here
due to the small sample size. The overall precision losses in “DaCapo2006”, “non-DaCapo Apps”,
and “DaCapo-9.12” are respectively 0.1%, 0.2%, and 0.1%, all of which are at very low levels.
In addition, DebloaterX can signi�cantly boost the performance of :obj on all three bench-

mark groups. For instance, - -2obj achieves average speedups of 8.4× for “DaCapo2006”, 25.3× for
“Non-DaCapo Apps”, and 39.7× for “DaCapo-9.12”. The greater speedup observed on “DaCapo-9.12”
suggests that DebloaterX performs particularly well on larger and more complex benchmarks.
Based on the analysis presented, we can conclude that our approach demonstrates robustness.

5.2 RQ2: Comparing DebloaterX with Two State-of-the-Art Alternatives

We compare DebloaterX with two state-of-the-art pre-analyses, Zipper [Li et al. 2018] and Conch
[He et al. 2021a], with respect to improving the precision and e�ciency of :obj. Figure 15 (Figure 16)
presents the average precision loss computed by Equation (2) for the four metrics used (speedups)
of - -2obj, �-2obj, / -2obj and (-2obj for each benchmark, using the data taken from Table 2.

5.2.1 DebloaterX vs. Zipper. When it comes to precision, Zipper causes 2obj to su�er from a
small but noticeable precision loss. As shown in Figure 15, the precision loss of / -2obj ranges from
2.1% (for eclipse) to 7.0% (for tradebeans) with an average of 4.5% for the 12 programs. However,
the precision loss of - -2obj is much lower, with an average of 0.1% across the 12 programs, and the
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Fig. 16. The speedups of - -2obj, �-2obj, / -2obj, and (-2obj over 2obj based on the analysis times in Table 2.

largest loss of only 0.3% for JPC. In addition, based on the precision-related data for / -3obj and
- -3obj provided in Table 2, it can be concluded that Zipper is also less precise than DebloaterX.

When it comes to e�ciency, - -:obj is notably faster than / -:obj. As shown in Figure 16, the
speedups of / -2obj over 2obj range from 1.3× (for bloat) to 3.5× (for checkstyle), with an average
of 2.1× across all programs. However, as discussed in Section 5.1, the average speedup of - -2obj over
2obj is 19.3×, which is substantially larger. When : = 3, - -3obj can analyze six more benchmarks
scalably than / -3obj, which are checkstyle, avrora, pmd, sunflow, tradebeans, and xalan. For
the four benchmarks that can be analyzed by 3obj as well as - -3obj and / -3obj, namely antlr, fop,
hsqldb, and JPC, the average speedup of - -3obj over 3obj is 150.2×, which signi�cantly exceeds
that of / -3obj (7.2×).
Finally, we can conclude that conducting object-sensitive pointer analysis using DebloaterX

results in higher precision and e�ciency compared to using Zipper.
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Table 3. Times spent by Spark and pre-analyses (DebloaterX, Zipper, and Conch) in seconds.

antlr bloat eclipse fop hsqldb checkstyle JPC avrora pmd sun�ow tradebeans xalan

Spark 6.9 8.3 31.7 5.8 5.9 11.0 13.7 10.3 11.1 16.5 10.5 14.7

DebloaterX 13.5 20.2 120.1 10.3 9.4 36.6 41.8 23.4 19.1 39.7 19.0 40.1

Zipper 12.2 13.6 355.5 9.4 8.2 67.3 25.1 13.6 19.1 14.1 7.8 15.2

Conch 8.0 11.5 178.8 4.3 6.4 20.1 18.4 20.3 16.4 32.8 17.6 26.5

5.2.2 DebloaterX vs. Conch. As the �rst pre-analysis technique for context debloating in :obj,
Conch can preserve almost all of its precision [He et al. 2021a, 2023a] and in this paper. Our
comparison of - -2obj and �-2obj in terms of average precision loss (0.1%), as shown in Figure 15,
indicates that they are comparable. However, - -2obj su�ers slightly, but negligibly, more precision
loss on some benchmarks (e.g., JPC and sunflow) due to some precision-critical objects being
identi�ed as context-independent by DebloaterX but context-dependent by Conch. Conversely,
some objects are identi�ed as context-dependent by DebloaterX but incorrectly as context-
independent by Conch, which happens to not bring noticeable precision bene�ts to DebloaterX.
The relative precision loss of - -3obj compared to �-3obj follows the same trend, as seen in Table 2.

In terms of e�ciency, DebloaterX outperforms Conch in accelerating :obj, providing better
speedups and scalability. As shown in Figure 16, the average speedups of �-2obj over 2obj range from
1.5× (for checkstyle) to 46.8× (for tradebeans) with an average of 4.3× across the 12 programs. In
contrast,- -2obj outperforms�-2obj on all 12 benchmarks, resulting in a larger average speedup over
2obj (19.3×). For : = 3, both �-3obj and - -3obj are fast and enable signi�cantly more benchmarks
to be analyzed scalably than / -3obj and 3obj. Speci�cally, - -3obj can analyze 11 out of 12 programs
with the exception of eclipse, while �-3obj has only been successful in analyzing 10 programs,
with the additional failure being on checkstyle. However, among the 11 programs analyzed by
both, - -3obj typically completes a benchmark within 1-2 minutes, making it signi�cantly faster
than �-3obj. Direct comparison between - -3obj and �-3obj shows that the speedups of - -3obj
over �-3obj range from 5.3× (for JPC) to 422.9× (for bloat), with an average of 61.3×.

The impressive performance of - -3obj over �-3obj is due to three key factors: (1) DebloaterX
employs a 1-limited �eld-sensitive approach to identify container objects, which leads to higher
precision than Conch (which is �eld-insensitive), (2) our open type �ltering mechanism enables
DebloaterX to remove a set of container objects that are theoretically context-dependent but not
practically context-sensitive, without sacri�cing precision, and (3) the use of three container-usage
patterns signi�cantly reduces the number of false-positive context-dependent objects identi�ed by
Conch. All three factors contribute to the improved performance of DebloaterX, which selects an
average of only 7.6% of objects as context-dependent, much lower than Conch’s average of 14.9%.

5.2.3 Pre-Analysis Overheads. DebloaterX is an e�cient pre-analysis tool, with similar overheads
to Zipper and Conch. All three tools are designed to be multithreaded (using 16 threads in our
experiments), with their times shown in Table 3 (including the analysis time of Spark for comparison
purposes). On average (geomeans), DebloaterX takes 25.2 seconds, while Zipper and Conch take
19.7 and 17.5 seconds, respectively. Despite supporting some �eld sensitivity, DebloaterX is only
slightly (6-7 seconds on average) slower than both Zipper and Conch, and the additional overhead
is negligible considering the overall reduction in analysis time achieved by :obj.

5.3 RQ3: Comparing DebloaterX with a Simplistic Pre-Analysis

DebloaterX is speci�cally designed to signi�cantly enhance the performance of :obj while pre-
serving nearly all of its precision. To further highlight its necessity, we compare DebloaterX
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with a simplistic pre-analysis approach, denoted SimCon, based on java.lang.Collection, as
de�ned at the beginning of Section 5. SimCon identi�es context-dependent objects by checking
if they belong to container types. In this context, a container type refers to a Java class that ei-
ther contains a java.lang.Object �eld, has a container type �eld (recursively), implements the
java.util.Collection interface, or is nestedwithin a class implementing java.util.Collection.

SimCon has caused :obj to su�er from a signi�cant loss of precision compared to DebloaterX,
as shown in Table 2. Further analysis (with : = 2), as depicted in Figure 15, reveals that the precision
loss of (-2obj ranges from 1.8% (for checkstyle) to 11.4% (for bloat), with an average loss of 6.0%
across the 12 programs. This average loss is substantially higher compared to that observed with
DebloaterX. As discussed in Section 5.2, the precision loss of - -2obj is considerably lower, with
an average loss of 0.1% across these 12 programs. The largest precision loss observed is a mere 0.3%
for JPC. A similar trend can be observed when : = 3.

As revealed in our experimental results,- -:obj is not only substantially more precise than (-:obj
but also substantially more e�cient overall. The average speedup achieved by- -:obj is signi�cantly
higher than that of (-:obj across the 12 programs, despite the fact that (-:obj may occasionally
run faster than - -:obj for certain programs. As illustrated in Figure 16 (with : = 2), (-2obj runs
marginally faster than - -2obj in four benchmarks: fop, hsqldb, avrora, and tradebeans (by 1.1×
on average). However, for the remaining eight benchmarks, - -2obj is faster than (-2obj (by 6.6×
on average). Overall, the speedups observed for (-2obj over the baseline 2obj range from 1.4×
(for bloat) to 76.7× (for tradebeans), with an average speedup of 5.6×. In contrast, the average
speedup achieved by - -2obj over 2obj is substantially higher at 19.3× compared to (-2obj. When
: = 3, - -3obj can scalably analyze all 12 programs, except for eclipse. In comparison, (-3obj can
handle one fewer program, namely checkstyle, in a scalable manner. Among the 10 programs that
can be analyzed by both approaches, the average speedup attained by - -3obj over (-3obj is 3.5×. In
particular, among the four benchmarks that can be scalably analyzed by 3obj, the average speedup
achieved by (-3obj over the baseline 3obj is 116.8×. This speedup is noticeably lower compared to
the speedup achieved by - -3obj over the same baseline 3obj, which amounts to 150.2×.

Therefore, we conclude that simple-minded pre-analysis approaches like SimCon are inadequate
substitutes for our advanced DebloaterX approach in achieving the design objective of developing
an e�ective context-debloating technique that enhances the performance of :objwhile maintaining
nearly all of its precision. Furthermore, the impact of SimCon on the runtime performance of :obj
compared to DebloaterX is highly unpredictable, as SimCon relies on simplistic heuristics to
randomly distinguish between context-dependent and context-independent objects.

5.4 RQ4: The Precision Loss and Scalability Issues of - -:obj

We have demonstrated that DebloaterX can signi�cantly improve the performance of - -:obj
over :obj with only a negligible loss of precision (often less than 0.2%). While rare cases do exist
where - -:obj may lose precision, we will discuss those �rst before examining why - -3obj is still
unable to analyze eclipse within 12 hours, which provides some insights for future research.
- -:obj sometimes loses precision due to context-dependent objects that are missed by De-

bloaterX. Four rare but representative cases are presented in Figure 17. In Figure 17a, a TimSort
object, T, created in line 8 is identi�ed as a container object but not as context-dependent because
its usage pattern does not fall into any of the three container-usage categories considered. However,
there are incoming and outgoing value �ows on the �eld a of T, causing a slight loss of precision in
both DebloaterX and Conch on the DaCapo-9.12 benchmarks.
In Figure 17b, a Pattern object named P, created in line 4, has not been identi�ed successfully

as a factory-created container because DebloaterX cannot recognize it as such, given that all its
�elds are of concrete types. However, the type of the �eld root of P, Node, has over 50 subtypes

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 256. Publication date: October 2023.



256:26 Dongjie He, Yujiang Gui, Wei Li, Yonggang Tao, Changwei Zou, Yulei Sui, and Jingling Xue

1 class TimSort { // java.util;

2 Object [] a , tmp;
3 TimSort(Object[] p1) {
4 this . a = p1;
5 }
6
7 static void sort (Object [] q1) {
8 TimSort timsort = new TimSort(q1); // T

9 timsort .pushRun();
10 timsort .mergeCollapse() ;
11 }
12 }

(a) An uncovered container usage pa�ern

1 class Pattern { // java.util.regex;
2 Node root; // hasInFlow and hasOutFlow

3 static Pattern compile( String p) {
4 return new Pattern(p, 0) ; // P

5 }}
(b) An omi�ed factory-created container

1 abstract class Provider {// java.security;
2 Map legacyMap;
3 void parseLegacyPut(String p) {
4 Service s = new Service(this ) ; // S

5 this . legacyMap.put (..., s )
6 }}

(c) An omi�ed inner container.

1 class A {
2 Object id (Object p) { return p; }
3 static Object wid(Object q) {
4 return new A().id(q) ; // A

5 }}

1 class B {
2 void foo(Object o1) { v1 = wid(o1) ; }
3 void bar(Object o2) { v2 = wid(o2) ; }}
4 new B().foo(new Object()) ; // B1, O1

5 new B().bar(new Object()) ; // B2, O2

(d) A handcra�ed case

Fig. 17. Rare cases where DebloaterX losses precision.

de�ned in java.util.regex.Pattern, making it as abstract as an open type (de�ned in Figure 6),
causing precision loss. We plan to address such cases in future work by developing heuristics.

In Figure 17c, DebloaterX fails to recognize object S as an inner container. Created in line 4, S is
stored into this.legacyMap.* via a virtual call to put() in line 5. DebloaterX models parameter
passing at virtual calls imprecisely using cstore and cload edges in [X-Virtual]. However. the NFA
used for identifying inner containers (in Figure 10) excludes cstore and cload edges (as well as their
inverses), preventing S from reaching the NFA’s �nal state. This design choice represents a trade-o�

since including cstore and cload (just like for store and load) in the NFA would lead to signi�cantly
reduced performance improvements by falsely identifying more context-dependent objects.
We have shown three cases where DebloaterX loses precision in real-world applications. Let

us examine a handcrafted example in Figure 17d where precision loss can theoretically occur under
object sensitivity. However, this theoretical case has not been observed practically by us. In the
example, O1 (O2) is written into A.p under context [B1] ([B2]) and returned to and stored in v1

(v2). Analyzing A context-insensitively would cause O1 (O2) to be pointed to spuriously by v2 (v1).
However, DebloaterX selects A as context-independent, causing :obj to lose precision.

Finally, - -3obj fails to analyze eclipse within a 12-hour budget, despite DebloaterX selecting
86.7% of objects in eclipse as context-independent. The remaining 2929 objects whose contexts
are not debloated during the analysis have caused - -3obj to run out of memory.

6 RELATED WORK

In this paper, we have introduced DebloaterX, a novel context-debloating technique designed to
accelerate object-sensitive pointer analysis. While the idea of context-debloating was proposed in
previous work [He et al. 2021a, 2023a], our container-usage-patterns-based approach is original
and signi�cantly more e�cient than Conch, with almost the same precision.
Several approaches have been proposed to enhance the e�ciency of context-sensitive pointer

analysis by selectively applying context sensitivity to a subset of variables and objects [Hassanshahi
et al. 2017; He et al. 2021b, 2023b; Jeong et al. 2017; Li et al. 2018, 2020; Lu et al. 2021a,b; Lu and Xue
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2019; Smaragdakis et al. 2014]. However, their goal is to reduce the number of analyzed variables and
objects rather than the number of generated contexts, which limits their performance improvements.
While Conch [He et al. 2021a, 2023a] was the �rst to reduce the number of generated contexts,
DebloaterX is the �rst to leverage container-usage patterns. This approach results in signi�cantly
improved e�ciency while maintaining similar precision compared to Conch.

There are several di�erent kinds of context-sensitivity being proposed in the literature, including
call-site sensitivity [Shivers 1991], object sensitivity [Milanova et al. 2002, 2005], type sensitivity
[Smaragdakis et al. 2011], hybrid sensitivity [Kastrinis and Smaragdakis 2013], generic sensitivity
[Li et al. 2022], context transformation [Thiessen and Lhoták 2017], and others [Tan et al. 2017;
Thakur and Nandivada 2020]. These approaches study which kinds of context elements should
be used to achieve a balance between precision and e�ciency in pointer analysis. Among these
approaches, object-sensitivity [Milanova et al. 2002, 2005] has been demonstrated to provide the
most e�ective context abstraction for object-oriented languages like Java, particularly when :-
limiting is enforced. A recent advancement in optimizing object-sensitive pointer analysis through
the development of object-sensitive library summaries is detailed in [Lu et al. 2023].

Context tunneling [Jeon et al. 2018] and Bean [Tan et al. 2016] are techniques that seek to enhance
the precision of pointer analysis by choosing which context elements to preserve while constructing
new contexts within a speci�ed context-length limit under :-limiting. This line of research di�ers
from the work presented in this paper, which focuses on context-debloating techniques.

Tan et al. [2021] propose a Unity-Relay framework, which aims to retain the precision preserved
by at least one of a set of selective context-sensitivity techniques in order to achieve the best
precision among all provided techniques. However, this approach may be less e�ective when used
in conjunction with approaches that are already precision-preserving [Lu and Xue 2019] or nearly
precision-preserving [He et al. 2021b,a; Li et al. 2018], as well as with DebloaterX.
Pointer analysis has also been extensively studied from the perspective of CFL-reachability,

both for improving the e�ciency of alias analysis [Zhang et al. 2013, 2014] and for supporting
demand-driven pointer analysis [Sridharan and Bodík 2006; Sridharan et al. 2005; Yan et al. 2011]
selective context-sensitivity [He et al. 2021b; Lu et al. 2021a,b; Lu and Xue 2019]. In addition,
incremental techniques have also been investigated recently [Liu and Huang 2022; Liu et al. 2019].

Finally, pointer analysis has also been studied from the perspective of understanding their time
and space complexities [Mathiasen and Pavlogiannis 2021; Sridharan and Fink 2009]. In contrast,
this paper provides an approach aiming to make pointer analysis practically usable.

7 CONCLUSION AND FUTURE WORK

This paper introduces DebloaterX, a novel context-debloating approach that uses three container-
usage patterns to improve the e�ciency of object-sensitive pointer analysis. We have developed
precise and e�cient rules and algorithms to identify these patterns. Our evaluation shows that
DebloaterX can accelerate pointer analysis by one to two orders of magnitude with minimal loss
of precision, outperforming existing state-of-the-art pre-analysis techniques.

Improving the e�ciency of context-sensitive pointer analysis for object-oriented programming
languages by applying context-debloating is a promising approach. We have identi�ed two areas
for future work: (1) extending DebloaterX to make it pluggable for object-usage patterns that
may not have been captured in this paper, and (2) developing better context-debloating techniques
to enable scalable analysis of large and complex programs, such as eclipse, in practice.
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