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ABSTRACT

The IFDS algorithm can be both memory- and compute-intensive

for large programs as it needs to store a huge amount of path edges

in memory and process them until a �xed point. In general, an IFDS-

based data-�ow analysis, such as taint analysis, aims to discover

only the data-�ow facts at some program points. Maintaining a huge

amount of path edges (with many visited only once) wastes memory

resources, and consequently, reduces its scalability and e�ciency

(due to frequent re-hashings for the path-edge data structure used).

This paper introduces a �ne-grained garbage collection (GC)

algorithm to enable (multi-threaded) IFDS to reduce its memory

footprint by removing non-live path edges (i.e., ones that are no

longer needed for establishing other path edges) from its path-edge

data structure. The resulting IFDS algorithm, named Fpc, retains

the correctness, precision, and termination properties of IFDS while

avoiding re-processing GC’ed path edges redundantly (in the pres-

ence of unknown recursive cycles that may be formed in future

iterations of the analysis). Unlike CleanDroid, which augments

IFDS with a coarse-grained GC algorithm to collect path edges at

the method level, Fpc is �ne-grained by collecting path edges at

the data-fact level. As a result, Fpc can collect more path edges

than CleanDroid, and consequently, cause fewer re-hashings for

the path-edge data structure used. In our evaluation, we focus on

applying an IFDS-based taint analysis to a set of 28 Android apps.

Fpc can scalably analyze three apps that CleanDroid fails to run to

completion (under a 3-hour budget per app) due to out-of-memory

(OoM). For the remaining 25 apps, Fpc reduces the number of path

edges and memory usage incurred under CleanDroid by 4.4×

and 1.4× on average, respectively, and consequently, outperforms

CleanDroid by 1.7× on average (with 18.5× in the best case).
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1 INTRODUCTION

The IFDS algorithm [36] addresses an important class of

interprocedural data-�ow analysis problems, in which the set of

data-�ow facts � is finite, the data-�ow functions (in 2� ↦→ 2� ) as-

sociated with the control-�ow edges in the program are distributive

over the meet operator ⊓, and the set of data-�ow facts at each

program point is a subset of � . It has been implemented in many

mainstream program analysis and compiler frameworks [9, 23, 41]

and used to solve a wide range of problems, such as taint anal-

ysis [2, 24], bug detection [15], pointer analysis [16, 18, 40], and

typestate-like analysis [34, 44].

The IFDS algorithm is both memory- and compute-intensive,

with a worst-case complexity of $ ( |� | · |� |2) in space and $ ( |� | ·

|� |3) in time , where � (the set of edges in the supergraph, i.e., a

form of inter-procedural control �ow graph of the program) and �

(the set of data-�ow facts in the program) are often large in practice.

For example, a previous study [4] reported that FlowDroid (an

IFDS-based taint analysis tool) [2] fails to analyze some Android

apps on a computer server equipped with 730GB RAM (due to

running out of either a 24-hour time budget or memory).

The IFDS algorithm solves an IFDS-based data-�ow analysis

as a graph reachability problem by expressing the data-�ow facts

reaching a program point in its supergraph as path edges. The

objective of this paper is to introduce a garbage collection (GC)

algorithm for IFDS to reduce its memory footprint and thus improve

both its scalability and e�ciency by garbage-collecting non-live

path edges (i.e., ones that are no longer needed for establishing

other path edges) from its path-edge data structure (e.g., a map in

FlowDroid [2]). In general, IFDS-based data-�ow analyses, such as

taint analysis, aim to discover the data-�ow facts at some program

points. Maintaining all the path-edges in memory (several trillions

for some apps in our evaluation), with many visited only once,
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wastes memory resources, and consequently, reduces the scalability

and e�ciency of the IFDS analysis (due to frequent re-hashings

for the path-edge data structure used [1]). Therefore, for the IFDS

algorithm, garbage-collecting its non-live path edges will reduce

not only its memory footprint but also its analysis time.

The challenge faced in this research is how to e�ectively garbage-

collect non-live path edges for (multi-threaded) IFDS while both

preserving its correctness, precision, termination properties and

avoiding re-processing GC’ed path-edges redundantly, in the pres-

ence of unknown recursive cycles that may be formed (due to

recursion or loops) in future iterations of the IFDS analysis. The

only related work, CleanDroid [1], addresses this problem by aug-

menting IFDS with a coarse-grained method-level GC algorithm,

by which the path edges in a method can be collected if these path

edges and all their induced path edges in its transitively invoked

callee methods have been processed. CleanDroid is precision-

preserving, correct and safe (by guaranteeing termination), but not

su�ciently e�cient due to two limitations (as discussed in more

details in Section 2). First, its method-level GC approach is overly

conservative, failing to collect many non-live path edges during

the IFDS analysis. Second, its GC algorithm may re-process some

GC’ed path edges, resulting in redundant re-computations.

In this paper, we introduce a novel �ne-grained GC approach

for IFDS without these two limitations, by exploiting the structure

of its path edges, which are always anchored at the start nodes of

methods. The resulting IFDS algorithm is named Fpc. Compared

with CleanDroid [1], Fpc is not only precision-preserving, correct

and safe but also more e�cient. We address CleanDroid’s �rst

limitation by collecting path edges at the data-fact level, based on

a key observation that the path edges with di�erent data facts at

their sources, i.e., anchor sites can be GC’ed independently. We ad-

dress CleanDroid’s second limitation by introducing redundancy-

avoiding edges to mark the GC’ed path-edges so that we can avoid

re-processing them later completely.

To demonstrate the performance bene�ts of Fpc over Clean-

Droid (implemented in FlowDroid) [1], we have also selected taint

analysis as a signi�cant IFDS-based data-�ow analysis as in [1] and

implemented Fpc based on CleanDroid. We compare Fpc with

CleanDroid on 28 Android apps (with 17 from [14] and 11 from

[25]). Given a time budget (3 hours) and memory budget (200GB)

per app, Fpc can scalably analyze three apps that CleanDroid fails

to run to completion (due to OoM). For the other 25 apps, Fpc re-

duces the number of path edges and memory usage incurred under

CleanDroid by 4.4× and 1.4×, respectively. As a result, Fpc speeds

up CleanDroid by 1.7× on average (with 18.5× in the best case).

The paper makes the following main contributions:

• A novel �ne-grained, data-fact-level GC algorithm for re-

ducing the memory footprint of the IFDS algorithm, and

consequently, improving its scalability and e�ciency;

• Fpc, an open-source tool; and

• a performance evaluation of Fpc against CleanDroid.

The rest of this paper is organized as follows. Section 2 motivates

our GC approach with an example. Section 3 formalizes our GC

algorithm. We discuss the implementation of Fpc in Section 4 and

evaluate Fpc against CleanDroid in Section 5. Finally, we discuss

some related work in Section 6 and conclude the paper in Section 7.

2 MOTIVATION

We motivate our path-edge GC algorithm by considering an IFDS-

based taint analysis. In Section 2.1, we give a motivating example

and show how the IFDS algorithm works in detecting privacy leaks.

Due to the technical nature of IFDS, we refer to [36] (Figure 4)

for more details. In Section 2.2, we illustrate how CleanDroid

[1] works by highlighting its two limitations. In Section 2.3, we

introduce our GC approach without these two limitations.

2.1 A Motivating Example

Figure 1 gives a program containing three static methods, main(),

id(), and misc() (in the gray-shaded background), where id()

returns whatever value it receives and misc() simulates miscella-

neous things irrelevant to privacy leaks. In main(), a1.f (line 5),

b1.g (line 9), and a2.f (line 12) are tainted by source() immediately.

When a1 (b1) is passed into id(), x.f (y.g) becomes tainted at line

6 (line 10) and thus leaked at a sink() at line 8 (line 11). The calls to

misc() (at lines 7 and 13) may produce more tainted access paths

(e.g., q.f), which are assumed not to �ow into any sink.

To detect privacy leaks in a program, the IFDS algorithm dis-

covers the tainted access paths (as data-�ow facts) reaching each

program point by solving a graph reachability problem on its ex-

ploded supergraph [36]. The alias analysis used (orthogonal to this

work) is discussed in Section 4. For a program, as reviewed in Sec-

tion 3, its supergraph is just a form of inter-procedural CFG with

call, return and call-to-return edges added, and its exploded super-

graph, which is incrementally constructed, simply records each fact

3 reaching a node = (in the form of ⟨=,3⟩) and how each fact at a

node propagates to taint the other facts at its successor nodes (in

the form of ⟨=1, 31⟩ → ⟨=2, 32⟩). In Figure 1, we see the exploded

supergraph for our example, where the special fact 0 allows new

facts to be generated at source(). For example, the sets of facts

reaching lines 8 and 11 are {0, a1.f, x.f}, and {0, a1.f, x.f, b1.g, y.g},

respectively. Thus, a leak at each of these two sinks is detected.

Given a program, IFDS builds its exploded supergraph implicitly

by expressing it as a set of path edges [36] (Figure 4). For a method

<, let B< (4<) be the start (exit) node in its own CFG. All its path

edges must be anchored at the start node B< . Whenever a new

fact (taint) 31 reaches < from a call site, a self-loop path edge

⟨B<, 31⟩ → ⟨B<, 31⟩ is �rst created. Then propagating 31 to a node

= in< may cause ⟨B<, 31⟩ → ⟨=,32⟩ to be created, meaning that

31 at B< causes 32 at = to be tainted. A path edge is said to induce

or generate or establish another path edge (directly or indirectly) if

the former causes the latter to be created (directly or indirectly). By

construction, ⟨B<, 31⟩ → ⟨=,32⟩ represents a su�x of a realizable

path from ⟨Bmain, 0⟩ to ⟨=,32⟩ in the exploded supergraph, meaning

that starting at ⟨Bmain, 0⟩, we will �nd �rst ⟨B<, 31⟩ and then ⟨=,32⟩

to be tainted. Let us see how IFDS detects that x.f is tainted after the

call x = id(a1) at line 6. We write =ℓ to represent the node at line ℓ .

Initially, ⟨Bmain, 0⟩ → ⟨Bmain, 0⟩. At line 5, ⟨Bmain, 0⟩ → ⟨=5, a1.f⟩ is

created. Due to the call x = id(a1) at line 6, id() is analyzed, with

⟨Bid, p.f⟩ → ⟨Bid, p.f⟩, ⟨Bid, p.f⟩ → ⟨=16, t.f⟩, and ⟨Bid, p.f⟩ →

⟨4id, t.f⟩ created. When 4id is analyzed, ⟨Bmain, 0⟩ → ⟨=6, x.f⟩ is

created in main(), indicating that x.f is tainted just after line 6.

Unfortunately, maintaining a huge amount of such path edges in

memory introduces signi�cant memory overheads without yielding
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		1	void	main()	{

		2									A	a1	=	new	A();

		3									A	a2	=	new	A();

		4								B	b1	=	new	B();

		5								a1.f	=	source();

		6								x	=	id(a1);

		7								misc(a1);

		8								sink(x.f);

		9								b1.g	=	source();

10								y	=	id(b1);	

11								sink(y.g);

12								a2.f	=	source();

13								misc(a2);

14	}

15		Object	id(Object	p)	{

16									Object	t	=	p;

17									return	t;

18	}	

19	void	misc(A	q)	{

20									B	b2		=	new	B();

20									q	=	new	A();	

21	}	

0 a1.f b1.g a2.fx.f y.g

0 p.f p.gt.f t.g

0 q.f

Figure 1: A motivating example and its exploded supergraph (implicitly) constructed during the IFDS analysis, where the

inter-procedural edges (i.e., call and return edges) for method id() (misc()) are represented byd (d).

performance bene�ts since (1) most of them are visited only once

[1, 25] (with 86.97% reported in [25]), and (2) the path edges recorded

in memory are no longer used after the IFDS analysis (as all privacy

leaks are detected on the �y). Thus, we can improve the scalability

and e�ciency of the IFDS algorithm if we can garbage-collect non-

live path edges, i.e., ones that will no longer be used for establishing

other path edges during the IFDS analysis, since removing non-

live path edges from its path-edge data structure (e.g., a map in

FlowDroid [2]) will reduce the number of re-hashings incurred [1].

2.2 CleanDroid: Method-Level Collection

Recently, CleanDroid [1] represents an extension of the IFDS al-

gorithm by garbage-collecting path edges during the IFDS analysis.

The basic idea is simple. The path edges in a method can be col-

lected if these path edges, together with all their induced path edges

in its transitively invoked callee methods, have been processed. For

example, the path edges in id() can be removed after line 10 and

the path edges in misc() and main() can be removed after line 13.

Let us consider just one GC point, at which the e�ect of the call

y = id(b1) at line 10 is just about to be analyzed (i.e., the self-loop

path-edge ⟨Bid, p.g⟩ → ⟨Bid, p.g⟩ is yet to be processed) but the

e�ects of lines 1 – 9 have been analyzed. This implies that the e�ect

of the call x = id(a1) at line 6 has been analyzed (i.e., the path edges

starting (i.e., anchored) at ⟨Bid, 0⟩ and ⟨Bid, p.f⟩ in id() have been

processed), and similarly, the e�ect of the call misc(a1) at line 7 has

been analyzed. Let M1 (M2) be the time just before (after) this GC

point and M3 the end of the analysis. For CleanDroid, Figures 2a

and 3a give the snapshots of the path edges in id() and misc(),

respectively, at M1 –M3. We now examine its two limitations.

2.2.1 Limitation 1: Coarse Granularity. By using a method-level

path-edge GC algorithm, CleanDroid misses many garbage col-

lection opportunities due to its coarse granularity. As shown in Fig-

ure 2a, the path edges in id() atM2 are the same as the ones atM1,

implying that CleanDroid fails to collect any path edge for id() at

this designated GC point. As a result, the maximum number of path

edges maintained during the analysis is 13 at M3. CleanDroid

has failed here since ⟨Bid, p.g⟩ → ⟨Bid, p.g⟩ is not yet processed

(causing the reference counter of id() to be _(id) = 1 ≠ 0). Despite

this unprocessed path edge, we observe that the other path edges in

id(), anchored at ⟨Bid, 0⟩ and ⟨Bid, p.f⟩, have been processed and

can thus be removed. Our �ne-grained GC approach will address

this limitation by collecting such path edges.

2.2.2 Limitation 2: Redundant Re-Computations. CleanDroidmay

su�er from redundant re-computations by re-processing some

GC’ed path edges. As shown in Figure 3a, CleanDroidwill remove

the path edges created in misc() due to the �rst call to misc() at

line 7 at the designated GC point (in between M1 and M2) since

the reference counter _(misc) = 0 holds. However, when misc() is

analyzed again due to the second call at line 13 , CleanDroid will

end up re-introducing and re-processing these deleted path edges.
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15		Object	id(Object	p)	{

16									Object	t	=	p;

17									return	t;

18	}	
M1 M2 M3

0 p.f p.gt.f t.g 0 p.f p.gt.f t.g 0 p.f p.gt.f t.g

(a) The snapshots of the path edges in id( ) under CleanDroid

15		Object	id(Object	p)	{

16									Object	t	=	p;

17									return	t;

18	}	
M1 M2 M3

0 p.f p.gt.f t.g 0 p.f p.gt.f t.g 0 p.f p.gt.f t.g

(b) The snapshots of the path edges in id( ) under Fpc (_ (⟨Bid, 3 ⟩) is abbreviated to _ (3 ) for brevity)

Figure 2: Comparing how the path edges (depicted in orange arrows) change in id() under CleanDroid and Fpc with respect to

a GC point when the path edges starting (i.e., anchored) at ⟨Bid, 0⟩ and ⟨Bid, p.f⟩ have been processed but ⟨Bid, p.g⟩ → ⟨Bid, p.g⟩ is

yet to be processed. M1 (M2) represents the time just before (after) this collection point, and M3 the end of the IFDS analysis.

19	void	misc(A	q)	{

20									B	b2		=	new	B();

20									q	=	new	A();	

21	}	
M1

0 q.f 0 q.f

M2

0 q.f

M3

(a) The snapshots of the path edges in misc() under CleanDroid

19	void	misc(A	q)	{

20									B	b2		=	new	B();

20									q	=	new	A();	

21	}	
M1

0 q.f 0 q.f

M2 M3

0 q.f

(b) The snapshots of the path edges in misc() under Fpc (_ (⟨Bid, 3 ⟩) is abbreviated to _ (3 ) for brevity)

Figure 3: Comparing the path edges (−→) change in misc() under CleanDroid and Fpc, where M1, M2 and M3 are de�ned as in

Figure 2. The redundancy-avoiding edges (−→), once added, will not be removed during the IFDS analysis.

Thus, the path edges atM1 andM3 are identical. We will introduce

redundancy-avoiding edges to avoid redundant re-computations.

2.3 Fpc: Data-Fact-Level Collection

We introduce a novel �ne-grained GC approach that collects path

edges at the data-fact level for IFDS without the two limitations of

CleanDroid. The resulting IFDS algorithm is referred to as Fpc.

2.3.1 Fine Granularity. We address CleanDroid’s �rst limitation

by collecting path edges at the data-fact level instead of the method

level. Given a method <, each of its path edges has the form of

⟨B<, 31⟩ → ⟨=,32⟩, where B< is its start node. Following [36], we

refer to the source of ⟨B<, 31⟩ → ⟨=,32⟩, i.e., ⟨B<, 31⟩ as its anchor

site. Such a path edge is called a ⟨B<, 31⟩-anchored path edge.

We can collect path edges at the data-fact level by exploiting a

key observation on the structure of path edges stated below.

Observation 1. The path edges in a method with di�erent anchor

sites are handled independently during the IFDS analysis.

This observation is always true since the IFDS analysis makes

use of only distributive data-�ow functions [36]. As a result, for

a given method, its path edges sharing the same anchor site can be
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garbage-collected if these path edges, together with their induced path

edges in its transitively invoked callee methods, have been processed.

Let us return to our example by considering how Fpc collects

the path edges in id(). Unlike CleanDroid, which fails to collect

any path edge in our designated GC point (Figure 2a), Fpc has

successfully removed all the path edges anchored at ⟨Bid, 0⟩ or

⟨Bid, p.f⟩ (Figure 2b), since they have been processed (indicated by

_(⟨Bid, 0⟩) = _(⟨Bid, p.f⟩) = 0). As a result, the maximum number

of path edges maintained atM1 is 9 but drops to 1 atM2, and �nally,

reaches 5 at M3. Comparing Figure 2a and Figure 2b, we �nd that

our �ne-grained GC approach enables Fpc to maintain fewer path

edges than CleanDroid (9 instead of 13) during the analysis.

Note that our approach works when id() contains directly or

indirectly invoked callee methods contributing to the recursion

cycles in the supergraph of the program, as formalized in Section 3.

2.3.2 Eliminating Redundant Re-Computations. We address Cle-

anDroid’s second limitation based on another key observation.

Observation 2. For a given method<, all its path edges sharing

the same anchor site ⟨B<, 3⟩ are generated directly or indirectly from

a special self-loop path edge ⟨B<, 3⟩ → ⟨B<, 3⟩.

This observation is always true due to how the path edges are

constructed by the IFDS algorithm [36] (as presented in Figure 4).

As illustrated in Figure 3a, CleanDroid may re-process some

GC’ed path edges. To avoid such redundant re-computations, when-

ever ⟨B<, 3⟩ → ⟨B<, 3⟩ is introduced (from a call site to <), we

add a redundancy-avoiding edge ⟨B<, 3⟩ → ⊥ to signify that all

the ⟨B<, 3⟩-anchored path edges, once GC’ed, must have been pro-

cessed, so that re-processing ⟨B<, 3⟩ → ⟨B<, 3⟩ from another call

site can be avoided. As shown in Figure 3b, Fpc will collect the

path edges anchored at ⟨Bmisc, 0⟩ and ⟨Bmisc, q.f⟩ (created due to

the �rst call to misc() at line 7) at our designated GC point (in

betweenM1 andM2), since _(⟨Bid, 0⟩) = _(⟨Bid, q.f⟩) = 0), but will

also add ⟨Bmisc, 0⟩ → ⊥ and ⟨Bmisc, q.f⟩ → ⊥ to prevent Fpc from

re-processing these deleted path edges (due to the second call to

misc() at line 13). Thus, the path edges atM2 andM3 are identical.

2.4 Discussion

Fpc is conceptually simple and can be added on top of a multi-

threaded implementation of the IFDS algorithm in about 600 LOC. In

addition, Fpc preserves the correctness, precision and termination

properties of IFDS while avoiding re-processing GC’ed path edges.

By collecting path edges at the data-fact level, Fpc can signi�cantly

improve the scalability and e�ciency of CleanDroid.

3 OUR APPROACH

We describe our path-edge GC algorithm. We �rst review the clas-

sic IFDS algorithm [36] (Section 3.1). We then formalize our data-

fact-level path-edge collector (Section 3.2), state a few important

properties (Section 3.3), conduct an overhead analysis (Section 3.4),

and �nally, discuss some design choices (Section 3.5).

3.1 The IFDS Algorithm

The IFDS algorithm solves a special kind of data-�ow problem, i.e.,

IFDS problem. An instance of the IFDS problem, �% , is a quintuple,

�% = (�∗, �, �, ",⊓), where�∗ = (# ∗, �∗) is the supergraph of the

1 Algorithm IFDS(�#
�%

= (# #, �# ))

2 InitPECollector()

3 %0Cℎ�364 ← W ← S ← ∅

4 Propagate(⟨Bmain, 0⟩ → ⟨Bmain, 0⟩)

5 whileW ≠ ∅ do
6 Pop ⟨B<, 31 ⟩ → ⟨=,32 ⟩ fromW

7 if = is a call node then
8 Let<′ be the method called at = and =′ be the return node of =

9 for 33 such that ⟨=,32 ⟩ → ⟨B<′ , 33 ⟩ ∈ �
# do

10 ��� = ��� ∪ {⟨B<, 31 ⟩ → ⟨B<′ , 33 ⟩}

11 Propagate(⟨B<′ , 33 ⟩ → ⟨B<′ , 33 ⟩)

12 for ⟨B<′ , 33 ⟩ → ⟨4<′ , 34 ⟩ ∈ S ∧ ⟨4<′ , 34 ⟩ → ⟨=
′, 35 ⟩ ∈ �

# do
13 Propagate(⟨B<, 31 ⟩ → ⟨=

′, 35 ⟩)

14 for 33 such that ⟨=,32 ⟩ → ⟨=
′, 33 ⟩ ∈ �

# do
15 Propagate(⟨B<, 31 ⟩ → ⟨=

′, 33 ⟩)

16 if = is an exit node then
17 if ⟨B<, 31 ⟩ → ⟨=,32 ⟩ ∉ S then
18 Insert ⟨B<, 31 ⟩ → ⟨=,32 ⟩ into S

19 for each call site 2 that calls< do
20 Let<′′ (=′′) be the containing method (the return node) of 2

21 for ⟨B<′′ , 33 ⟩ → ⟨2,34 ⟩ ∈ %0Cℎ�364 ∧ ⟨2,34 ⟩ →

⟨B<, 31 ⟩ ∈ �
# ∧ ⟨=,32 ⟩ → ⟨=

′′, 35 ⟩ ∈ �
# do

22 Propagate(⟨B<′′ , 33 ⟩ → ⟨=
′′, 35 ⟩)

23 if = is a normal node or a return node then
24 for ⟨=′, 33 ⟩ such that ⟨=,32 ⟩ → ⟨=

′, 33 ⟩ ∈ �
# do

25 Propagate(⟨B<, 31 ⟩ → ⟨=
′, 33 ⟩)

26 OnEdgeProcessed(⟨B<, 31 ⟩ → ⟨=,32 ⟩)

27 Procedure Propagate(⟨B<, 31 ⟩ → ⟨=,32 ⟩)
28 if ⟨B<, 31 ⟩ → ⟨=,32 ⟩ ∉ %0Cℎ�364 then

29 if ⟨B<, 31 ⟩ = ⟨=,32 ⟩ then // a self-loop edge

30 if ⟨B<, 31 ⟩ → ⊥ ∈ RA�364B then

31 return // avoid redundant re-computations

32 else

33 RA�364B = RA�364B ∪ {⟨B<, 31 ⟩ → ⊥}

34 OnEdgeScheduled(⟨B<, 31 ⟩ → ⟨=,32 ⟩)

35 Insert ⟨B<, 31 ⟩ → ⟨=,32 ⟩ into both %0Cℎ�364 andW

Figure 4: The IFDS algorithm [36] used in mainstream

implementations [2, 7, 9, 38]. The lines shaded in

light grey are used to support path-edge collection.

program, � is a �nite set of data-�ow facts, � ⊆ 2� → 2� is a set

of distributive data-�ow functions," : �∗ ↦→ � is a map from the

supergraph edges to data-�ow functions, and the meet operator ⊓

is either union or intersection (depending on the problem modeled).

The supergraph of a program, �∗, consists of a set of CFGs,

�1,�2, · · · (one per method), connected by inter-procedural edges.

Given a method<, its CFG�< has a start node B< and an exit node

4< . A call site is represented by a call node and a return node. The

other nodes (i.e., normal nodes) represent the statements as usual.

The edges in �∗ fall into four categories: call edges (connecting a

call node to a start node), return edges (connecting an exit node to a

return node), call-to-return edges (connecting a call node to a return

node), and normal edges (connecting normal nodes).

Reps et al. [36] propose an e�cient algorithm to solve the IFDS

problem precisely by transforming it into a graph-reachability

problem on an exploded supergraph, �#
�%

= (# #, �#), where # #
=

# ∗ × (� ∪ {0}) and �# = {⟨=1, 31⟩ → ⟨=2, 32⟩ | =1 → =2 ∈ �
∗, 5 =

" (=1, =2), 32 ∈ 5 (31)}. Note that 5 ∈ � is a data-�ow function

associated with the edge =1 → =2 ∈ �
∗. As mentioned earlier, 0 is

a special fact used to introduce new facts at some program points.

In Figure 4, we give the IFDS algorithm [36] used in mainstream

implementations [2, 7, 9, 38], where the lines shaded in light gray
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are added to support path-edge collection. %0Cℎ�364 records the set

of path edges, with each ⟨B<, 31⟩ → ⟨=,32⟩ representing the su�x

of a realizable path (in�#
�%
) from ⟨Bmain, 0⟩ to ⟨=,32⟩.S ⊆ %0Cℎ�364

represents the set of summary edges for summarizing the interpro-

cedural data-�ow facts obtained across the method boundaries. The

IFDS algorithm is essentially a worklist algorithm. Starting from

⟨Bmain, 0⟩ → ⟨Bmain, 0⟩ (line 4), it removes one path edge from the

worklistW and processes it at each iteration. Speci�cally, lines

7-15 handle the interprocedural data �ows entering a method, lines

16-22 handle the interprocedural data �ows leaving a method, and

lines 23-25 handle the intraprocedural data �ows within a method.

3.2 Data-Fact-Level Path-Edge Collection

Unlike CleanDroid [1], which can use the supergraph itself to

perform its method-level path edge collection, Fpc relies on a new

graph, named Anchor Dependency Graph, constructed during the

IFDS analysis, to perform its data-fact-level path edge collection.

De�nition 3.1. For a program, its anchor dependency graph is

de�ned as��� = (#��� , ���� ), where a node U ∈#��� is an an-

chor site and an edgeU1→U2 ∈�
��� means that someU2-anchored

path edges may be generated by some U1-anchored path edges.

For a program, we build its ��� on the �y during the IFDS

analysis. As shown in line 10 of Figure 4, whenever a self-loop

path edge ⟨B<′ , 33⟩ → ⟨B<′ , 33⟩ is introduced (due to a call to a

method <′ made in the current method < being analyzed), we

add ⟨B<, 31⟩ → ⟨B<′ , 33⟩ to ��� to indicate that some ⟨B<′ , 33⟩-

anchored path edges may be generated by some ⟨B<, 31⟩-anchored

path edges (i.e., ⟨B<, 31⟩ → ⟨=,32⟩ in line 6 of Figure 4).

Let _(U) be the reference counter recording the number of U-

anchored path edges that are being processed at the current itera-

tion or will be processed in later iterations. Given an anchor site

U ∈ #��� , let ADGTC(U) be the set of anchor sites re�ectively and

transitively reachable from U on ��� . We identify non-live path

edges in %0Cℎ�364 , which can be collected by Fpc, as follows.

De�nition 3.2. We can garbage-collect the set of all U-anchored

path edges, which are deemed as being non-live, from %0Cℎ�364 if

∀U ′ ∈ ADGTC(U) : _(U ′) = 0 (1)

If this condition holds, all path edges induced (directly or in-

directly) by the self-loop path edge U → U have already been

processed, and will no longer be used to generate other path edges.

Figure 5: The ��� for Figure 1 (by adding a static method

“foo(Object r){foo(r); }” and a call to foo(p.f) in id()).

Example 3.1. For our motivating example, let us add a static

method “void foo(Object r){ foo(r); }” and a call to foo(p.f) in

id(). Figure 5 gives the ��� of this modi�ed program (once fully

analyzed). The only anchor site in main() is ⟨main, 0⟩. By De�ni-

tion 3.1, after id() (called at lines 6 and 10) and misc() (called at

1 Procedure InitPECollector()
2 _ = {U ↦→ 0}

3 RA�364B = C = ∅

4 Procedure OnEdgeScheduled(⟨B<, 31 ⟩ → ⟨=,32 ⟩)
5 Consume(⟨B<, 31 ⟩ → ⟨=,32 ⟩) // do some analysis-specific task

6 _ =

{

U ↦→ _ (U ) + 1 if U = ⟨B<, 31 ⟩

U ↦→ _ (U ) otherwise

7 C = C ∪ {U }

8 Procedure OnEdgeProcessed(⟨B<, 31 ⟩ → ⟨=,32 ⟩)

9 _ =

{

U ↦→ _ (U ) − 1 if U = ⟨B<, 31 ⟩

U ↦→ _ (U ) otherwise

10 Procedure RunFineGrainedPECollector()
11 foreach U ∈ C do
12 if ∀U ′ ∈ ADGTC(U ,���): _ (U ′ ) = 0 then

// Remove path edges with U as their anchor site

13 foreach 4 : ⟨B<, 31 ⟩ → ⟨=,32 ⟩ ∈ %0Cℎ�364 do
14 if U = ⟨B<, 31 ⟩ then
15 %0Cℎ�364 = %0Cℎ�364\{4 }

16 C = C\{U }

Figure 6: Data-fact-level path-edge GC algorithm.

lines 7 and 13) have been analyzed, we will have added the �ve edges

(in cyan) to ��� . By analyzing the newly inserted code, we will in-

troduce four more edges (in red). By de�nition, ADGTC(⟨id, p.f⟩) =

{⟨id, p.f⟩, ⟨foo, r⟩}, and ADGTC(⟨main, 0⟩) = #��� since all the

eight anchor sites in themodi�ed program are reachable from ⟨main, 0⟩.

Figure 6 gives our data-fact-level path-edge GC algorithm. Let

C be the set of candidate anchor sites found so far. For an an-

chor site in C, its anchored path edges will be removed from

%0Cℎ�364 once they satisfy Equation (1). Let RA�364B be the

set of the redundancy-avoiding edges introduced so far. Initially,

InitPECollector() is called (line 2 of Figure 4), in which we

initialize the reference counters for all anchor sites to 0 and set

RA�364B = C = ∅ (lines 2-3).Whenever a new path edge ⟨B<, 31⟩ →

⟨=,32⟩ is ready to be scheduled, OnEdgeScheduled() is called (line

34 of Figure 4), in which we make the new path edge available

via consume(), where, for example, privacy leaks are checked (line

5), increment the reference counter of ⟨B<, 31⟩ by 1 (line 6), and

add ⟨B<, 31⟩ to C (line 7). Once a path edge has been processed,

OnEdgeProcessed() is called (line 26 of Figure 4), in which we

decrement the reference counter of its anchor site by 1 (line 9).

Finally, RunFineGrainedPECollector() runs in a separate thread

concurrently to the (multi-threaded) IFDS analysis itself, remov-

ing path edges from %0Cℎ�364 as long as their anchor sites satisfy

Equation (1) at each GC event (lines 11-16).

To avoid re-processing GC’ed path edges (as discussed in Sec-

tion 2.2.2), we have made the following extension to the IFDS algo-

rithm. For each self-loop path edge ⟨B<, 31⟩ → ⟨B<, 31⟩ that is ready

to be scheduled (lines 29-33 of Figure 4), if ⟨B<, 31⟩ → ⊥ is present

in RA�364B (implying that the ⟨B<, 31⟩-anchored path edges, once

GC’ed, must have already been processed), then nothing needs to

be done. Otherwise, we add ⟨B<, 31⟩ → ⊥ to RA�364B .

3.3 Properties

Given an original IFDS analysis A, let A′ be A modi�ed to in-

corporate our path-edge GC algorithm in Figure 6. Let %0Cℎ�364A
(%0Cℎ�364A′ ) be the set of path edges that have ever appeared in

%0Cℎ�364 and processed by A (A′) at the end of the analysis.
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Theorem 3.3 (Correctness and Precision). For a program,A′

achieves the same precision as A in the sense that both provide the

same path edges to consume() (line 5 in OnEdgeScheduled()).

Proof. For a program, %0Cℎ�364A = %0Cℎ�364A′ as both A and

A′ use the same data-�ow functions. Whenever 4 : ⟨B<, 31⟩ →

⟨=,32⟩ ∈ %0Cℎ�364A′ is removed, _(⟨B<, 31⟩) = 0 (line 13 in

RunFineGrainedPECollector()). Thus, OnEdgeScheduled() has

been called (implying that consume(4) has been called) and

OnEdgeProcessed() has been called (implying that 4 has been

processed). Thus,A′ achieves exactly the same precision asA. □

When a program contains recursive cycles (due to recursive calls

or loops), some path edges may form a cycle, e.g., 40, 41, · · · , 4= ,

where 4 (8+1) mod (=+1) is generated by 48 . To ensure termination,

the original IFDS algorithm A uses a %0Cℎ�364 data structure to

maintain all path edges generated and thus prevents the same path

edge from being re-generated and re-processed. However, a simple-

minded path-edge GC algorithm may undermine its termination

property, by repeatedly garbage-collecting a path edge and later

adding it back again to %0Cℎ�364 , especially when this deleted path

edge appears in a path-edge-formed cycle that is not known at a

GC event. Our GC algorithm is safe (by ensuring termination).

Theorem 3.4 (Safety). For any given program, A′ terminates.

Proof. In the presence of recursive calls or loops in a given program,

some path-edge-formed cycles, as discussed above, may exist. AsA

terminates, adding a simple-minded path-edge GC algorithm to A

may cause A not to terminate only when it garbage-collects some

but not all the path edges in one such a path-edge-formed cycle.

For A′, according to Equation (1), all U-anchored path edges are

GC’ed conservatively only if these U-anchored path edges and all

their induced path edges (including all the path-edge-formed cycles)

have been processed. Thus, A′ terminates since A terminates. □

Theorem 3.5 (No Redundant Re-Computations). For a pro-

gram, A′ will never re-generate and re-process any GC’ed path edge,

i.e., A′ processes exactly the same set of path edges as A.

Proof. By Observation 2, all U-anchored path edges are generated

(directly or indirectly) by the self-loop path edge U → U and will

be removed by our path-edge GC algorithm (lines 13-17) once

Equation (1) is satis�ed. To avoid re-processing these U-anchored

path edges, we only need to avoid re-generating and re-processing

U → U , which is guaranteed by the existence of the edge U → ⊥

inserted intoRA�364B (lines 29-33 of Figure 4). Thus,A′ processes

exactly the same set of path edges as A. □

3.4 Path-Edge GC Overheads

We now investigate the extra time and space overheads introduced

by A′ on top of A. We argue theoretically that our GC algorithm

given in Figure 6 can deliver performance bene�ts for the IFDS

algorithm despite some additional overheads introduced.

A′ introduces some extra space overheads to A as A′ needs to

maintain��� and RA�364B . Let us conduct a worst-case analysis.

The size of ��� is $ ( |�20;; | · |� |2), where |�20;; | (< |�∗ |) is the

number of call edges in the supergraph of the program. The size

of RA�364B is $ ( |" | · |� |), where |" | (≤ |�20;; | + 1 < |�∗ |) is

the number of methods analyzed. Overall, the additional space

overhead incurred is$ ( |�20;; | · |� |2), which is substantially smaller

than$ ( |�∗ | · |� |2), i.e., %0Cℎ�364A′ (by noting that %0Cℎ�364A′ =

%0Cℎ�364A ). Thus, once the path-edge reduction ratio exceeds
|�20;; |
|�∗ |

,A′ can consume less memory thanA. This is evidenced by

the signi�cant memory usage reduced by Fpc over CleanDroid

for relatively large apps as evaluated later (Section 5).

A′ adds some extra time overheads toA due to the execution of

the lines shaded in light gray in Figure 4 (for computing the path-

edge collection metadata) and of RunFineGrainedPECollector()

(for performing the actual path-edge collection). In Figure 4, line 10

takes$ ( |�20;; | · |� |2). Lines 2, 26, and 29–34 altogether take$ ( |�∗ | ·

|� |2) since the size of %0Cℎ�364A′ is$ ( |�
∗ | · |� |2) with each path

edge processed only once. Overall, the extra time overhead intro-

duced by the lines shaded in light gray in Figure 4 is$ ( |�∗ | · |� |2).

Let � be the number of times that RunFineGrainedPECollector()

in Figure 6 is called during the IFDS analysis. The time spent

on the � invocations of RunFineGrainedPECollector() is $ (� ·

|�20;; | · |� |2). For a total of � invocations, we can remove at most

|%0Cℎ�364A′ |, i.e.,$ ( |�
∗ | · |� |2) path edges at lines 13-15 and verify

e�ciently Equation (1) in $ (� · |�20;; | · |� |2) (where |�20;; | · |� |2

is the size of ���) at lines 11-12. � is determined by the GC in-

terval used. Compared with the time complexity of the IFDS al-

gorithm, which is $ ( |�∗ | · |� |3), the overall time overhead added,

$ (( |�∗ | + � · |�20;; |) · |� |2), is often small. In fact, our path-edge GC

algorithm will signi�cantly reduce the amount of path edges main-

tained in %0Cℎ�364 during the IFDS analysis, resulting in fewer

reallocating and re-hashing operations on %0Cℎ�364 and thus re-

ducing the analysis time substantially.

3.5 Design Choices and Decisions

We discuss some design choices made when designing our path-

edge GC algorithm. First, we have decided to use the summary edges

maintained in S as in [1] without garbage-collecting them, since

(1) S accounts for only a small amount of memory usage relative to

%0Cℎ�364 [25], (2) S is required to ensure the termination of IFDS,

and (3) S is used to avoid redundant re-computations.

Second, the ��� for a program is incrementally constructed

(via line 10 of Figure 4) and never GC’ed. Theoretically, once all

the U-anchored path edges have been removed from %0Cℎ�364 , all

reachable anchor sites of U on ��� and their anchored path edges

can be removed. We have decided not to do so since ��� is rela-

tively small compared to %0Cℎ�364A′ (as evaluated in Section 5).

Finally, we can perform path-edge GC more aggressively while

also ensuring termination by weakening Equation (1) to:

_(U) = 0 (2)

Thus, all the U-anchored path edges in a method< can be removed

from %0Cℎ�364 as long as _(U) = 0. Note that _(U) ≠ 0 may hold

later since some new U-anchored path edges may be generated

when the return edges of some callee methods in< are analyzed

later, resulting in potentially some GC’ed U-anchored path edges

to be re-generated and re-processed. We expected this aggressive

version to reduce thememory usage of the IFDS algorithm further at

the cost of some redundant re-computations. However, the resulting

IFDS algorithm obtained turned out to be slower than Fpc without

achieving any noticeable memory usage reduction.
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4 IMPLEMENTATION

As CleanDroid [1] is built on top of FlowDroid (an IFDS-based

taint analysis) [2] by incorporating its coarse-grained path-edge GC

algorithm, we have implemented Fpc also in FlowDroid by incor-

porating our �ne-grained path-edge GC algorithm for comparison

purposes. Note that our path-edge GC approach is general and can

be applied to all IFDS-based analyses. Speci�cally, we have imple-

mented Fpc in FlowDroid (revision d8c80ac, where CleanDroid

is already included) in about 600 lines of Java code.

To support our path-edge GC algorithm in Figure 6, we have

designed a new IFDS solver, which is an adapted version of Flow-

Droid’s IFDS solver (FastSolver), according to Figure 4. To enable

updating a reference counter _ in a concurrent environment, we

have followed CleanDroid’s implementation by exploiting APIs

such as AtomicInteger and ConcurrentCountingMap.

RunFineGrainedPECollector() given in Figure 6 can be run

in multiple ways. For example, we can invoke it after line 6 in

Figure 4 for every, say, 5000 iterations. In our implementation,

Fpc adopts the same strategy as in CleanDroid [1], by invoking

RunFineGrainedPECollector() at regular GC intervals.

Finally, FlowDroid (by default) uses a forward pass for discov-

ering tainted access paths (during its taint analysis) and a backward

pass for �nding aliases (during its alias analysis). Both passes are

IFDS-based analyses, running iteratively. For example, the forward

IFDS solver can inject path edges to the backward IFDS solver for

�nding more aliases while the backward IFDS solver can also inject

path edges to the forward IFDS solver for discovering more tainted

access paths. To enable Fpc to collect path edges in this scenario,

we adopt the same approach used in CleanDroid but in a more

�ne-grained way. Speci�cally, we run two path-edge garbage col-

lectors, one per pass in a separate thread. We garbage-collect all the

U-anchored path edges conservatively but safely when Equation (1)

is satis�ed in both the forward and the backward analyses.

Theorem 4.1. For any given program, Fpc will report exactly the

same privacy leaks as CleanDroid and FlowDroid.

Proof. Follows from Theorem 3.3 and the fact that Equation (1) is

strengthened above to handle the two passes in FlowDroid. □

5 EVALUATION

We demonstrate the signi�cant performance bene�ts achieved by

Fpc over CleanDroid when both are applied to perform the IFDS-

based taint analysis on Android apps. As CleanDroid has been

shown to be superior to FlowDroid in both memory usage and

analysis time [1], it su�ces to compare Fpc with CleanDroid in

this paper. By Theorem 4.1, Fpc, like CleanDroid, achieves the

same precision as FlowDroid. In addition, we have also validated

the correctness of our implementation by using many benchmarks,

includingDroidBench [3] and open-source apps. Thus, we focus on

evaluating the performance advantages of Fpc over CleanDroid.

Our evaluation addresses the following three research questions:

• RQ1. Can Fpc reduce the memory usage of CleanDroid?

• RQ2. Can Fpc reduce the analysis time of CleanDroid?

• RQ3. How does the performance of Fpc over CleanDroid

vary under di�erent path-edge GC intervals used?

Benchmark Selection. We have considered all the 58 apps

used in [14] and [25] (with 40 from [14] and 18 from [25]), which

have been carefully selected by their authors for evaluating the

performance of their taint analysis tools against FlowDroid. We

consider this set of apps to be suitable here, especially given the lack

of standard benchmarks in the �eld. However, we have excluded

27 apps from this set, including (1) 9 apps, which cause Flow-

Droid (a newer version than that used in [14, 25]) to crash, (2) 13

apps, which are small (analyzable under 2 seconds by FlowDroid),

making garbage-collecting their path edges unfruitful under a 1-

second GC interval (for the same reason, we have excluded all apps

in TaintBench[28]), and (3) 5 apps, which are unscalable with a

3-hour budget per app under either CleanDroid or Fpc (or Flow-

Droid) due to running out of memory (OoM) or out of time (OoT).

In addition, we have also excluded 3 apps, nya.miku.wishmaster,

org.gateshipone.odyssey and com.github.axet.callrecorder

from [14] and kept their newer versions in [25]. Finally, we have

settled with the remaining 28 apps (17 from [14] and 11 from [25]).

We cannot use the apps used for evaluating CleanDroid in [1],

where 600 small apps were randomly selected from the Google Play

Store, with 508 apps being analyzed to completion by FlowDroid

under a 5-minute time budget per app. These apps are not publicly

available (with no information about their names and versions being

provided). It is worth mentioning that the speedups of CleanDroid

over FlowDroid are reported to be up to 1.66× (with no average

given but must be under 1.66×). Thus, the speedups of Fpc over

CleanDroid reported here can be understood in this context.

Experimental Setting. Our experiments are performed on a

Linux server, running Ubuntu 22.04.1 LTS (Jammy Jelly�sh), with

8 CPU cores and 256GB RAM. We have set the maximum heap size

of JVM as 200GB (with -Xmx) and left enough memory for the OS to

execute other system services. For both Fpc and CleanDroid, as in

[1], we allocate 8 threads to perform the IFDS-based taint analysis

and 2 threads to perform path-edge collection (with one for the

forward pass and one for the backward pass). The time budget is

set as 3 hours per app. For all the other con�gurations, we have

used their default values set in CleanDroid, including a 1-second

path-edge GC interval for both CleanDroid and Fpc.

All data used are the average (geometric mean) of three runs.

Main Results. Table 1 gives the main results along three di-

mensions, the analysis time (Columns 4-5), the peak memory usage

recorded during the analysis (Columns 6-7), and the maximum num-

ber of path edges recorded in %0Cℎ�364 (i.e., the peak %0Cℎ�364

usage), |%0Cℎ�364 |max, during the analysis (Columns 8-9). We cal-

culate the latter two every second during the analysis.

5.1 RQ1: Memory Usage

In Columns 6-7 of Table 1, we compare the peak memory usage

of CleanDroid and Fpc over the set of 28 apps selected (with

each memory usage reduction factor given in brackets). Fpc can

analyze all these apps to completion without running out of mem-

ory (OoM). In contrast, CleanDroid runs OoM for three apps,

org.openpetfoodfacts.scanner, bus.chio.wishmaster and

org.openpetfoodfacts.scanner. In general, Fpc uses less mem-

ory than CleanDroid except for some small apps in the “≤ 3mins”
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Table 1: Comparing the performance of Fpc and CleanDroid. The apps are ordered in increasing order of CleanDroid’s

analysis time and divided into three groups: “≤ 3mins”, “> 3mins”, and unscalable apps. OoM stands for out of memory.

Group APP Version
Analysis Time (s) Memory Usage (GB) |%0Cℎ�364 |max (K)

CleanDroid Fpc CleanDroid Fpc CleanDroid Fpc

com.github.yeriomin.dumbphoneassistant 0.5 4 4 (1.0×) 0.7 0.8 (0.9×) 4.1 2.5 (1.6×)

org.csploit.android 1.6.5 4 4 (1.0×) 1.8 2.1 (0.9×) 0.3 0.1 (3.0×)

com.ilm.sandwich 2.2.4f 5 4 (1.2×) 1.0 1.3 (0.8×) 2.5 1.1 (2.2×)

com.kunzisoft.keepass.libre 2.5.0.0beta18 6 6 (1.0×) 2.4 2.7 (0.9×) 3.4 1.4 (2.5×)

dk.jens.backup 0.3.4 6 6 (1.0×) 1.7 1.4 (1.2×) 3.9 2.1 (1.9×)

org.gateshipone.odyssey 1.1.18 12 12 (1.0×) 1.2 1.2 (1.0×) 12.1 3.4 (3.6×)

com.alfray.timeri�c 1.09.05 21 17 (1.2×) 3.7 2.7 (1.4×) 33.6 22.9 (1.5×)

org.decsync.sparss.�oss 1.13.4 31 33 (0.9×) 4.7 3.2 (1.5×) 21.5 8.2 (2.6×)

com.github.axet.callrecorder 1.7.13 54 46 (1.2×) 7.1 5.4 (1.3×) 53.4 7.2 (7.4×)

org.materialos.icons 2.1 55 33 (1.7×) 4.6 4.7 (1.0×) 121.0 54.6 (2.2×)

com.app.Zensuren 1.21 57 47 (1.2×) 5.8 5.2 (1.1×) 55.1 31.1 (1.8×)

name.myigel.fahrplan.eh17 1.33.16 66 47 (1.4×) 2.5 2.1 (1.2×) 36.6 6.5 (5.6×)

≤ 3 mins

com.emn8.mobilem8.nativeapp.bk 5.0.10 151 127 (1.2×) 2.0 2.7 (0.7×) 11.2 2.3 (4.8×)

com.genonbeta.TrebleShot 1.4.2 207 175 (1.2×) 7.0 5.8 (1.2×) 54.7 22.5 (2.4×)

com.microsoft.o�ce.word 16.0.11425.20132 259 184 (1.4×) 5.0 4.8 (1.0×) 43.1 7.9 (5.5×)

org.secuso.privacyfriendlytodolist 2.1 288 160 (1.8×) 17.0 14.7 (1.2×) 211.4 104.5 (2.0×)

com.vonglasow.michael.satstat 3.3 316 218 (1.4×) 23.1 20.6 (1.1×) 200.2 146.1 (1.4×)

com.igisw.openmoneybox 3.4.1.8 331 189 (1.8×) 20.0 13.2 (1.5×) 331.7 115.9 (2.9×)

com.kanedias.vanilla.metadata 1.0.4 367 345 (1.1×) 22.7 13.4 (1.7×) 283.3 17.7 (16.0×)

org.secuso.privacyfriendlyweather 2.1.1 388 21 (18.5×) 24.5 1.9 (12.8×) 463.0 5.4 (86.4×)

com.adobe.reader 19.2.1.9183 416 191 (2.2×) 5.2 3.0 (1.7×) 8.0 0.8 (9.5×)

org.totschnig.myexpenses 3.0.1.2 1904 146 (13.0×) 94.7 14.7 (6.5×) 1067.3 32.2 (33.1×)

org.fdroid.fdroid 1.8-alpha0 1906 270 (7.1×) 12.6 5.1 (2.5×) 76.2 6.1 (12.5×)

org.lumicall.android 1.13.1 2549 2111 (1.2×) 41.4 24.9 (1.7×) 366.5 49.0 (7.5×)

> 3 mins

nya.miku.wishmaster 1.5.0 8142 1852 (4.4×) 152.5 80.1 (1.9×) 2947.9 685.3 (4.3×)

org.openpetfoodfacts.scanner 2.9.8 - 2629 OoM 85.9 - 1015.5

bus.chio.wishmaster 1.0.2 - 5769 OoM 142.2 - 1542.2
Unscalable

for
CleanDroid com.github.axet.bookreader 1.12.14 - 8154 OoM 104.5 - 3313.8

Geometric Mean - - - 1.7× - 1.4× - 4.4×

group. On average, Fpc can reduce the peak memory usage of Cle-

anDroid by 1.4× (excluding the three apps with OoM errors under

CleanDroid). We can observe that Fpc can reduce memory usage

more signi�cantly for apps in the “> 3 mins” group than in the

“≤ 3 mins” group, suggesting that Fpc works better for large apps.

Overall, Fpc exhibits better scalability than CleanDroid.

This level of memory reduction obtained by Fpc over Clean-

Droid is attributed to a reduction in the maximum number of path

edges, |%0Cℎ�364 |max, maintained. As shown in Columns 8-9, Fpc

achieves an average reduction factor of 4.4× over CleanDroid.

We have further compared Fpc and CleanDroid by correlat-

ing the reduction in |%0Cℎ�364 |max with the reduction in memory

usage. As shown in Figure 7, the correlation coe�cient between
CleanDroid′B |%0Cℎ�364 |max

Fpc′B |%0Cℎ�364 |max
and

CleanDroid′B "4<>A~ *B064
Fpc′B "4<>A~ *B064

com-

puted by Excel’s Data Analysis Tool provided in its Analysis Tool-

pak is 0.983, demonstrating a highly positive correlation. Note that

|%0Cℎ�364 |max is not the only factor a�ecting memory usage. The

data-�ow facts actually consume a large portion of memory [1].

As analyzed in Section 3.4, the memory overhead introduced

by ��� and RA�364B can often be negligible. Figure 8 compares

the number of edges in ��� with the total number of path edges

ever processed for each app. For all the 28 apps, the ratio of the

former over the latter is less than 3.3%, with an average of 0.45%.

Note that an ��� edge uses slightly less space than a path edge. In

addition, we have also compared the size of RA�364B (containing

our redundancy-avoiding edges) with the size of S (containing

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
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80 CleanDroid's |PathEdge|max / Fpc's |PathEdge|max

CleanDroid's Memory Usage / Fpc's Memory Usage

Figure 7: Comparing Fpc and CleanDroid by correlating

the reduction in |%0Cℎ�364 |max with that in memory usage.
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Figure 8: Comparing the number of edges in ��� with the

total number of path edges ever processed (or generated).

normal summary edges introduced by IFDS) and the total number

of processed path edges. The average ratios, 18.9% and 0.61%, are

also small.
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Figure 9: Comparing the speedups of Fpc and CleanDroid with FlowDroid as the baseline.

5.2 RQ2: Speedups

Garbage-collecting path edges from %0Cℎ�364 (often implemented

with a hash map) can reduce its load factor, resulting in fewer re-

allocating and re-hashing operations during the analysis. Thus, both

Fpc and CleanDroid can improve the performance of FlowDroid.

In [1], CleanDroid is shown to outperform FlowDroid by up to

1.66× for a set of small Android apps. We show here that Fpc can

boost the performance of CleanDroid signi�cantly further.

As shown in Columns 4-5, Fpc can improve both the scalability

and e�ciency of CleanDroid. As discussed in Section 5.1, Fpc can

analyze all the 28 apps scalably but CleanDroid runs OoM for 3

apps. For the remaining 25 apps, the speedups of Fpc over Clean-

Droid range from 0.9× to 18.5×with an average of 1.7×. In general,

Fpc is more e�ective for large apps in the “> 3 mins” group, e.g.,

org.secuso.privacyfriendlyweather (18.5×), org.totschnig.

myexpenses (13.0×), org.fdroid.fdroid (7.1×), and nya.miku.

wishmaster (4.4×). For the “≤ 3 mins” group, Fpc is generally

faster than CleanDroid but the speedups are relatively smaller.

Due to space limitations, we have not included the experimental

results of FlowDroid, the standard IFDS-based taint analysis with-

out GC, in Table 1. However, we can summarize the performance

bene�ts achieved by comparing Fpc with CleanDroid using Flow-

Droid as the baseline. In the case of the last three apps listed in

Table 1, both CleanDroid and FlowDroid cannot complete the

analysis within the 3-hour time limit per app. On the other hand,

Fpc is able to analyze these three apps in 2629s, 5769s, and 8154s,

respectively. For the remaining 25 apps, as depicted in Figure 9, both

CleanDroid and Fpc can improve the performance of FlowDroid.

However, Fpc has proved to be signi�cantly more e�ective. On av-

erage, CleanDroid outperforms FlowDroid by 1.5×, with a maxi-

mum speedup of 2.4× observed for com.genonbeta.TrebleShot

and org.secuso.privacyfriendlyweather. In contrast, Fpc out-

performs FlowDroid by an average of 2.6×, achieving a maximum

speedup of 45.2× for org.secuso.privacyfriendlyweather.

We have investigated the reasons behind these performance

speedups. Figure 10 compares Fpc and CleanDroid by correlating

the reduction in |%0Cℎ�364 |max with that in analysis time. We can

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
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Figure 10: Comparing Fpc and CleanDroid by correlating

the reduction in |%0Cℎ�364 |max with that in analysis time.

clearly observe a highly positive correlation (with the correlation

coe�cient being 0.922) between
CleanDroid′B |%0Cℎ�364 |max

Fpc′B |%0Cℎ�364 |max
and

CleanDroid′B �=0;~B8B )8<4
Fpc′B �=0;~B8B )8<4

, meaning that a decrease in the former

often leads to a decrease in the latter. Thus, performing GC at the

data-fact level in Fpc instead of the method-level in CleanDroid

is the major factor for the speedups achieved (Observation 1).

Despite not being a major contributing factor to the performance

improvement of Fpc, we have included the avoidance of redundant

path-edge re-processing (Observation 2) in Fpc for three reasons:

First, it is theoretically signi�cant, ensuring that Fpc processes

the same set of path edges as the standard IFDS algorithm (The-

orem 3.5). Second, it simpli�es the complexity analysis of Fpc’s

overheads (Section 3.4). Finally, it has potential bene�ts for other

IFDS instantiations beyond taint analysis.

5.3 RQ3: Fpc under Varying GC Intervals

We have also investigated how the performance of Fpc over Cle-

anDroid varies under eight di�erent GC intervals, as shown in

Figure 11. For the average memory usage consumed per app, Fpc

has improved CleanDroid by an average of 1.40 × ±0.03, showing

that Fpc can reduce consistently the memory usage incurred by

CleanDroid by about 1.40× per app. For the average analysis time

per app, Fpc outperforms CleanDroid by 1.74 × ±0.02, again con-

sistently across these GC intervals. We can draw two conclusions

from Figure 11: (1) the overheads of Fpc (in both time and space) are
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Figure 11: Improvements of Fpc over CleanDroid in terms

of average memory usage and average analysis time per app

across the intervals (i.e., with CleanDroid as the baseline).

negligible relative to the performance improvements achieved, and

(2) the results obtained for RQ1 and RQ2 using the 1-second GC

interval inherited from CleanDroid’s default setting are reliable.

5.4 Threats to Validity

The performance speedups of Fpc over CleanDroid may vary

across di�erent IFDS-analyses subject also to the set of programs

being considered. We have mitigated this major source of threats

to validity by considering taint analysis as a signi�cant IFDS-based

analysis and evaluated Fpc against CleanDroid in FlowDroid [2]

under the same setting by using a set of 28 Android apps from [14,

25]. In addition, we have conducted a time-and-space complexity

analysis of our �ne-grained path-edge GC algorithm in Section 3.4

by justifying theoretically why Fpc can improve the performance

of the IFDS algorithm in general and of CleanDroid in particular

(due to more path-edges that can be collected at the data-fact level).

Our evaluation has also con�rmed the performance advantages

of Fpc over CleanDroid, particularly for large apps. To facilitate

further research in this direction, Fpc is open-sourced.

6 RELATED WORK

We review the prior work closely related to the IFDS algorithm and

the IFDS-based taint analysis for Android apps.

The IFDS algorithm was introduced initially by Reps et al. [36]

for solving the IFDS problems and generalized subsequently to the

IDE algorithm [37] for solving inter-procedural distributed envi-

ronment problems. Later, Naeem et al. [35] gave several extensions

to the IFDS algorithm, making it applicable to a wider class of

inter-procedural data-�ow problems. Recently, He et al. [14] have

proposed a sparse IFDS algorithm that propagates data-�ow facts

directly to their next use points across the CFG of a method. Fpc is

orthogonal to [14], implying that both can be combined together

to achieve better performance bene�ts than either alone.

Currently, there are several popular implementations of the IFDS

framework.Wala [9] contains a memory-e�cient bit-vector-based

implementation. There is a generic, multi-threaded implementation

of the IFDS/IDE solver [7] in Soot [41]. In [38], a C/C++ implemen-

tation of the IFDS/IDE solver in Llvm [23] is also reported.

CleanDroid [1], which is the most related to our work, is the

�rst to add a path-edge garbage collector to the IFDS algorithm.

However, its method-level GC approach is coarse-grained and can-

not avoid redundant path-edge re-processing. This paper proposes

a novel �ne-grained path-edge GC approach that can collect path-

edges at the data-fact level without redundant re-computations.

Taint analysis can be either dynamic or static. Dynamic taint

analysis [5, 10, 19–21, 29, 30, 39] tracks the �ow of sensitive data

during program execution. Static taint analysis, which represents

a signi�cant application of the IFDS algorithm, is widely used in

providing secure information �ow for Android apps. Many static

taint analysis tools have emerged in the past few years, including

Amandroid [43], DidFail [22], FlowDroid [2], IccTA [26], DroidSafe

[11], P/Taint [12], and EvoTaint [8], of which FlowDroid (an IFDS-

based framework) is the most popular. However, FlowDroid is

both compute- and memory-intensive. To boost its performance,

many techniques have been proposed, including sparse analysis

[14], heap snapshots-assisted [6] and disk-assisted optimization

[25, 42]. In [25], DiskDroid is proposed as a method to reduce

the memory footprint of IFDS by swapping path edges between

memory and disk. However, since DiskDroid is not open-sourced,

a direct comparison with Fpc is not feasible. Nevertheless, according

to the research paper, DiskDroid achieves only an 8.6% (1.086×)

average speedup over FlowDroid. This speedup is signi�cantly

smaller than Fpc’s performance improvement of 2.6× (as shown

in Figure 9). Therefore, it can be concluded that Fpc is notably

more e�ective than DiskDroid in enhancing the performance of

IFDS. Like CleanDroid [1], Fpc, proposed in this paper, represents

another technique focusing onmemory usage reduction. In addition,

some recent studies [27, 33], which investigate the precision and

soundness of taint analysis tools, are orthogonal to our work.

Finally, IFDS [36] has found application in Qilin, a Java pointer

analysis framework [17]. In Qilin, IFDS is employed in a pre-

analysis [16, 18] to identify context-independent objects for context

debloating in object-sensitive pointer analysis [31, 32].

7 CONCLUSION

We have introduced a new �ne-grained path-edge GC algorithm for

boosting the performance of the IFDS algorithm. Our approach can

garbage-collect path edges at the data-fact level while avoiding re-

processing GC’ed path-edges. To support IFDS-based taint analysis,

we show that Fpc (FlowDroid augmented with our data-fact-level

garbage collector) can improve substantially the scalability and

e�ciency of CleanDroid (FlowDroid augmented with a method-

level garbage collector) on a set of Android apps.
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