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Abstract—We introduce a new approach, CONCH, for de-
bloating contexts for all the object-sensitive pointer analysis
algorithms developed for object-oriented languages, where the
calling contexts of a method are distinguished by its receiver
objects. Our key insight is to approximate a recently proposed set
of two necessary conditions for an object to be context-sensitive,
i.e., context-dependent (whose precise verification is undecidable)
with a set of three linearly verifiable conditions (in terms of
the number of statements in the program) that are almost
always necessary for real-world object-oriented applications,
based on three key observations regarding context-dependability
for their objects used. To create a practical implementation,
we introduce a new IFDS-based algorithm for reasoning about
object reachability in a program. By debloating contexts for two
representative object-sensitive pointer analyses applied to a set of
12 representative Java programs, CONCH can speed up the two
baselines together substantially (3.1x on average with a maximum
of 15.9x) and analyze 7 more programs scalably, but at only a
negligible loss of precision (less than 0.1%).

Index Terms—Pointer Analysis, Object Sensitivity, Debloating

I. INTRODUCTION

Many software engineering tasks such as call graph con-

struction [1], [2], program slicing [3], [4], program under-

standing [5], and bug detection [6]–[10] often require precise

points-to/alias information. The quality of a pointer analysis

directly determines the effectiveness and usefulness of the

tools developed for accomplishing these tasks.

For object-oriented languages, object-sensitive pointer anal-

ysis, which distinguishes the (calling) contexts of a method

by its receiver objects, is regarded as providing highly

useful precision [11]–[15] and thus widely adopted in

several pointer analysis frameworks for Java, such as

SOOT [16], DOOP [17] and WALA [18]. Under k-object-

sensitivity [19], [20], denoted kOBJ, a context used for an-

alyzing a method m is represented by a sequence of k context

elements (under k limiting), [o1, ..., ok], where o1 is the

receiver object of m and oi is the receiver object of a method

in which oi−1 is allocated [11]. So oi is an allocator of oi−1.

Currently, kOBJ does not scale well for reasonably large

programs when k � 3 and is often time-consuming when it

is scalable [11]–[14]. As k increases, the number of contexts

analyzed for a method often blows up exponentially without

improving precision much. To alleviate this issue, several

recent research efforts [15], [21]–[24] focus on selective

context-sensitivity, which first conducts a pre-analysis to the

program and then instructs kOBJ to apply context-sensitivity

only to some of its methods selected. A number of attempts

have been made, including client-specific machine learning

techniques [21] (guided by improving the precision of a given

client, e.g., may-fail-casting) and general-purpose techniques,

such as user-supplied hints [23], [24], pattern matching [22],

and CFL (Context-Free Language) reachability [15], [25],

[26]. Despite some performance improvements obtained (at

no or a noticeable loss of precision), these existing selective

context-sensitive pointer analysis algorithms still suffer from

an unreasonable explosion of contexts.
We introduce a new approach, CONCH, for debloating

contexts for all object-sensitive pointer analysis algorithms,

including kOBJ and its various incarnations for performing se-

lective context-sensitivity, by boosting their performance sig-

nificantly with negligible loss in precision. In object-oriented

programs, we observe that a large number of objects that are

allocated in a method are used independently of its calling

contexts. Distinguishing these objects context-sensitively, as

often done in the past, will serve to increase only the number

of calling contexts analyzed for the methods invoked on these

objects (as receivers) without any precision improvement.
Our key insight is to approximate a recently proposed set of

two necessary conditions for an object to be context-sensitive,

i.e., context-dependent [15], [25] (whose precise verification

is undecidable [27]) with a set of three linearly verifiable nec-

essary conditions (in terms of the number of statements in the

program), based on three key observations regarding context-

dependability for the objects used practically in real-world

object-oriented programs. To create a practical implementation

for CONCH, we have developed a new lightweight IFDS-based

algorithm [28] for verifying these conditions (governing object

reachability). By allowing only context-dependent objects to

be handled context-sensitively, CONCH can significantly limit

the explosive growth of the number of contexts and achieve

substantially improved efficiency and scalability.
We have implemented CONCH on top of the SOOT frame-

work [16] and evaluated it with 12 popular Java benchmarks

and applications. Compared with kOBJ [20] and ZIPPER [22]

(a representative of selective context-sensitive pointer analyses

[15], [22], [24]), CONCH can speed up the two baselines

together substantially (3.1x on average with a maximum of

15.9x) and analyze 7 more programs scalably, but at no loss

of precision for 10 programs and only a negligible loss of

precision (less than 0.1%) for the remaining two.
In summary, this paper makes the following contributions:

• We present context debloating, a new approach for accel-

erating all object-sensitive pointer analysis algorithms.

• We give a set of three mostly necesssary conditions

for determining an object’s context-dependability and

propose a new lightweight IFDS-based algorithm for ver-

ifying them on the PAG representation [1] of a program.

• We have implemented CONCH in the SOOT framework

and will release it soon as an open-source tool.
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1 void main ( ) {
2 B b1 = new B ( ) ; // B1
3 b1.foo ( ) ;
4 B b2 = new B ( ) ; // B2
5 b2.bar ( ) ;
6 }
7 class A {
8 Object f ;
9 void setF ( Object o ) { this.f = o ; }

10 Object getF ( ) { return this.f ; }
11 }
12 class B {
13 A g ;
14 B ( ) {

15 this.g = new A ( ) ; // A
16 }
17 void foo ( ) {
18 Object o1 = new Object ( ) ; // O1
19 A a1 = this.g ;
20 a1.setF ( o1 ) ;
21 Object v1 = a1.getF ( ) ;
22 }
23 void bar ( ) {
24 Object o2 = new Object ( ) ; // O2
25 A a2 = this.g ;
26 a2.setF ( o2 ) ;
27 Object v2 = a2.getF ( ) ;
28 }}

Fig. 1: An example for illustrating object sensitivity.
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Fig. 2: Computing the points-to information for v1 and v2 in

Figure 1 by applying Andersen’s analysis and 2OBJ.

• We have extensively evaluated the effectiveness of

CONCH (using several popular metrics) and demonstrated

its practical significance for real-world programs.

The rest of this paper is organized as follows. Section II

motivates our approach. Section III gives a version of kOBJ

that supports context debloating. Section IV presents our

CONCH approach. In Section V, we evaluate the effectiveness

of CONCH in terms of context debloating. Section VI discusses

the related work. Finally, Section VII concludes the paper.

II. MOTIVATION

We first review object sensitivity as a context abstraction

(Section II-A). We then examine the limitations of existing

object-sensitive pointer analysis algorithms (Section II-B). Fi-

nally, we motivate context debloating, by describing the basic

idea behind this new approach, examining the main challenges

faced in realizing it efficiently and effectively, and discussing

our solution for addressing these challenges (Section II-C).

A. Object Sensitivity

We briefly review object-sensitive pointer analysis with

an example given in Figure 1. In lines 7-11, we define

class A, which has a field f and its corresponding set-

ter and getter methods. In lines 12-28, we define class B,

which has a field g, a constructor, and two regular methods

(foo() and bar()). In foo() (bar()) of class B, an instance of

java.lang.Object, O1 (O2) is created. Later, O1 (O2)

is firstly stored into A.f and then loaded into v1 (v2) via

the setF() and getF() methods, respectively. In main(),

two instances of B, B1 and B2, are created and used as the

receivers for invoking foo() and bar(), respectively.

In a context-insensitive Andersen’s analysis [1], [29], every

method is analyzed only once under an empty context, [ ]. Let

pts(v) denote the points-to set of a variable v thus computed.

As illustrated in Figure 2(a), O1 and O2 are merged at o (line

9) and will later flow spuriously to v2 and v1, respectively.

Hence, we have pts(v1) = pts(v2) = {O1,O2}.

In a k-object-sensitive pointer analysis (kOBJ), denoted

A, the calling contexts of a method are distinguished by

its receiver objects, with each being abstracted by its k-

most-recent allocation sites [19], [20]. We write ptsA(v, c)
to represent the points-to set of a variable v thus computed

under a context c. In the case of 2OBJ (i.e., kOBJ with k = 2),

setF() (getF()) will be analyzed differently for its two

invocations in lines 20 and 26 (lines 21 and 27) under two

different contexts, [A,B1] and [A,B2]. As a result, O1 (created

under context [B1]) and O2 (created under context [B2]) will

flow along two separate paths to v1 and v2, respectively

(Figure 2(b)). Hence, pts2OBJ(v1, [B1]) = {(O1, [B1])} and

pts2OBJ(v2, [B2]) = {(O2, [B2])}, without the spurious points-

to information generated by Andersen’s analysis.

In general, when a method m is analyzed under a context

[o1, ..., ok], o1 is a receiver object of m, and oi is a receiver

object of a method where oi−1 is allocated, and thus known as

the allocator (object) of oi−1, where 1 < i � k. Thus, any ob-

ject o0 that is allocated in m is identified as (o0, [o1, ..., ok−1]),
where [o1, ..., ok−1] is known as the heap context of o0.

B. Limitations of Existing Algorithms

We now use an example in Figure 3, which reuses class

B from Figure 1, to reveal the limitations of kOBJ [19], [20]

and existing approaches for selective context-sensitivity [15],

[21]–[24] in analyzing real-world programs.

In lines 29-51, we define class C with a total of 2n+1

methods. In lines 30-38, where 0 � j < 2i−1 (2i−1 � j < 2i),
a method, fooi,j() (bari,j()), is defined, in which an object,

Ci,j , is created and used as the receiver to invoke fooi−1, j2
()

(bari−1, j2
()). In lines 39-51, we define foo0,0() (bar0,0()),

where an instance of B (defined in Figure 1), B3 (B4), is

created and used to invoke foo() (bar()). In main()
(lines 53-65), 2n instances of C, denoted as Cn,j , where

0 � j < 2n, are created and used as the receivers to call

foon−1, j2
() when j < 2n−1 and barn−1, j2

() when j ≥ 2n−1.

Figure 4 depicts the OAG (Object Allocation Graph) [30],

where an edge O → O′ signifies that O is an alloca-

tor of O′. For kOBJ [11], [20], the contexts of a method

can be directly read off from this graph by starting from

its receiver object and then retrieving the next k − 1 ob-

jects backwards. For example, the contexts of foo() and

bar() are {[B3,C1, j

2k−2
, · · · ,Ck−2, j2

,Ck−1,j ] | 0 � j <

2k−2} and {[B4,C1, j

2k−2
, · · · ,Ck−2, j2

,Ck−1,j ] | 2k−2 �
j < 2k−1}, respectively. Let Cj(X) = [A, X,C1, j

2k−3
, · · · ,

Ck−3, j2
,Ck−2,j ]. Both setF() and getF() share the contexts

in {Cj(B3) | 0 � j < 2k−3} ∪ {Cj(B4) | 2k−3 � j < 2k−2}.

In practice, the number of contexts for analyzing a method

can be exponential. For example, there are a total of 2k−2 con-

texts for foo(), bar(), setF() and getF(). As k increases,

such a method becomes exponentially expensive to analyze,

consuming more and more memory and analysis time.
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29 class C {
30 void fooi,j ( ) {// j < 2i−1

31 C ci,j = new C ( ) ; // Ci,j
32 ci,j . foo

i−1,
j
2

( ) ;

33 }
34 D bari,j (D d ) {// 2i−1 ≤ j
35 C ci,j = new C ( ) ; // Ci,j
36 ci,j . bar

i−1,
j
2

( d ) ;

37 return d ;
38 }
39 void foo0,0 ( ) {
40 B b3 = new B ( ) ; // B3
41 b3 . foo ( ) ;
42 }
43 D bar0,0 (D d ) {
44 B b4 = new B ( ) ; // B4

49 b4 . bar ( ) ;
50 return d ;
51 }}
52 class D {}
53 void main ( ) {
54 D d = new D; // D
55 C c = new C ( ) ; // Cn,0
56 c . foon−1,0 ( ) ;
57 . . .
58 C c = new C ( ) ; // Cn,2n−1−1
59 c . foon−1,2n−2−1 ( ) ;

60 C c = new C ( ) ; // Cn,2n−1

61 c . barn−1,2n−2 ( d ) ;

62 . . .
63 C c = new C ( ) ; // Cn,2n−1
64 c . barn−1,2n−1−1 ( d ) ;

65 }

Fig. 3: An example for motivating CONCH (1 � i � n and

0 � j < 2i), reusing class B defined in lines 12-28 in Figure 1.

Cn,0 . . . . . . . . . . . . . . . . Cn,2n−1

. . .

...

Ci,0 . . .
. .
.

. . .

Ci,j

...

. . . Ci,2i−1

. .
.

C1,1C1,0

B3 B4

O1 A DO2

Fig. 4: The object allocation graph (OAG) for Figure 3, where

only the two edges in red will remain after context debloating.

Existing approaches for selective context-sensitivity [15],

[21]–[24] can improve the efficiency and scalability of kOBJ.

For example, ZIPPER [22], which does not preserve the preci-

sion of kOBJ, will select main(), B(), foo(), bar(), and

fooi,j() (where j < ri

2 ) to be analyzed context-insensitively.

However, the context explosion problem still remains for

bari,j(), setF() and getF(). EAGLE [15], [25], which

preserves the precision of kOBJ, is worse as it will also analyze

B(), foo() and bar() partially context-sensitively.

C. CONCH: Our Context Debloating Approach

1) Basic Idea: We offer a new approach to mitigating

the context explosion problem. Our approach, named CONCH

(CONtext-dependability CHecking), aims to debloat contexts

during the pointer analysis and thus complements the prior

work on selective context-sensitivity. CONCH can be plugged

into all object-sensitive analysis algorithms, including kOBJ

and its various incarnations for supporting selective context-

sensitivity [15], [21]–[24], to boost their performance signif-

icantly with negligible loss in precision. For our motivating

example, only A is context-dependent. Handling any of the

other objects context-sensitively will cost an exponential in-

crease in analysis time without any precision benefit.

To illustrate context debloating using the OAG in Figure 4,

we will remove all the allocators of a context-independent

object so that the exponential growth of contexts for the object

is avoided completely. Under CONCH, only the two edges in

red will remain, as A is the only context-dependent object

in the example. This implies that only setF() and getF()

will be analyzed context-sensitively under [A, B3] and

[A, B4]. All the other methods will be analyzed context-

insensitively. For this example, debloating contexts can help

kOBJ and its variants reduce their analysis times and memory

consumption significantly without losing any precision.

Let A be any existing object-sensitive analysis for Java. In

practice, A is usually used for analyzing a program according

to client’s needs under different settings (depending on, for

example, how complex Java features such as exceptions,

reflection, and native code are handled and whether or not

certain objects are pre-configured to be context-insensitive

empirically). Apparently, A will exhibit different analysis

times under different settings, a problem that we do not address

in this paper. However, for a fixed setting given, CONCH can

accelerate A at no or little loss of precision by debloating

its contexts. Let A1 and A2 be two different object-sensitive

analyses used for analyzing a program under two different

settings S1 and S2. It is possible that A1 is faster than A2

under S1 but the opposite is true under S2, which is again a

problem that we do not investigate here. However, for a fixed

setting given, CONCH can accelerate both analyses at no or

little loss of precision by debloating their contexts.

2) Challenges: To debloat contexts, we must find context-

dependent objects. Recently, the following two necessary

conditions are given for determining the context-dependability

of an object O allocated in a method m based on CFL reach-

ability, requiring us to check the existence of a write into and

a read from an access path O.f1. · · · .fn context-sensitively

(where the two accesses often happen outside m) [15], [25]:

• A
(c−→ O.f1. · · · .fn: there exists an object A that flows

into m from outside and ends up being stored later into

O.f1. · · · .fn under a calling context c of m, and

• O.f1. · · · .fn )c−→ v: there exists a load of O.f1. · · · .fn
flowing into a variable v outside m under also c.

where context matching is formulated by solving the standard

balanced parentheses problem [28]. If these two conditions

hold, O must be context-dependent. Otherwise, different ob-

jects A flowing into O.f1. · · · .fn under different calling

contexts of m will be conflated, causing them to flow into

different variables v spuriously. In object-sensitive pointer

analysis, the parameters and return variable of a method are

also conceptually regarded as special fields of its receiver

objects [15], [25]. Thus, in the access path above, a field fi
can be either a real Java field or one of such special fields.

Unfortunately, verifying these two conditions precisely is

undecidable [31], as it requires us to solve kOBJ fully context-

sensitively (with k = ∞). In addition, weakening these two

conditions [15], [25] will over-approximate unduly the number

of context-dependent objects found but approximating them

heuristically [21]–[24] may cut it down significantly but at

the expense of some significant precision loss.

3) Our Solution: To identify context-dependent objects

efficiently and effectively, our key insight is to approximate

the two aforementioned necessary conditions with the three

conditions that are linearly verifiable (in terms of the number
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of statements) and mostly necessary for real code, based on

three key observations governing how objects are used.

Like the prior work on selective context-sensitivity [21]–

[24], CONCH also relies on the points-to information, pts,

pre-computed by Andersen’s analysis.

Observation 1. A context-dependent object O often has at
least one instance field O.f that is both written into (x.f =
· · · ) and read from (· · · = x.f ), where O ∈ pts(x).

1 void main ( ) {
2 A a = new A ( ) ; // A
3 Object o = new Object ( ) ; // O
4 Object v = a . wrapId ( o ) ;
5 }
6 class B {
7 Object id ( Object q ) {

8 return q ;
9 }}

10 class A {
11 Object wrapId ( Object p ) {
12 B b = new B ( ) ; // B
13 return b . id ( p ) ;
14 }}

Fig. 5: A context-dependent object B violating Obs 1.

There can be rare cases, as illustrated in Figure 5, where

Obs 1 may not be valid for some context-dependent objects,

such as B. Under object-sensitivity [15], [25], O pointed to by

p is first written into B.q and then returned and stored into

v. As discussed in Section II-C2, q is considered as a special

field of B. Such cases are rare in real-world object-oriented

programs, as CONCH loses little precision (Section V).

Observation 2. A context-dependent object O, pointed to by
a variable or a field of some object according to pts, usually
flows out of its containing method (for allocating O).

1 Vector ( int s i z e ) {
2 this . e lems = new Object [ s i z e ] ;
3 }

(a) Case 1 from Vector

1 I t e r a t o r i t e r a t o r ( ) {
2 return new K e y I t e r a t o r ( ) ;
3 }

(b) Case 2 from HashMap

1 void SunJCE e a ( . . . ) {
2 B u f f e r e d R e a d e r b r = new B u f f e r e d R e a d e r ( ) ;
3 this . f = new S t r e a m T o k e n i z e r ( b r ) ;
4 }

(c) Case 3 from SunJCE_e

Fig. 6: Three common cases abstracted from JDK for Obs 2.

Figure 6 gives three representative cases abstracted from

the JDK where Obs 2 holds. In Figure 6(a), the array object

created flows out of the constructor via a store. In Figure 6(b),

the KeyIterator object created flows out of iterator()
directly via a return. In Figure 6(c), we have a slightly

more complicated case. The BufferedReader object cre-

ated flows out of its containing method as it is stored into

the input field of the StreamTokenizer object, which

flows out of the containing method via a store. The objects

that cannot flow out of their containing methods are usually

context-independent as they are often created and used locally.

Observation 3. A context-dependent object O tends to have
a store statement x.f = y in a method m′, where O ∈ pts(x).
Let m be the method where O is allocated if m′ is a
constructor (i.e., the constructor for creating O) and m′

otherwise. Then y (a) is data-dependent on a parameter of
m or (b) points to a context-dependent object.

1 A r r a y L i s t ( ) {
2 this . e lems = new Object [ 5 ] ;
3 }
4 void s e t ( int idx , E e ) {
5 this . e lems [ i d x ] = e ;
6 }

(a) Case 1 from ArrayList

1 void a d d E n t r y ( int idx , K k , V v ) {
2 this . t a b l e [ i d x ] = new E n t r y ( k , v ) ;
3 }
4 E n t r y (K k , V v ) {
5 this . key = k ; this . v a l u e = v ;
6 }

(b) Case 2 from HashMap.

1 HashSet ( ) {
2 this . map = new HashMap ( ) ;
3 }

4 HashMap ( . . . ) {
5 this . t a b l e = new E n t r y [ 1 0 ] ;
6 }

(c) Case 3 from HashSet and HashMap.

Fig. 7: Three common cases abstracted from JDK for Obs 3.

Figure 7 gives three representative cases abstracted from the

JDK where Obs 3 holds. In Figure 7(a), O is the Object[]
object allocated in line 2 and x.f = y is this.elems[idx]
= e, which is modeled as this.elems.arr = e, where

arr is a special field introduced to represent all the ele-

ments of an array (Section III). In this case, m = m′ =
set(). Here, e satisfies Obs 3(a) trivially. In Figure 7(b),

O is the Entry object allocated in line 2, x.f = y is

this.key = k/this.value = v, m′ = Entry(), and

m = addEntry(). Here, k/v (in line 5) also satisfies

Obs 3(a) trivially. In Figure 7(c), O is the HashMap ob-

ject allocated in line 2, x.f = y is this.table = new
Entry[10], m′ = HashMap(), and m = HashSet().

As new Entry[10] is context-dependent by Obs 2 (as

well as Obs 1 and Obs 3 if the entire code is considered),

the HashMap object in line 2 is also context-dependent by

Obs 3(b). In Obs 3(b), the circular dependences on context-

dependability are solved optimistically in Algorithm 1.
4) Motivating Example: For this example given in Figure 3

(with class B from Figure 1), CONCH will identify A as the

only context-dependent object. Let us examine Figure 1, where

A is created in line 15. A is context-dependent as it satisfies all

the three observations: (1) A has an instance field f, which has

a write and a read in lines 9 and 10, respectively (Obs 1), (2) A
can flow out of B() via the store statement in line 15 (Obs 2),

and (3) o is stored into A.f in line 9, where o happens to be

a parameter of setF() (Obs 3). Let us now consider B3 and

B4 created in Figure 3. Both are context-independent as both

satisfy Obs 1 (with an instance field g of B3/B4 stored in B()
and loaded in foo()/bar() in Figure 1) and Obs 3 (due

to the existence of this.g = new A()// A in line 15,

where A is context-dependent) but not Obs 2 (as B3/B4 does

not flow out of its containing method foo0,0()/bar0,0()).

Finally, all the other objects are context-independent as they

do not contain instance fields and are used only locally, failing

to satisfy any of the three observations stated.
5) Discussion: CONCH relies on Obs 1– Obs 3 to generate

three corresponding linearly verifiable conditions for determin-

ing the context-dependability of an object. In Section IV, we

introduce a lightweight IFDS-based algorithm for verifying

these conditions efficiently. In Section V, we demonstrate

CONCH is highly effective for real-world programs.

III. kOBJ WITH CONTEXT DEBLOATING

We formalize context debloating here. We first review the

classic algorithm for kOBJ (Section III-A) and then adapt it
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to support context debloating (Section III-B). CONCH can be

used similarly for debloating contexts for any variant of kOBJ.

A. kOBJ

We describe kOBJ [11], [19], [20], [32] by considering a

simplified subset of Java, with five types of labeled statements

in Table I. Note that “x = new T (...)” is modeled as “x = new
T ; x.〈init〉(...)”, where 〈init〉(...) is the corresponding

constructor invoked. The control flow statements are irrelevant

since kOBJ is context-sensitive but flow-insensitive. Loads and

stores to the elements of an array are modeled by collapsing

all the elements into a special field arr of the array. Every

method is assumed to have one return statement “return ret”,

where ret is known as its return variable. Section V discusses

how to handle static method calls and other complex language

features such as exceptions, reflection, and native code.

Kind Statement Kind Statement
NEW l : x = new T ASSIGN l : x = y

STORE l : x.f = y LOAD l : x = y.f
CALL l : x = a0.f(a1, ..., ar)

TABLE I: Five types of statements analyzed by kOBJ.

kOBJ makes use of the following domains: V, H, M,

F, and L, which represent sets of program variables, heap

objects (identified by their labels), methods, field names, and

statements (identified also by their labels), respectively.

We use C = H∗ as the universe of contexts. Given a context

ctx = [e1, · · · , en] ∈ C and a context element e ∈ H, we write

e++ ctx for [e, e1, · · · , en] and 	ctx
k for [e1, · · · , ek].
The following auxiliary functions are also used:

• methodOf : L → M
• methodCtx : M → ℘(C)
• dispatch : M×H → M
• pts : (V ∪H× F)× C → ℘(H× C)

where methodOf gives the containing method of a state-

ment, methodCtx maintains the contexts used for analyzing

a method, dispatch resolves a virtual call to a target method,

and pts records the points-to information found context-

sensitively for a variable or an object’s field.

Figure 8 gives the five rules used by kOBJ for analyzing

the five kinds of statements in table I. In [NEW], Ol ∈ H is

an abstract heap object created from the allocation site at l,
identified by its heap context hctx. Rules [ASSIGN], [STORE]

and [LOAD] are handled in the standard manner. In [CALL],

a call to an instance method x = a0.f(a1, ..., ar) is analyzed.

In this paper, we write thism
′
, pm

′
i and retm

′
for the “this”

variable, i-th parameter and return variable of m′, respectively,

where m′ is a target method resolved. Frequently, we also

write pm
′

0 for thism
′
. In the conclusion of this rule, ctx′ ∈

methodCtx(m′) reveals how the contexts of a method are

maintained. Initially, methodCtx(“main”) = {[ ]}.

B. Context Debloating

To debloat contexts, we assume that D represents the set

of context-independent objects found by CONCH. Thus, the

l : x = new T m = methodOf(l)
ctx ∈ methodCtx(m) hctx = 	ctx
k−1

(Ol, hctx) ∈ pts(x, ctx)
[NEW]

l : x = y m = methodOf(l) ctx ∈ methodCtx(m)

pts(y, ctx) ⊆ pts(x, ctx)
[ASSIGN]

l : x.f = y m = methodOf(l)
ctx ∈ methodCtx(m) (O, hctx) ∈ pts(x, ctx)

pts(y, ctx) ⊆ pts(O.f, hctx)
[STORE]

l : x = y.f m = methodOf(l)
ctx ∈ methodCtx(m) (O, hctx) ∈ pts(y, ctx)

pts(O.f, hctx) ⊆ pts(x, ctx)
[LOAD]

l : x = a0.f(a1, ..., ar) m = methodOf(l)
ctx ∈ methodCtx(m) (O, hctx) ∈ pts(a0, ctx)

m′ = dispatch(f,O) ctx′ = O ++ hctx

ctx′ ∈ methodCtx(m′) (O, hctx) ∈ pts(thism
′
, ctx′)

∀i ∈ [1, r] : pts(ai, ctx) ⊆ pts(pm
′

i , ctx′) pts(retm
′
, ctx′) ⊆ pts(x, ctx)

[CALL]

Fig. 8: Rules for kOBJ.

l : x = new T m = methodOf(l) ctx ∈ methodCtx(m)

hctx =

{
[ ] if Ol ∈ D
	ctx
k−1 if Ol ∈ H \ D

(Ol, hctx) ∈ pts(x, ctx)
[NEW+D]

Fig. 9: Adapting [NEW] to support context debloating.

objects in H \ D are context-dependent. To modify kOBJ

to support context debloating, we simply replace [NEW] by

[NEW+D] given in Figure 9. For a context-dependent object,

we proceed identically as before. For a context-independent

object, we no longer distinguish it under its different alloca-

tors, by setting its heap context as hctx = [ ], eliminating the

context explosion problem that would otherwise have occurred

when it is used as a receiver object of an invoked method.

CONCH is conceptually simple, algorithmically easy to plug

into any existing object-sensitive pointer analysis, and practi-

cally effective as validated during our extensive evaluation.

IV. CONCH: OUR CONTEXT DEBLOATING APPROACH

We introduce an IFDS-based algorithm [28] for verifying

efficiently the three mostly necessary conditions stated in

Obs 1 – Obs 3 to find the context-dependent objects in

a program. As these conditions are not sufficient, we may

mis-classify context-independent objects as being context-

dependent (but err on the side of preserving precision). As

these conditions are mostly but not strictly necessary (Fig-

ure 5), we may occasionally mis-classify context-dependent

objects as being context-independent (at a small loss of

precision). We use the points-to information pts pre-computed

by Andersen’s analysis [29] (which is the context-insensitive

version of Figure 8). We first give a high-level overview of

Algorithm 1 and then discuss how to verify these conditions.

CONCH takes a program P as input and returns D as the

set of context-independent objects in P for context-debloating.

Some additional notations are in order. For a given object O,

fieldsOf(O) denotes the set of the fields of O. In addition,

hasLoad(O, f) (hasStore(O, f)) holds if P contains a load

· · · = x.f (store x.f = · · · ) such that O ∈ pts(x). CI and

CD, which are initialized to be ∅ (line 1), represent the sets
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Algorithm 1: CONCH: context debloating.

Input: P // Input program
Output: D. // Set of Context-Indep Objects

1 CI← CD← ∅
2 for Ol ∈ H do
3 if � f ∈ fieldsOf(Ol) s.t hasLoad(Ol, f)∧hasStore(Ol, f) then
4 CI = CI ∪ {Ol} // Obs 1
5 else if Ol /∈ leakObjects then
6 CI = CI ∪ {Ol} // Obs 2

7 else
8 R(Ol) = {l′ : x.f = y in P | Ol ∈ pts(x)}
9 for l′ : x.f = y ∈ R(Ol) do

10 if methodOf(l′) is a constructor of Ol then
11 m = methodOf(l)
12 else
13 m = methodOf(l′)
14 if depOnParam(y,m) then
15 CD = CD ∪ {Ol} // Obs 3(a)
16 break

17 UK← H \ (CI ∪ CD), changed ← true
18 while changed do
19 changed ← false
20 for Ol ∈ UK do
21 if ∃ l′ : x.f = y ∈ R(Ol) s.t. pts(Ol.f) ∩ CD 	= ∅ then
22 CD = CD ∪ {Ol} // Obs 3(b)
23 changed ← true

24 D = CI ∪ (UK \ CD);
25 return D

of context-independent and context-dependent objects found

so far, respectively. There are two stages, with the first stage

(lines 2-16) for verifying Obs 1, Obs 2 and Obs 3(a) and the

second stage (lines 17-23) for verifying Obs 3(b).

A. Verifying Observation 1

In lines 3-4, an object Ol is classified as being context-

independent (and inserted into CI) if it does not satisfy Obs 1.

Otherwise, we will proceed to verify Obs 2 and Obs 3.

B. Verifying Observation 2

In lines 5-6, an object Ol is classified as being context-

independent (and inserted into CI) if it does not satisfy Obs 2,

i.e., Ol /∈ leakObjects, where leakObjects contains the set

of objects that can flow out of their containing methods by

Obs 2. Otherwise, we will proceed to verify Obs 3.

We introduce an IFDS-based algorithm given in Figure 14

for computing leakObjects in P context-sensitively, based on

the DFA (Deterministic Finite Automaton) given in Figure 13.

Computing leakObjects entails reasoning about object reach-

ability in P . Let us describe it incrementally.

Initially, we start with a parameterless method containing

no calls. Its PAG (Pointer Assignment Graph) [1] can be built

by the rules in Figure 10. Our analysis is field-insensitive, as

reflected by [P-LOAD] and [P-STORE]. Figure 12(a) gives a

DFA for tracing approximately how an object O allocated in a

method flows over the PAG. There are four states: H (starting

at a heap object), F (moving forwards in the PAG), B (moving

backwards in the PAG), and E (exiting from the allocating

method). Due to the absence of parameters and returns, no

l : x = new T

Ol
new−−→ x x

new−−→ Ol

[P-NEW]
x = y

y
assign−−−→ x x

assign−−−→ y

[P-ASSIGN]

x = y.f

y
load−−→ x x

load−−→ y
[P-LOAD]

x.f = y

y
store−−−→ x

[P-STORE]

Fig. 10: PAG edges for a parameterless method with no calls.

p is a parameter

p
param−−−→ p

[P-PARAM]
ret is a return variable

ret
return−−−→ ret

[P-RETURN]

Fig. 11: PAG edges for parameters and return variables.

Hstart

F

B

E

new

assign

store

assign | load

new

(a) No calls/parameters/returns

Hstart

F

B

E

new

assign

store

return

assign | load

paramnew

(b) No calls

Fig. 12: Two intermediate DFAs for the DFA in Figure 13.

Hstart

F

B

E

new

assign

store

interAssign

return

interStore

assign | load

param

interLoad

new

Fig. 13: The DFA for verifying Obs 2.

object can flow out of a method, once it is allocated inside,

as indicated by the lack of transitions into the final state E.

Let us explain the object reachability analysis supported

by this DFA (Figure 13(a)). If the DFA starts with an object

O under state H and transits to a node x under state F
by following a sequence of PAG edges, then either O flows

directly to x (via a new edge and possibly some assign edges)

or O first flows into an access path O′.f1. · · · .fn = O, where

O′, which is a locally allocated object, flows to x. If the DFA

starts with an object O under state H and transits to a node y
under state B, then either O is stored directly into an access

path of y, i.e., y.f1. · · · .fn = O, or O is firstly stored into an

access path of some locally allocated object O′ and then O′

is stored into an access path of y, i.e., y.f1. · · · .fn = O′. In

this DFA, the load edges in the PAG are ignored as we track

where O rather than its pointed-to objects flow to (but are

used by the DFA in Figure 15 for computing depOnParam).

In addition, the DFA also ignores the store edges in the

PAG, as we assume that a method rarely contains a store

and a load operating on the same field of an object (which
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is often accessed via its getter and setter). In the rare

cases where this fails to hold, CONCH may classify a context-

dependent object as being context-independent, causing the

underlying pointer analysis to lose some precision.

To support parameters and return variables, we add their

self-loop edges using the rules in Figure 11 and transform the

DFA in Figure 12(a) into the one in Figure 12(b). Once an

object allocated in a method flows to a parameter (suggested

by param) or the return variable (suggested by return) under

state E, it has leaked.

The final DFA is presented in Figure 13, where the three

dotted transitions are added for handling call statements. While

each method has its own PAG, some summary edges are added

to its PAG for its call sites to capture the inter-procedural

value-flows across these call sites context-sensitively, along

the three dotted transitions. The call graph is built using pts.

Given a call statement l : x = a0.f(a1, ..., ar) contained in

method m, let m′ be a resolved target method (with pm
′

i being

its i-th parameter and retm
′

being its return variable). Let n1

and n2 be two PAG nodes. We write 〈n1, S1〉 → 〈n2, S2〉
(known as a path edge in [28]) to indicate that node n1 at

state S1 can reach node n2 at state S2. Let us write Gm as

the PAG of m. There are four cases considered when m′ is

analyzed:

• 〈pm′i , F 〉 → 〈pm′j , E〉: pm
′

i is saved into some access

path of pm
′

j , i.e., pm
′

j .f1. · · · .fn = pm
′

i . Thus, we add

a summary edge, ai
interStore−−−−−→ aj (i.e., aj .f = ai), to Gm

to propagate this reachability fact inter-procedurally.

• 〈pm′i , F 〉 → 〈retm′ , E〉: pm
′

i is saved into some ac-

cess path of a locally allocated object O in m′, i.e.,

O.f1. · · · .fn = pm
′

i , and then O flows out of m′ via its

return. Thus, we add a summary edge, ai
interAssign−−−−−−→ x,

to Gm to reflect this reachability fact inter-procedurally.

• 〈retm′ , B〉 → 〈pm′i , E〉: retm
′

is loaded from some

access path of pm
′

i , i.e., retm
′
= pm

′
i .f1. · · · .fn. Thus,

we add a summary edge, x
interLoad−−−−−→ ai (i.e., x = ai.f ), to

Gm to propagate this reachability fact inter-procedurally.

• 〈O,H〉 → 〈retm′ , E〉: O, which is allocated in m′, flows

out of m′ via its return. We introduce a symbolic object

Syml to abstract all the possible objects returned from

the call site l and continue our analysis in m.

Figure 14 gives our IFDS-based algorithm [28] for com-

puting leakObjects, operating on a PAG instead of a CFG

representation of a program. The rules in [SEEDS] inject

three kinds of path edges, where the first one is for tracing

leak objects while the other two are for finding summary

edges (which are not injected on-demand in order to improve

parallelism in a parallel implementation of our algorithm).

The rules in [PROPAGATE] perform the reachability analysis

according to the DFA in Figure 13. Note that the three dotted

transitions in the DFA are implicitly handled by the summary

edges generated in [SUMMARY]. Finally, we collect the objects

that can reach the final state, E, by using [COLLECT].

C. Verifying Observation 3

In lines 8-16, we verify if an object Ol satisfies Obs 3(a).

In the case of a positive answer, Ol is considered immediately

as being context-dependent (and thus inserted into CD), since

Ol has already satisfied both Obs 1 and Obs 2 at this point.

Otherwise, we proceed to verify Obs 3(b) in lines 17-23.

The key to verifying Obs 3(a) lies in depOnParam(y,m),
which returns true if y is data-dependent on any parameter of

method m. We have also designed and implemented an IFDS-

based algorithm for computing depOnParam, in a similar

manner as how we have computed leakObjects in Figure 14,

by making use of a simpler DFA given in Figure 15.

This DFA has only two states, F and E, recognizing only

four types of PAG edges, where interAssign is a summary

edge introduced for supporting call statements. Given a call

statement l : x = a0.f(a1, · · · , ar) in method m. Let m′

be a target method invoked. When 〈pm′i , F 〉 → 〈retm′ , E〉
happens, retm

′
is recognized to be data-dependent on pm

′
i

(i.e., retm
′
= pm

′
i .f1. · · · .fn). Thus, we add a summary edge,

ai
interAssign−−−−−−→ x, to the PAG of m to propagate this reachability

fact inter-procedurally from the callee m′ to the caller m.

Our algorithm for computing depOnParam, which pro-

ceeds forwards from method parameters, is a simplified ver-

sion of the one in Figure 14. For [SEEDS], only the pa-

rameters need to be injected. The rules for [PROPAGATE],

are similar. For [SUMMARY], we use the summary edges

added as discussed above. Finally, let dps(v,mv) = {pmv
i |

〈pmv
i , F 〉 → 〈y, F 〉}, where v is a variable defined in its

containing method mv and pmv
i is some (i-th) parameter of

mv . Then depOnParam(y,m) can be defined recursively as

(by taking care of chained constructors, in practice):

depOnParam(y,m) =

⎧⎪⎨
⎪⎩

dps(y,my) 	= ∅ if m = my∨
p
my
i ∈dps(y,my)

depOnParam(ai,m) otherwise

(1)

where ai is the corresponding argument of p
my

i .

Finally, Obs 3(b) can be verified straightforwardly. At this

point, CI and CD contain the sets of context-independent and

context-dependent objects found so far. Let O be an object

in H \ (CI ∪ CD). O is regarded as being context-dependent

if it can point to any context-dependent object (found so far)

transitively and context-independent otherwise.

D. Soundness and Time Complexity

CONCH is sound as it may mis-classify some context-

dependent objects as being context-independent and thus cause

the underlying pointer analysis to produce over-approximated

points-to information, resulting in some loss of precision.

The worst-case time complexity of CONCH in analyzing

a program P is linear to the number of its statements, for

three reasons. First, leakObjects can be computed according

to Figure 14 in O(ED3) [28], where E is the number of PAG

edges in P , which are constructed linearly to the number of

statements in P according to Figures 10 and 11, and D = 4
is the number of states of the DFA in Figure 13. Second,

the first stage of Algorithm 1 (lines 2-16) runs in O(|L|),
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〈Ol, H〉 → 〈Ol, H〉 〈pmi , F 〉 → 〈pmi , F 〉 〈retm, B〉 → 〈retm, B〉 [SEEDS]

〈n1, S1〉 → 〈Ol, H〉 l : n2 = new T

〈n1, S1〉 → 〈n2, F 〉
〈n1, S1〉 → 〈n2, F 〉 l : n3 = n2

〈n1, S1〉 → 〈n3, F 〉
〈n1, S1〉 → 〈n2, F 〉 l : n3.f = n2

〈n1, S1〉 → 〈n3, B〉
〈n1, S1〉 → 〈n2, B〉 l : n2 = n3 | n3.f

〈n1, S1〉 → 〈n3, B〉 [PROPAGATE]

〈n1, S1〉 → 〈n2, B〉 l : n2 = new T S1 �= B

〈n1, S1〉 → 〈Ol, H〉
〈n1, S1〉 → 〈n2, S2〉 〈n2, S2〉 → 〈n3, S3〉 ∈ Sum

〈n1, S1〉 → 〈n3, S3〉
〈n1, S1〉 → 〈retm, F 〉
〈n1, S1〉 → 〈retm, E〉

〈n1, S1〉 → 〈pmi , B〉
〈n1, S1〉 → 〈pmi , E〉

〈pmi , F 〉 → 〈pmj , E〉 pmi �= pmj l : x = a0.f(a1, · · · , ar) O ∈ pts(a0) m = dispatch(f,O)

〈ai, F 〉 → 〈aj , B〉 ∈ Sum
〈pmi , F 〉 → 〈retm, E〉 l : x = a0.f(a1, · · · , ar) O ∈ pts(a0) m = dispatch(f,O)

〈ai, F 〉 → 〈x, F 〉 ∈ Sum
[SUMMARY]

〈retm, B〉 → 〈pmi , E〉 l : x = a0.f(a1, · · · , ar) O ∈ pts(a0) m = dispatch(f,O)

〈x,B〉 → 〈ai, B〉 ∈ Sum
〈O,H〉 → 〈retm, F 〉 l : x = a0.f(a1, · · · , ar) O ∈ pts(a0) m = dispatch(f,O)

〈x,B〉 → 〈Syml, H〉 ∈ Sum 〈Syml, H〉 → 〈x, F 〉 ∈ Sum

〈Ol, H〉 → 〈pmi , E〉
Ol ∈ leakObjects

〈Ol, H〉 → 〈retm, E〉
Ol ∈ leakObjects

[COLLECT]

Fig. 14: Rules for computing leakObjects, i.e., the set of objects that can flow out of their containing methods for verifying

Obs 2. Si ∈ {H,F,B}, where i ∈ {1, 2, 3} and Syml is a symbolic object abstracting all objects returned from call site l.

Fstart E

assign | load

interAssign

return

Fig. 15: The DFA used for computing depOnParam.

where L is the set of statements in P . Finally, the second stage

of Algorithm 1 (lines 17-23) can be efficiently performed in

O(|H|), where H is the set of heap objects in P .

V. EVALUATION

We demonstrate the effectiveness of our CONCH approach

by addressing the following two research questions:

• RQ1. Is CONCH precise and efficient?

• RQ2. Can CONCH speed up existing object-sensitive

analysis algorithms significantly?

Implementation. We have implemented CONCH in SOOT

[16], a program analysis and optimization framework for Java,

on top of its context-insensitive Andersen’s pointer analysis,

SPARK [1] (for computing pts). CONCH is implemented in

about 1500 lines of Java code, which will soon be released

as an open-source tool at http://www.cse.unsw.edu.au/∼corg/

conch along with a reproducible artifact in the form of a

Docker image. As described in Section II, CONCH aims to

boost the performance of all object-sensitive pointer analysis

algorithms. We report and analyze our results by applying

CONCH to debloat two representative baselines, kOBJ (an

object-sensitive version of SPARK) and ZIPPER [22] (the latest

version b83b038, which can deliver the arguably best speedups

for kOBJ among the recent algorithms for supporting selec-

tive context-sensitivity [15], [21]–[24] in our experimental

setting). Due to space limitations, we will only summarize

the significant performance benefits also achieved by CONCH

in debloating contexts for EAGLE [15].

Experimental Setting. kOBJ is a standard in-house imple-

mentation of SPARK in SOOT [33]. As for ZIPPER (originally

released in DOOP [17] but used here to accelerate kOBJ in

SOOT), we have used an analysis setting that is as close

as possible to the one used by ZIPPER in several major

aspects. First, we perform an exception analysis on the fly

with kOBJ as in DOOP by handling exceptions along the so-

called exception-catch links [34]. Second, we use the declared

type of an array element instead of java.lang.Object
to filter type-incompatible points-to objects. Third, we handle

native code by using the summaries provided in SOOT. Fourth,

we analyze a static method m by using the contexts of

m’s closest callers that are instance methods (on the call

stack) and resolve Java reflection by using the reflection log

generated by TAMIFLEX [35] as is often done in the pointer

analysis literature [11], [12], [22], [24]. Finally, objects that are

instantiated from StringBuilder and StringBuffer as

well as Throwable (including its subtypes) are distinguished

per dynamic type and then analyzed context-insensitively as

is done in DOOP [36] and WALA [18].

We have conducted our experiments on an Intel(R) Xeon(R)

CPU E5-1660 3.2GHz machine with 256GB of RAM. We
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have selected a set of 12 popular Java programs, including

9 benchmarks from DaCapo [37], and 3 Java applications

(checkstyle, JPC and findbugs). The Java library used

is jre1.6.0_45. These are the standard Java programs

that are frequently used for evaluating pointer analysis algo-

rithms [11], [12], [22], [24]. The time budget used for running

each pointer analysis on a program is set as 12 hours. The

analysis time of a program is an average of three runs.

A. RQ1: Is CONCH Precise and Efficient?

Given Base (a baseline pointer analysis) and Base+D
(Base with its contexts debloated by CONCH), we measure

the precision of CONCH in terms of precision loss incurred

with respect to a given metric (Metric) when both Base and

Base+D are applied to analyze the same program:

Δ =
Metric(Base+D)− Metric(Base)

Metric(Base)
(2)

where Metric(Base) and Metric(Base+D) are the metric

numbers obtained by Base and Base+D, respectively. We use

four common metrics for measuring the precision of a context-

sensitive pointer analysis [11], [13], [15], [22]: (1) #fail-cast:
the number of type casts that may fail, (2) #call-edges: the

number of call graph edges discovered, (3) #poly-calls: the

number of polymorphic calls discovered, and (4) #reach-mtds:

the number of reachable methods.

Table II gives our main results. For kOBJ, ZkOBJ denotes

the version of kOBJ with selective context-sensitivity provided

by ZIPPER. All the baselines (where k ∈ {2, 3}) and their

debloated versions are compared over the 12 Java programs.

CONCH is very precise in terms of supporting context

debloating while losing negligible precision. Our approach

preserves the precision of all the baselines for 10 programs

consisting of the 9 DaCapo benchmarks and findbugs.

For checkstyle and JPC, our approach suffers from an

average precision loss of only less than 0.1% (across the four

metrics). This happens since a PropertyChangeEvent
object created in method firePropertyChange(...)
of class java.beans.PropertyChangeSupport
and a LineReader object created in method

load(InputStream) of java.util.Properties
have been misclassified as being context-independent by

CONCH as they do not satisfy Obs 2.

CONCH is also highly efficient (as a pre-analysis). Table III

gives the times spent by SPARK [1], ZIPPER [22] and CONCH.

Note that both ZIPPER and CONCH are designed to be multi-

threaded (with 8 threads used in our experiments). CONCH

is slightly faster than ZIPPER and SPARK across all the 12

programs. On average, we have 2.6 seconds (CONCH), 10.4

seconds (ZIPPER) and 12.5 seconds (SPARK). Thus, CONCH

is efficient enough for supporting context debloating.

B. RQ2: Can CONCH Speed Up Baseline Analyses?

Table II also gives the analysis times of all the analyses.

CONCH deliver significant speedups (geometric means) over

all the baselines. For kOBJ, the speedups of 2OBJ+D over

TABLE II: Main results. In all metrics (except for speedups),

smaller is better. Given an analysis Base, Base+D is its de-

bloated version by CONCH. OoM stands for “Out of Memory”.

Classic kOBJ Selective kOBJ
Prog Metrics 2OBJ 2OBJ+D 3OBJ 3OBJ+D Z2OBJ Z2OBJ+D Z3OBJ Z3OBJ+D

Time (s) 45.4 13.9 (3.3x) 1049.3 185.4 (5.7x) 20.8 7.8 (2.7x) 337.9 32.1 (10.5x)
#fail-cast 509 509 449 449 559 559 507 507
#call-edges 51176 51176 51149 51149 51394 51394 51367 51367
#poly-calls 1622 1622 1615 1615 1643 1643 1636 1636

antlr

#reach-mtds 7804 7804 7803 7803 7842 7842 7841 7841

Time (s) 743.8 359.5 (2.1x) > 12h 4093.7 519.9 279.7 (1.9x) OoM 2771.2
#fail-cast 1314 1314 - 1221 1368 1368 - 1279
#call-edges 56699 56699 - 56464 57192 57192 - 57036
#poly-calls 1695 1695 - 1675 1732 1732 - 1716

bloat

#reach-mtds 9021 9021 - 9005 9093 9093 - 9085

Time (s) 253.0 85.5 (3.0x) OoM 4215.9 34.6 20.3 (1.7x) 573.6 178.3 (3.2x)
#fail-cast 1348 1348 - 1241 1418 1418 1323 1323
#call-edges 72457 72457 - 72023 73123 73123 72738 72738
#poly-calls 2032 2032 - 2008 2060 2060 2040 2040

chart

#reach-mtds 15143 15143 - 15113 15269 15269 15247 15247

Time (s) > 12h 4113.5 OoM OoM 2956.3 2487.7 (1.2x) OoM OoM
#fail-cast - 3215 - - 3357 3357 - -
#call-edges - 145763 - - 146492 146492 - -
#poly-calls - 8720 - - 8737 8737 - -

eclipse

#reach-mtds - 19916 - - 19985 19985 - -

Time (s) 18.6 10.5 (1.8x) 572.3 177.8 (3.2x) 9.2 5.1 (1.8x) 113.3 28.1 (4.0x)
#fail-cast 395 395 336 336 444 444 400 400
#call-edges 34120 34120 34100 34100 34343 34343 34323 34323
#poly-calls 808 808 802 802 832 832 826 826

fop

#reach-mtds 7582 7582 7582 7582 7620 7620 7620 7620

Time (s) 19.4 8.7 (2.2x) 555.3 192.6 (2.9x) 9.4 4.9 (1.9x) 129.5 31.0 (4.2x)
#fail-cast 394 394 340 340 448 448 398 398
#call-edges 33495 33495 33468 33468 33728 33728 33701 33701
#poly-calls 918 918 911 911 944 944 937 937

luindex

#reach-mtds 7017 7017 7016 7016 7057 7057 7056 7056

Time (s) 30.4 11.8 (2.6x) 2225.7 252.1 (8.8x) 13.2 5.2 (2.5x) 622.7 39.2 (15.9x)
#fail-cast 409 409 357 357 466 466 418 418
#call-edges 36377 36377 36350 36350 36605 36605 36578 36578
#poly-calls 1116 1116 1109 1109 1143 1143 1136 1136

lusearch

#reach-mtds 7669 7669 7668 7668 7707 7707 7706 7706

Time (s) 41.6 24.2 (1.7x) 1236.1 257.0 (4.8x) 23.9 14.9 (1.6x) 344.7 52.5 (6.6x)
#fail-cast 1432 1432 1367 1367 1514 1514 1461 1461
#call-edges 59864 59864 59805 59805 60029 60029 59970 59970
#poly-calls 2357 2357 2351 2351 2382 2382 2376 2376

pmd

#reach-mtds 11841 11841 11841 11841 11880 11880 11880 11880

Time (s) 565.3 298.2 (1.9x) OoM 1632.1 230.7 227.5 (1.0x) 2487.7 1125.6 (2.2x)
#fail-cast 600 600 - 546 657 657 609 609
#call-edges 46653 46653 - 46621 46842 46842 46815 46815
#poly-calls 1613 1613 - 1606 1636 1636 1629 1629

xalan

#reach-mtds 9659 9659 - 9657 9701 9701 9700 9700

Time (s) 1014.6 349.1 (2.9x) > 12h OoM 404.4 236.1 (1.7x) OoM 4887.4
#fail-cast 1130 1130 - - 1206 1206 - 1117
#call-edges 67039 67041 - - 67854 67854 - 66892
#poly-calls 2210 2210 - - 2268 2268 - 2211

checkstyle

#reach-mtds 12314 12314 - - 12383 12383 - 12342

Time (s) 106.1 54.6 (1.9x) 2163.3 240.6 (9.0x) 34.4 26.3 (1.3x) 181.0 44.8 (4.0x)
#fail-cast 1356 1356 1206 1206 1431 1431 1278 1278
#call-edges 80965 80978 79297 79310 81616 81629 79932 79945
#poly-calls 4263 4264 4127 4128 4324 4325 4187 4188

JPC

#reach-mtds 15508 15508 15161 15161 15582 15582 15232 15232

Time (s) 1629.6 180.1 (9.0x) OoM 936.3 131.3 50.3 (2.6x) 1890.0 186.8 (10.1x)
#fail-cast 2072 2072 - 1696 2144 2144 1956 1956
#call-edges 87915 87915 - 86993 88567 88567 87741 87741
#poly-calls 3655 3655 - 3621 3670 3670 3643 3643

findbugs

#reach-mtds 16266 16266 - 16219 16315 16315 16287 16287

TABLE III: Times spent by pre-analyses in seconds.

antlr bloat chart eclipse fop luindex lusearch pmd xalan checkstyle JPC findbugs

SPARK 8.6 8.9 15.6 25.9 7.6 6.9 7.8 11.7 8.7 14.0 17.4 16.7
ZIPPER 4.6 6.4 16.4 25.5 4.0 3.7 4.3 9.5 10.2 14.5 9.8 16.2
CONCH 1.7 2.0 3.2 6.6 1.5 1.4 1.4 2.2 2.5 2.9 2.6 3.1

2OBJ range from 1.7x (for pmd) to 9.0x (for findbugs)

with an average of 2.6x. When k = 3, the speedups of

3OBJ+D over 3OBJ are more impressive, ranging from 2.9x

(for luindex) to 9.0x (for JPC) with an average of 5.2x. For

ZIPPER, the speedups of Z2OBJ+D over Z2OBJ range from

1.0x (for xalan) to 2.7x (for antlr) with an average of

1.8x. When k = 3, the speedups of Z3OBJ+D over Z3OBJ

are also more impressive, ranging from 2.2x (for xalan) to

15.9x (for lusearch) with an average of 5.6x.
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These results suggest that the speedups delivered by CONCH

increase as k increases, implying that CONCH can help all

the baselines improve their scalability. In particular, 2OBJ+D

scales one more benchmark, i.e., eclipse than 2OBJ,

3OBJ+D can scale 4 more benchmarks (bloat, chart,

xalan, and findbugs) than 3OBJ, and Z3OBJ+D can scale

2 more benchmarks (bloat and checkstyle) than Z3OBJ.

In general, an analysis may be unscalable due to running either

out of memory (“OoM”) or the time budget (“> 12h”).

Due to space limitations, let us summarize briefly the

significant performance benefits achieved by CONCH in de-

bloating contexts for EAGLE [15], [25]. Unlike ZIPPER (which

makes kOBJ run faster while losing precision), EAGLE aims

to accelerate kOBJ while preserving its precision. For kOBJ,

let EkOBJ be the version of kOBJ with selective context-

sensitivity enabled by EAGLE. For the four precision metrics

considered in Table II, #fail-cast, #call-edges, #poly-calls,

and #reach-mtds, EkOBJ yields the same results as kOBJ and

EkOBJ+D yields the same results as kOBJ+D in theory. As

for the performance speedups achieved, CONCH is nearly as

effective for EAGLE as for ZIPPER. The speedups of E2OBJ+D

over E2OBJ range from 1.3x (for eclipse) to 5.7x (for

findbugs) with an average of 2.1x, and the speedups of

E3OBJ+D over E3OBJ range from 2.8x (for luindex) to

9.2x (for lusearch) with an average of 4.8x. In addition,

CONCH scale 4 more benchmarks, bloat, chart, xalan,

and findbugs, under E3OBJ+D than under E3OBJ.

Therefore, CONCH can accelerate existing object-sensitive

pointer analyses significantly with negligible loss in precision.

These include not only kOBJ (the standard algorithm) but also

its variants enabled by, e.g., ZIPPER [22] and EAGLE [15],

[25] (the two recent attempts on applying selective context-

sensitivity to improve the performance of kOBJ).

Below we analyze in detail why context debloating can

enable baseline analyses, kOBJ and ZkOBJ, to improve their

efficiency and scalability (as reported in Table II).

Fig. 16: Percentage distribution of the two types of objects.

Figure 16 depicts the percentage distribution of context-

dependent objects and context-independent objects classified

by CONCH. CONCH has successfully identified a large per-

centage of context-independent objects in all the programs,

ranging from 65.6% (in eclipse) to 78.7% (in fop) with an

average of 72.4%. Thus, a large amount of precision-irrelevant

contexts has been eliminated via context debloating.

Table IV compares the baseline analyses (i.e., kOBJ and

ZkOBJ) and their debloated counterparts (i.e., kOBJ+D and

ZkOBJ+D) in terms of the average number of contexts ana-

lyzed for a method, where k ∈ {2, 3}. The debloated analyses

TABLE IV: Average number of contexts analyzed for a method

by kOBJ, kOBJ+D, ZkOBJ and ZkOBJ+D, where k ∈ {2, 3}.

antlr bloat chart eclipse fop luindex lusearch pmd xalan checkstyle JPC findbugs

2OBJ 27.1 30.3 36.5 - 15.6 17.1 20.0 17.3 50.8 66.4 24.7 37.9
2OBJ+D 13.1 18.3 20.8 31.1 9.2 9.9 10.3 10.3 31.6 41.4 16.0 18.8

Z2OBJ 8.1 14.3 6.9 14.8 4.9 5.6 6.0 6.1 15.3 18.7 7.4 9.6
Z2OBJ+D 4.8 8.7 5.2 12.3 3.6 4.0 4.0 4.4 11.8 14.4 6.1 7.3

3OBJ 99.8 - - - 53.0 58.1 91.5 53.5 - - 87.2 -
3OBJ+D 24.6 39.0 78.9 - 19.1 21.3 22.2 18.7 61.6 - 26.1 29.5

Z3OBJ 26.5 - 21.7 - 14.3 16.7 23.5 17.6 60.7 - 14.5 25.7
Z3OBJ+D 8.2 17.3 12.5 - 6.4 7.1 7.3 7.1 22.6 57.5 7.7 10.8

have achieved a substantial reduction in terms of this important

metric across all the programs, providing the reasons behind

the improved efficiency and scalability via context debloating.

Finally, we can also understand the effectiveness of CONCH

from a substantial reduction it has achieved in the number

of context-sensitive facts inferred. In Table V, #cs-gpts, #cs-

pts and #cs-fpts represent the numbers of context-sensitive

objects pointed by global variables (i.e., static fields), local

variables and instance fields, respectively, and #cs-calls rep-

resents the number of context-sensitive call edges. In general,

the speedups of a pointer analysis over a baseline come

from a significant reduction in the number of context-sensitive

facts computed by the baseline. For example, 2OBJ+D is

significantly faster than 2OBJ for findbugs as its num-

ber of context-sensitive facts is significantly less than 2OBJ.

Similarly, Z3OBJ+D is also much faster than Z3OBJ for

lusearch. However, the analysis time of a pointer analysis

is not linearly proportional to the number of context-sensitive

facts computed [13]. Consider xalan. Z2OBJ+D has achieved

a reduction of 16.2% over Z2OBJ in terms of the number of

facts inferred but their analysis times are comparable.

VI. RELATED WORK

In this section, we mainly review the prior work that is the

most closely related to improving the performance of whole-

program pointer analysis for object-oriented programs.

There are several recent efforts on exploiting selective

context-sensitivity to accelerate the performance of object-

sensitive pointer analysis (i.e., kOBJ) [15], [22], [24]. EA-

GLE [15] improves the efficiency of kOBJ while preserving

its precision by conservatively reasoning about value flows

via CFL reachability. ZIPPER [22], as a representative of non-

precision-preserving approaches [21]–[24], [38], trades preci-

sion for efficiency by exploiting several value flow patterns.

These techniques mitigate the context explosion problem of

kOBJ by analyzing only a subset of methods in the program

context-insensitively. In contrast, CONCH represents a novel

mitigation approach as it can debloat contexts for all the

objects in the program, enabling existing algorithms to run

significantly faster at a only negligible loss of precision.

When applying CONCH to debloat contexts for ZkOBJ

[22] and EkOBJ [15], we have observed that their relative

performance advantages depend on the experimental settings

used (for good reasons). In [15], EkOBJ outperforms ZkOBJ

when both are evaluated in SOOT (by using the exception

analysis provided by SPARK [1] and disallowing manual
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TABLE V: Context-sensitive facts.

Classic kOBJ Selective kOBJ
Prog Metrics 2OBJ 2OBJ+D 3OBJ 3OBJ+D Z2OBJ Z2OBJ+D Z3OBJ Z3OBJ+D

#cs-gpts 4.9K 2.1K 12.1K 2.5K 5.7K 2.3K 17.6K 2.7K
#cs-pts 19.8M 3.6M 228.8M 32.1M 18.6M 3.3M 205.1M 10.4M
#cs-fpts 0.6M 0.1M 13.6M 6.3M 0.6M 0.1M 13.7M 6.3M
#cs-calls 5.4M 1.3M 87.5M 22.7M 1.9M 0.5M 22.7M 1.1M

antlr

Total 25.8M 5.1M 329.8M 61.1M 21.1M 3.9M 241.6M 17.8M

#cs-gpts 3.1K 1.9K - 2.3K 3.9K 2.0K - 2.4K
#cs-pts 159.8M 68.0M - 325.0M 140.9M 53.6M - 235.0M
#cs-fpts 5.7M 4.6M - 28.8M 6.9M 4.6M - 28.0M
#cs-calls 47.1M 20.9M - 112.0M 38.2M 16.4M - 74.0M

bloat

Total 212.7M 93.5M - 465.8M 186.0M 74.5M - 336.9M

#cs-gpts 12.5K 6.9K - 11.3K 10.1K 5.5K 24.6K 6.9K
#cs-pts 56.9M 20.8M - 944.2M 16.2M 6.9M 166.8M 55.1M
#cs-fpts 1.1M 0.4M - 19.6M 0.7M 0.3M 21.7M 14.0M
#cs-calls 20.0M 8.5M - 332.8M 2.5M 1.4M 26.7M 10.1M

chart

Total 78.0M 29.7M - 1296.6M 19.5M 8.6M 215.3M 79.1M

#cs-gpts - 7.8K - - 21.9K 8.0K - -
#cs-pts - 585.7M - - 601.8M 512.5M - -
#cs-fpts - 12.8M - - 16.7M 13.5M - -
#cs-calls - 345.2M - - 161.2M 147.3M - -

eclipse

Total - 943.7M - - 779.7M 673.4M - -

#cs-gpts 2.9K 1.8K 4.3K 2.0K 3.4K 1.9K 9.1K 2.2K
#cs-pts 4.1M 1.2M 67.8M 27.5M 3.7M 1.1M 47.0M 7.9M
#cs-fpts 0.2M 71.4K 8.0M 5.8M 0.2M 76.4K 8.2M 6.2M
#cs-calls 1.3M 0.5M 31.0M 20.0M 0.5M 0.2M 5.1M 0.7M

fop

Total 5.6M 1.8M 106.7M 53.2M 4.4M 1.4M 60.4M 14.8M

#cs-gpts 2.8K 1.6K 4.5K 2.0K 3.7K 1.8K 10.6K 2.2K
#cs-pts 4.4M 1.4M 72.6M 31.4M 4.1M 1.2M 53.0M 8.5M
#cs-fpts 0.2M 73.0K 9.0M 6.6M 0.2M 77.3K 9.0M 6.6M
#cs-calls 1.4M 0.6M 34.1M 22.9M 0.6M 0.3M 5.6M 0.8M

luindex

Total 6.0M 2.0M 115.6M 60.9M 4.9M 1.6M 67.7M 15.9M

#cs-gpts 2.9K 1.6K 4.2K 1.8K 3.7K 1.8K 10.3K 2.1K
#cs-pts 6.8M 1.6M 193.6M 37.8M 5.4M 1.4M 116.5M 10.1M
#cs-fpts 0.2M 77.4K 11.0M 7.9M 0.2M 82.7K 10.3M 7.9M
#cs-calls 3.1M 0.7M 149.3M 27.8M 1.1M 0.3M 41.8M 1.0M

lusearch

Total 10.1M 2.4M 353.9M 73.6M 6.7M 1.8M 168.6M 19.0M

#cs-gpts 3.4K 1.9K 5.1K 2.1K 5.3K 2.1K 21.3K 2.4K
#cs-pts 12.7M 5.1M 142.9M 42.0M 14.9M 4.8M 171.1M 14.8M
#cs-fpts 0.6M 0.3M 13.1M 8.4M 1.1M 0.4M 17.0M 9.0M
#cs-calls 3.9M 2.0M 56.8M 29.1M 2.2M 1.0M 17.4M 1.9M

pmd

Total 17.2M 7.3M 212.8M 79.6M 18.2M 6.2M 205.5M 25.7M

#cs-gpts 4.9K 2.9K - 3.2K 4.2K 2.8K 10.0K 3.2K
#cs-pts 160.4M 49.0M - 161.0M 51.1M 41.5M 517.5M 123.6M
#cs-fpts 6.3M 4.3M - 15.7M 5.4M 4.5M 33.1M 16.0M
#cs-calls 49.6M 21.6M - 103.4M 14.6M 13.7M 86.0M 52.8M

xalan

Total 216.3M 74.9M - 280.2M 71.2M 59.7M 636.6M 192.3M

#cs-gpts 7.7K 3.5K - - 10.8K 4.3K - 5.2K
#cs-pts 166.2M 44.7M - - 130.8M 38.3M - 353.9M
#cs-fpts 1.5M 0.4M - - 2.8M 0.6M - 141.6M
#cs-calls 86.5M 23.2M - - 24.1M 9.0M - 79.8M

checkstyle

Total 254.2M 68.3M - - 157.6M 47.9M - 575.3M

#cs-gpts 7.3K 4.1K 21.3K 5.7K 7.0K 3.8K 16.4K 4.3K
#cs-pts 27.8M 11.9M 606.3M 48.0M 13.2M 7.0M 67.3M 12.2M
#cs-fpts 0.9M 0.3M 19.3M 7.2M 0.8M 0.3M 11.2M 6.7M
#cs-calls 9.8M 5.5M 93.8M 28.8M 2.8M 2.0M 8.2M 2.0M

JPC

Total 38.5M 17.7M 719.5M 84.1M 16.8M 9.4M 86.7M 20.8M

#cs-gpts 34.1K 4.5K - 6.0K 11.0K 4.5K 43.8K 5.9K
#cs-pts 358.2M 41.2M - 126.9M 58.6M 19.5M 553.2M 38.6M
#cs-fpts 18.0M 1.0M - 23.1M 5.0M 1.0M 61.1M 23.9M
#cs-calls 147.2M 13.3M - 84.9M 13.2M 5.8M 101.5M 5.9M

findbugs

Total 523.5M 55.5M - 234.8M 76.8M 26.2M 715.9M 68.4M

context-sensitivity selections to be pre-configured). In this

paper, however, EkOBJ underperforms ZkOBJ when both are

evaluated also in SOOT (but by using a more precise on-the-

fly exception analysis [34] and turning on the manual heuristic

described in Section V to allow certain objects to be identi-

fied per dynamic type and then pre-configured to be always

analyzed context-insensitively). As described in Section II-C,

whichever is faster in whichever setting is irrelevant to this

work, CONCH can boost their performance regardless (as eval-

uated in Section V). In the absence of this manual heuristic,

CONCH is observed to be even substantially more effective

in boosting the performance of an object-sensitive analysis A,

since it can help A identify more context-independent objects

that would otherwise be analyzed context-sensitively by A.

In our evaluation, turning this manual heuristic on aims to

challenge CONCH to demonstrate its performance benefits over

a faster baseline, by debloating the contexts for the faster

baseline (that has already been debloated manually before).
Recently, TURNER [26] exploits object containment to pre-

dict context-independent objects. In contrast, CONCH is a more

principled approach and could find more context-independent

objects than TURNER.
MAHJONG [12] mitigates context explosion by merging

equivalent heap abstractions at the expense of precision in

alias relations. CONCH is orthogonal to MAHJONG and may

boost its performance by debloating its contexts used.
In [13], context transformations are introduced as an alter-

native context abstraction to context strings (as used in kOBJ),

but the practical benefits are shown to be small.
Data-driven approaches [14], [21], [39] apply machine

learning to obtain various heuristics for supporting selective

context-sensitivity. SCALER [40] trades precision for scalabil-

ity by selecting a suitable context-sensitivity variant for each

method so that the amount of points-to information is bounded.
Elsewhere [30], [41], [42], efforts have been made to

improve the precision of object-sensitive pointer analysis. This

thread of research is orthogonal to ours considered here.
Finally, unlike whole-program analyses [1], [11], [20], [36],

[43], [44] considered in this paper, demand-driven pointer

analyses [45]–[50] typically only compute the points-to in-

formation for program points that may affect a particular site

of interest for specific clients.

VII. CONCLUSION AND FUTURE WORK

Scalability is a major challenge in designing and developing

precise object-sensitive pointer analysis techniques due to the

combinatorial explosion of contexts in large object-oriented

programs. In this paper, we address this challenge by applying

context debloating so that we can boost the performance of

all object-sensitive pointer analysis algorithms with negligible

loss in precision. Our key insight is to replace a set of two

existing necessary conditions (whose verification is undecid-

able) by a set of three necessary conditions that can be linearly

verifiable in terms of the number of statements in the program

for determining the context-dependability of any object. Our

evaluation shows that our new approach, CONCH, can improve

significantly the efficiency and scalability of not only kOBJ but

also existing approaches to selective context-sensitivity that

can already accelerate the performance of kOBJ.
We believe that the performance benefits of context debloat-

ing are not just limited to object-sensitive pointer analysis as

demonstrated here. In our future work, we plan to explore how

to apply context debloating to other flavors of pointer analysis

such as call-site-sensitive pointer analysis [51] and context-

transformation-based pointer analysis [13]. In addition, we

will also investigate how to apply context debloating to other

context-sensitive program analyses such as taint analysis [8]

and data-dependence analysis [52] for improving their effi-

ciency and scalability, particularly for large codebases.
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