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Abstract—The IFDS algorithm can be compute- and memory-
intensive for some large programs, often running for a long time
(more than expected) or terminating prematurely after some time
and/or memory budgets have been exhausted. In the latter case,
the corresponding IFDS data-flow analyses may suffer from false
negatives and/or false positives. To improve this, we introduce a
sparse alternative to the traditional IFDS algorithm. Instead of
propagating the data-flow facts across all the program points
along the program’s (interprocedural) control flow graph, we
propagate every data-flow fact directly to its next possible use
points along its own sparse control flow graph constructed on
the fly, thus reducing significantly both the time and memory
requirements incurred by the traditional IFDS algorithm.

In our evaluation, we compare FLOWDROID, a taint analysis
performed by using the traditional IFDS algorithm, with our
sparse incarnation, SPARSEDROID, on a set of 40 Android apps
selected. For the time budget (5 hours) and memory budget
(220GB) allocated per app, SPARSEDROID can run every app
to completion but FLOWDROID terminates prematurely for 9
apps, resulting in an average speedup of 22.0x. This implies that
when used as a market-level vetting tool, SPARSEDROID can
finish analyzing these 40 apps in 2.13 hours (by issuing 228 leak
warnings) while FLOWDROID manages to analyze only 30 apps
in the same time period (by issuing only 147 leak warnings).

Index Terms—IFDS, data-flow analysis, taint analysis

I. INTRODUCTION

The IFDS (Interprocedural, Finite, Distributive, Subset)

data-flow problems formulated in [1] are solved in a wide

range of application areas, including model checking [2]–[5],

program verification [6]–[8], slicing [9], pointer analysis [10],

dynamic test generation [11], [12], bug detection [13]–[15],

security analysis [16], [17], and taint analysis [18]–[21]. In

such an interprocedural data-flow problem, the set of data-flow

facts D is finite and the data flow functions (in 2D �→ 2D)

distribute over the meet operator � (union or intersection).

When formulating the IFDS problems, Reps et al. [1]

introduced a polynomial-time algorithm for solving each as

a special kind of graph-reachability problem (reachability

along interprocedurally realizable paths). This IFDS algorithm

operates on the interprocedural CFG G∗ = (N∗, E∗) of a

program (consisting of the CFGs for all its functions connected

by call and return edges). Interprocedurally, the data-flow facts

in D are propagated from a callsite to an invoked callee foo

$Corresponding author

in G∗ (via a call edge to foo’s CFG) and then back from the

foo’s CFG (via a return edge) to the same callsite, context-

sensitively over a balanced-parentheses language by matching

call and return edges. Intraprocedurally, the data-flow facts

in D are propagated across the edges in foo’s CFG. This

algorithm runs in O(|E∗||D|3) until a fixed point is found.

This classic IFDS algorithm can be compute- and memory-

intensive, as it propagates the data-flow facts across all the

program points along all the edges in G∗. Its multi-threaded

versions [19], [22], [23] can speed it up, but still unsatisfac-

torily for some programs. For example, FLOWDROID [19]

includes a multi-threaded IFDS solver that deploys multiple

threads on multiple CPU cores to propagate the data-flow

facts concurrently along different edges in G∗. However, when

applied to perform taint analysis for a set of 2,950 Android

apps on a computer server with 64 Intel Xeon CPU cores

equipped with 730GB RAM, its IFDS solver (with even many

compromises made) can spend 24+ hours on one app by

using all the memory, resulting in 16 apps still unanalyzable

[24]. Such premature terminations will cause the underlying

analysis to report either more false negatives (i.e., miss more

bugs) or more false positives (i.e., false warnings) or both.

In practice, static analysis tools have become part of the core

developer workflow in software industries such as Google [25].

As part of nightly builds, static analysis tools are expected to

be efficient, especially for handling large codebases [26].

In this paper, we focus on accelerating the IFDS algo-

rithm [1] by propagating the data-flow facts sparsely rather

than densely in G∗ (orthogonally to multi-threaded accelera-

tion). Our key insight is that the traditional IFDS algorithm

propagates too many data-flow facts redundantly across too

many edges in G∗ before they are actually used, resulting in

excessive time and memory requirements for some programs.

We can speed it up significantly if we can cut down its CPU

and memory usage. We will achieve this by propagating a

data-flow fact sparsely, i.e., directly to its next possible use

points in G∗. The challenge lies in how to identify such “next

possible use points” for a data-flow fact efficiently, without

losing the performance benefits reaped from its subsequent

sparse propagation. The key novelty here is to build a sparse

CFG (SCFG) for each data-flow fact on-demand (i.e., only

when needed) to enable its profitable sparse propagation.
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To demonstrate the performance benefits for sparsifying

the IFDS algorithm, we consider taint analysis for finding

information leaks in Android apps, a significant client analysis

solved as an IFDS problem. Currently, FLOWDROID [19]

represents a state-of-the-art tool for solving taint analysis by

using a multi-threaded implementation of the traditional IFDS

algorithm [1]. FLOWDROID applies its two passes iteratively,

a forward one for discovering more tainted access paths and

a backward one for discovering more aliases, until a fixed

point has been reached. As its sparse alternative, our new

tool, SPARSEDROID, aims to improve its performance by

employing our sparse IFDS algorithm in both of its two passes.

This paper makes the following main contributions:

• We present a new approach for sparsifying the traditional

IFDS problems to accelerate its performance.

• We introduce a sparse IFDS-based taint analysis for

detecting information leaks in Android apps.

• We have evaluated SPARSEDROID against FLOWDROID

(driven by a non-sparse IFDS algorithm) on 40 Android

apps (with 34 from FossDroid [27] and 6 from Google

Play). Given a time budget (5 hours) and memory budget

(220GB) per app, SPARSEDROID runs every app to

completion but FLOWDROID terminates prematurely for

9 apps, resulting in an average speedup of 22.0x. This

implies that when used as a vetting tool, SPARSEDROID

can finish analyzing these 40 apps in 2.13 hours by

issuing 228 leak warnings while FLOWDROID analyzes

only 30 apps in the same time period by issuing only 147

leak warnings (even if “timeout apps” are ignored).

The rest of the paper is organized as follows. Section II

provides an overview of and motivates our sparse IFDS

analysis. Section III introduces our sparse IFDS framework.

Section IV contains a concrete instantiation of our sparse

framework for performing sparse taint analysis. Section V

presents and analyzes our experimental results. Section VI

describes the limitations of our sparse algorithm. Section VII

discusses the related work. Finally, Section VIII concludes.

II. MOTIVATION

We motivate our sparsification of the IFDS algorithm [1]

by considering taint analysis as an instantiation. In Sec-

tion II-A, we introduce an example program and find its

tainted access paths manually. In Section II-B, we describe

how FLOWDROID [19] does this automatically by applying the

traditional IFDS algorithm. In Section II-C, we explain how

SPARSEDROID, our sparse version of FLOWDROID, works.

A. An Example Program
Let us focus on analyzing foo() in Figure 1, by assuming

that a and a.g passed from its callers are untainted and the

call to A() (line 12) has no effect on our analysis. To find

all the tainted accesses manually, we need to keep track of all

the relevant access paths (data-flow facts) flowing along the

control flow while also being mindful about their aliases.

Initially, b is tainted in line 2. Then both a.f (an instance

field) and A.h (a static variable) are tainted in lines 3 and 4,

respectively. However, A.h becomes untainted after each call

to A.bar() (lines 7 and 10) as it is killed in A.bar(). In

line 14, as a.f is tainted, x.k.f gets tainted. As c and x are

aliases, c.k.f is tainted in line 14, too. With k-limiting [28],

all the access paths that are longer than k are truncated.

B. FLOWDROID: The IFDS-based Taint Analysis

FLOWDROID [19] applies the traditional IFDS algorithm to

solve the taint analysis problem, as illustrated in Figure 1(a).

FlowDroid operates on the interprocedural CFG (ICFG), i.e.,

supergraph G∗ = (N∗, E∗) [1], of the program. G∗ consists

of the CFGs of all the functions in the program. There are four

types of edges. In addition to the normal, i.e., intraprocedural

edges in a CFG, every callsite is connected to a called function

by a call edge, a return edge, and a call-to-return edge (to

enable the interprocedural data-flows across the callsite). In

actuality, G∗ is exploded by associating its edges with all the

data-flow facts (i.e., access paths) in D tracked during the taint

analysis. The meet operator � used is ∪ as an access path is

considered as tainted at a joint point if it is tainted in any of

incoming control-flow paths. Each edge has a flow function

that takes the set of old facts arriving at the edge as input and

sends the set of new facts across the edge as output.

FLOWDROID proceeds iteratively by performing two passes

repeatedly, a forward pass for discovering tainted accesses and

a backward pass for dicovering aliases, until a fixed point is

reached. In the first forward pass, FLOWDROID discovers b,

a.f, A.h, x.k.f and d to be tainted at different program

points except that A.h becomes untainted after each call to

A.bar(). For example, as a.f is a tainted fact in line 14,

the flow function associated with its edge ending at line 15

will cause x.k.f to be tainted. In the IFDS algorithm [1],

0 denotes an empty fact allowing new facts to be generated

at a program point (e.g., line 2). As x.k = a is a store,

FLOWDROID starts a backward pass to search for the aliases

of x.k.f, finding c.k.f to be aliased with x.k.f after line

13. For this standard pass, we refer to [19] for more details.

In a subsequent forward pass, c.k.f is propagated forwards

and recognized as being tainted just after line 14.

Two points are made about the traditional IFDS algorithm:

• Dense Propagation of Facts. The traditional IFDS algo-

rithm [1] employed by FLOWDROID propagates many data-

flow facts across many program points redundantly before

they are actually used, as highlighted by many such solid

dots in Figure 1(a). Take a.f, tainted in line 3, for example.

All the subsequent propagations before it reaches line 9 and

14 are a waste of both CPU and memory resources.

• Multi-Threading. In the IFDS framework, all the flow

functions are distributive. As also in [22], [23], FLOW-

DROID [19] takes advantage of multi-threading to process

propagations for different edges in different threads.

C. SPARSEDROID: Our Sparse IFDS-based Taint Analysis

Instead of propagating data-flow facts densely as in FLOW-

DROID based on the traditional IFDS algorithm (Figure 1(a)),

our sparse version, SPARSEDROID, based on our sparse IFDS
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 Class A {  public A() {}

    18  static void bar(p) {

    19      A.h = ; // kill

    20  }

}

  1  void foo(a) {

  2      b = source();

  3      a.f = b;

  4      A.h = b;

  5      if  ( ) {

  6          z = a.g;

  7          A.bar(z);

  8      } else {

  9          d = a.f;

10          A.bar(d);

11      }

12      x = new A();

13      c = x;

14      x.k = a;

15      sink(a.f); // tainted

16      sink(A.h); // untainted

17 }

0 b a.f A.h d

0 A.h p

Normal Edges (forward)

Call Edges

Call-to-Return Edges
Return Edges

0
b

a.f

A.h

d

p

c.k.fx.k.f

x.k.f

c.k.f

Normal Edges (backward)

(a) FLOWDROID: non-sparse IFDS-based taint analysis

  1  void foo(a) {

  2      b = source();

  3      a.f = b;

  4      A.h = b;

  5      if  ( ) {

  6          z = a.g;

  7          A.bar(z);

  8      } else {

  9          d = a.f;

10          A.bar(d);

11      }

12      x = new A();

13      c = x;

14      x.k = a;

15      sink(a.f); // tainted

16      sink(A.h); // untainted

17 }

0 b a.f A.h d

 Class A {  public A() {}

    18  static void bar(p) {

    19      A.h = ; // kill

    20  }

}

0 A.h p

c.k.fx.k.f

(b) SPARSEDROID: sparse IFDS-based taint analysis

Fig. 1. Comparing non-sparse and sparse IFDS-based taint analysis, by discovering tainted access paths (aliases) in a forward (backward) pass iteratively.
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entry

exit

3: a.f = b

2: b = source()

4: A.h = b

(a) b

entry

exit

3: a.f = b

9: d = a.f

14: x.k = a

15: sink(a.f)

(b) a.f

entry

exit

4: A.h = b

16: sink(A.h)

7: A.bar(z) 10: A.bar(d)

(c) A.h

entry

exit

9: d = a.f

10: A.bar(d)

(d) d

entry

exit

13: c = x

12: x = new A()

14: x.k = a

(e) x.k

entry

exit

13: c = x

(f) c.k

Fig. 2. The SCFGs built on-demand by SPARSEDROID for Figure 1(b).

algorithm (Figure 1(b)) will propagate them sparsely, only to

where they are needed, reducing significantly the time and

memory requirements (with much fewer dots remaining now).

Observation 1. Even if the flow function associated with an
edge is not the identity function (which will simply let all facts
pass through the edge unchanged), many data-flow facts will
still pass through the edge unchanged, without affecting the
other facts and being affected by the other facts. In this case,
we can simply propagate such facts sparsely, i.e., directly to
their next possible use points (in the same function).

When propagating a data-flow fact d in the CFG Gp of

a function p, we exploit this observation by building on-

demand a sparse CFG (SCFG) for d, Gp,d, as a sub-graph

of Gp, and then propagate d across its edges instead. For taint

analysis, both its forward and backward passes are sparsified.

In addition, all the access paths, v.f1, · · · , v.f1.f2. · · · .fn
share exactly the same SCFG, Gp,v.f1 (Theorem 2).

SPARSEDROID works sparsely as follows. Let us consider

the first forward pass. When b is tainted in line 2, SPARSE-

DROID builds Gfoo,b in Figure 2(a), which contains all the

statements where b is used (accessed). According to Gfoo,b, b
should be sent to lines 3 and 4 first and then directly to the exit

of foo(). Similarly, in line 3, where a.f is tainted, we build

Gfoo,a.f in Figure 2(b), by including the statements where a
or a.f is used. This allows a.f to be propagated directly to

lines 9 and 14. In line 4, we build Gfoo,A.h in Figure 2(c), by

including the statements accessing A.h and all the callsites

in foo() conservatively (since A.h is a global variable). In

line 9, d is tainted, we build Gfoo,d in Figure 2(d).

When line 14 is analyzed, x.k.f is tainted. As this is a

store, a backward alias analysis pass is triggered. At this point,

we build Gfoo,x.k in Figure 2(e) in order to propagate sparsely

all access paths sharing x.k as its prefix (Theorem 2). In line

13, we find c.k.f to be aliased with x.k.f. As c.k.f is

new, we then build Gfoo,c.k in Figure 2(f) in order to propagate

sparsely all access paths abstracted by c.k. Finally, in the last

forward pass, c.k.f is recognized to be tainted in line 14.

A number of salient properties about our sparse IFDS

framework are summarized as follows:

• Sparsity. While we sparsify only the intraprocedural anal-

ysis of the IFDS algorithm, our approach can be regarded

as being full-sparse. Once propagated from a callsite to a

callee, all the data-flow facts are propagated sparsely again.

• On-Demand SCFG Construction. SCFGs are built on-

demand and reused later, reducing the unnecessary over-

heads that would be otherwise incurred in a pre-analysis.

• Multi-Threading. Sparsification is orthogonal to multi-

threading parallelization. For example, SPARSEDROID has

reduced significantly the number of edges that are concur-

rently processed by multiple threads in FLOWDROID.

• Precision and Efficiency. By sparsifying the IFDS algo-

rithm, we maintain its precision while significantly reducing

its time and memory requirements (despite the small time

and space overheads incurred for managing SCFGs).

III. THE SPARSE IFDS FRAMEWORK

We describe how to sparsify the classic IFDS framework [1]

in a formal setting. Section III-A reviews the classic IFDS

algorithm [1]. Section III-B describes its sparsification. In

Section IV, we will revisit taint analysis as an instantiation

and have the opportunities to give some illustrating examples.

A. The Non-Sparse IFDS Framework

In Figure 3, we reproduce the classic IFDS algorithm

from [1] (with a few notational changes). There are three

cases, with the first two cases (lines 13 and 18) responsible for

the interprocedural analysis and the last case (line 25) for the

intraprocedural analysis. As discussed in Section II, only the

intraprocedural analysis needs to be sparsified. However, for

completeness, we introduce briefly the entire analysis below.

An instance IP of an IFDS problem is a five-tuple, IP =
(G∗, D, F,M,�), where G∗ = (N∗, E∗) is the supergraph of

the program, D is a finite set of data-flow facts, F ⊆ 2D → 2D

is a set of distributive functions, M : E∗ → F is a map

from G∗’s edges to data-flow functions (representing typically

traditional transfer functions defined in terms of GEN and

KILL [29]), and the meet operator � is either union or

intersection (depending on the problem modeled).

G∗, known traditionally as the interprocedural CFG (ICFG)

of the program, consists of a collection of CFGs, G1, G2, · · ·
(one per function), one of which, Gmain, represents the pro-

gram’s main(). For a function p, its CFG Gp consists of a

unique start node sp, a unique exit node ep, and the remaining

nodes representing its statements and predicates in the usual

manner. However, a callsite is split into two nodes, a call
node and a return-site node. G∗ has four types of edges. The

ordinary intraprocedural edges in an individual CFG Gp are

called normal edges. For each callsite, with its call-node c and

return-site node r, where p is called, three edges are included

to capture its interprocedural data-flows: an intraprocedural

call-to-return edge from c to r, an interprocedural call edge
from c to sp, and an interprocedural return edge from ep to r.

To solve IP context-sensitively as a graph-reachability

problem, G∗ is extended into an exploded supergraph, G#
IP =

(N#, E#), where N# = N∗ × (D ∪ {0}) and E# =
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Algorithm Tabulate(G#
IP )

1 Let G#
IP = (N#, E#)

2 PathEdge ← {〈smain, 0〉 → 〈smain, 0〉}
3 WorkList ← {〈smain, 0〉 → 〈smain, 0〉}
4 S ← ∅
5 ForwardTabulateSLRPs()

6 for n ∈ N∗ do
7 Xn ← {d2 ∈ D | ∃ d1 ∈ (D ∪ {0})

s.t. 〈sfun(n), d1〉 → 〈n, d2〉 ∈ PathEdge}
Function Prop(e)

8 if e /∈ PathEdge then
9 Insert e into PathEdge; Insert e into WorkList

Function ForwardTabulateSLRPs()

10 while WorkList �= ∅ do
11 Pop 〈sp, d1〉 → 〈n, d2〉 from WorkList

12 switch n
13 case n ∈ callsites(p)

14 for d3 s.t. 〈n, d2〉 → 〈scallee(n), d3〉 ∈ E# do
15 Prop(〈scallee(n), d3〉 → 〈scallee(n), d3〉)
16 for d3 s.t. 〈n, d2〉 → 〈retSite(n), d3〉 ∈ (E# ∪ S) do
17 Prop(〈sp, d1〉 → 〈retSite(n), d3〉)
18 case n = ep

19 for c ∈ callers(p) do
20 for d4, d5 s.t. 〈c, d4〉 → 〈sp, d1〉 ∈ E# and

〈ep, d2〉 → 〈retSite(c), d5〉 ∈ E# do
21 if 〈c, d4〉 → 〈retSite(c), d5〉 /∈ S then
22 Insert 〈c, d4〉 → 〈retSite(c), d5〉 into S
23 for d3 s.t. 〈sfun(c), d3〉 → 〈c, d4〉∈PathEdge do
24 Prop(〈sfun(c), d3〉 → 〈retSite(c), d5〉)
25 case n ∈ (Np − callsites(p) − {ep})
26 for 〈m, d3〉 s.t. 〈n, d2〉 → 〈m, d3〉 ∈ E# do
27 Prop(〈sp, d1〉 → 〈m, d3〉)

Fig. 3. The IFDS algorithm from [1] (with some notational changes).

{〈m, d1〉 → 〈n, d2〉 | (m,n) ∈ E∗, d2 ∈ M(m,n)(d1)}. Note

that 0 signifies an empty set of facts (allowing new facts to be

generated at a program point) and M(m,n) ∈ F is the flow

function associated with the edge (m,n) ∈ E∗. For efficiency

reasons, G#
IP is usually built from G∗ at run time.

In Figure 3, an IP is solved with dynamic programming

in O(|E∗||D|3). For a function p, callsites(p) is the set of

its call statements and callers(p) is the set of call statements

(in p’s callers) where p is invoked. For a call statement n,

retSite(n) denotes its return-side node and callee(n) the

function invoked. For a node n ∈ N∗, fun(n) identifies its

containing function. Finally, S summarizes the interprocedural

data-flow facts obtained across the function boundaries.

PathEdge records the set of path edges, with each

〈sp, d1〉 → 〈n, d2〉 representing the suffix of a realizable path

from 〈smain, 0〉 to 〈n, d2〉, implying that the path edge from

〈smain, 0〉 to 〈sp, d1〉 is realizable. Starting with 〈smain, 0〉 →
〈smain, 0〉 (lines 2 – 4), ForwardTabulateSLRPs() col-

lects all possible path edges in PathEdge (line 5) with a

case analysis, by handling (1) the interprocedural data-flows

entering a function (lines 13 – 17), (2) the interprocedural

data-flows leaving a function (lines 18 – 24), and (3) the

intraprocedural data-flows within a function (lines 25 – 27).

Finally, a data-flow fact d ∈ D exists at a program point

Function ForwardTabulateSLRPs()

1 while WorkList �= ∅ do
· · ·

2 switch n do
13 case n ∈ callsites(p) do

· · ·
16 for d3 s.t. 〈n, d2〉 → 〈retSite(n), d3〉 ∈ (E# ∪ S) do

17a if G#
p,d3

is not constructed yet, i.e., not in the SCFG cache then

17b Build G#
p,d3

= (N#
p,d, E#

p,d) according to (2)

17c for 〈n, d2〉 → 〈m′, d3〉 ∈ E#
p,d3

do

17d Prop(〈sp, d1〉 → 〈m′, d3〉)
18 case n = ep do

· · ·
25 case n ∈ (Np − callsites(p) − {ep}) do
26 for 〈 , d3〉 s.t. 〈n, d2〉 → 〈 , d3〉 ∈ E# do

27a if G#
p,d3

is not constructed yet, i.e., not in the SCFG cache then

27b Build G#
p,d3

= (N#
p,d, E#

p,d) according to (2)

27c for 〈n, d2〉 → 〈m′, d3〉 ∈ E#
p,d3

do

27d Prop(〈sp, d1〉 → 〈m′, d3〉)

Fig. 4. The sparse IFDS algorithm adapted from Figure 3 with its line

17 (line 27) replaced by lines 17a – 17d (lines 27a – 27d).

id : λS.S a : λS.{a} f : λS.if b ∈ S then S ∪ {a} else S \ {a} z : λS.∅
0 a b

0 a b

0 a b

0 a b

0 a b c

0 a b c

0 a b

0 a b

Fig. 5. Edge-specific flow functions illustrated (with the first two from [1]).

n ∈ N∗ iff there exists a realizable path in G#
IP from node

〈smain, 0〉 to node 〈n, d〉 (lines 6 – 7).

For our taint analysis problem, IP = (G∗, D, F,M,�),
Figure 1(a) gives its exploded supergraph. As explained in

Section II, D is the set of access paths, � is ∪, and F and M
were discussed earlier but will be formalized in Section IV.

B. Sparsification

As the IFDS algorithm in Figure 3 spends the majority of its

analysis time on propagating data-flow facts intraprocedurally,

it suffices to sparsify its intraprocedural analysis only. Our

sparse algorithm, which is given in Figure 4, is conceptually

simple and easy to implement as well as both time- and space-

efficient. Let us describe our sparsification below.

Consider any IFDS problem IP = (G∗, D, F,M,�). Ac-

cording to Observation 1, even if the flow function M(m,n) ∈
2D �→ 2D is not the identity function, many data-flow facts
X ⊆ D are propagated through (m,n) unchanged, without
affecting the other facts and being affected by the other facts.
Our key insight is to propagate such facts in X sparsely, i.e.,
directly to their next possible use points (in the same function),
thereby reducing both time and space requirements overall.

Figure 5 illustrates a few edge-specific flow functions,

which can be understood as traditional transfer functions

composed using GEN and KILL [29]. Here, id is the identity

function, a generates a new fact a but kills everything else in

S, f generates (kills) a if b ∈ S (b /∈ S), and z kills everything

in S. If M(m,n) = id, we can avoid propagating all the facts
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along (m,n) by sending them directly to their next use points.

However, even if M(m,n) �= id, such sparse propagations

are still possible for some facts (as motivated in Figure 1). To

achieve this, we introduce fact-specific identity functions.
Let f ∈ F ⊆ 2D �→ 2D be a flow function associated with

edge (m,n). Let d ∈ D be a fact. We say that f is a d-specific
identity function, denoted f ≡ fd, if the following holds:

∀ X ∈ 2D : d ∈ X =⇒ d ∈ f(X)
∀ X ∈ 2D\{d} : f(X) \ {d} = f(X ∪ {d}) \ {d} (1)

For any fact d arriving at m, d will emerge at n without being

affected by the other facts by the first condition, and d does

not affect the other facts reaching n by the second condition.
Let us re-examine each flow function (associated with an

edge (m,n) ∈ E∗) in Figure 5. As id is an identity function

by itself, id is a d-specific identity function for any d. For

a, we have a ≡ aa (as a that reaches m is regenerated and

propagated to n) but a �≡ ab (as b is killed). For f, it is not

hard to see that f �≡ fa, f �≡ fb but f ≡ fc. Finally, z is not a

d-specific identity function for any d (as all facts are killed).
For a call statement n, there is a unique intraprocedural

edge from n to its return-site node, retSite(n). Whether

M(n, retSite(n)) is a d-specific identity function, where

d ∈ D, depends on the underlying IFDS problem, as will be

discussed in Section IV. Conservatively, we can always assume

M(n, retSite(n)) �≡ M(n, retSite(n))d for every d ∈ D.
Given d ∈ D, we are motivated to propagate d sparsely

across a CFG. Let Gp = (Np, Ep) be the CFG of a function

p in G∗. Let G#
p = (N#

p , E#
p ) be the exploded CFG of

Gp in GIP . We will propagate d in a sparse CFG (SCFG),

Gp,d = (Np,d, Ep,d), as a subgraph of Gp. To construct Gp,d,

we construct below its exploded version G#
p,d = (N#

p,d, E#
p,d)

(as a subgraph of G#
p ). In practice, Gp,d is actually built first

and then exploded into G#
p,d. For convenience, we assume the

existence of a pseudo start (exit) node s′p (e′p) in G#
p , such

that M(s′p, sp) �≡ M(s′p, sp)
d and M(ep, e

′
p) �≡ M(ep, e

′
p)

d.

Let P d
p (n1, nk) =def (n0, n1), · · · , (nk, nk+1) be a sparsi-

fiable path in G#
p , where k � 2, such that (1) M(n0, n1) �≡

M(n0, n1)
d, (2) M(ni, ni+1) ≡ M(ni, ni+1)

d, where 1 �
i < k, and (3) M(nk, nk+1) �≡ M(nk, nk+1)

d. Starting at n1,

we will send d directly to nk by skipping these intermediate

edges.
The SCFG Gd

p = (N#
p,d, E#

p,d) is defined as follows:

E#
p,d = {(m, d) → (n, d′) ∈ E#

p ) | M(m,n) �≡ M(m,n)d}
∪ {(m, d) → (n, d) | P d

p (m,n) is sparsifiable}
N#

p,d =
⋃

(m,d)→(n,d′)∈E#
p,d

{(m, d)} ∪ {(n, d′)}
(2)

For our motivating example, we examined a few SCFGs in

Figure 2 and will discuss them in more detail in Section IV.
Frequently, many facts share the same SCFG (as motivated

in Section II and discussed further in Section IV). If Gp,d1
=

Gp,d2
, then the same SCFG is shared by d1 and d2.

We can now understand our sparse algorithm given in

Figure 4 easily. For reasons of symmetry, it suffices to explain

its lines 27a – 27d. Whenever the non-sparse IFDS algorithm

Return Alias Information

Request Alias Information

SCFG

Data-Flow Facts

ICFG Leaks

Fig. 6. The workflow of SPARSEDROID.

is just about to propagate a fact d3 at node m densely (line 27

of Figure 3), our sparse algorithm propagates d3 on its own

SCFG G#
p,d3

(built on the fly but reused subsequently) sparsely.

Theorem 1 (Correctness). The sparse algorithm (Figure 4)
computes the same results as the non-sparse one (Figure 3).

Proof Sketch. Follows from the fact that every data-flow fact

d3 is now propagated sparsely in G#
p,d3

(Figure 4) rather than

densely in G#
p (Figure 3) by skipping only the statements that

are irrelevant as far as d3 is concerned by (1) – (2).

IV. THE SPARSE TAINT ANALYSIS

We describe an instantiation of our sparse algorithm for

finding tainted accesses in Android apps. Figure 6 depicts

SPARSEDROID, our sparse version of FLOWDROID [19]. We

reuse FLOWDROID’s modules, “Taint Analysis” and “Alias

Analysis”, for discovering tainted accesses and aliases in the

forward and backward passes, respectively (Section II). The

three modules with the light gray background are added by

us to support sparse analysis. The “Sparse IFDS Solver”

implements our sparse IFDS algorithm (Figure 4), which is

multi-threaded exactly as in FLOWDROID. The “Sparse CFG

Cache” manages all the SCFGs constructed so far while the

“Build SCFGs” module constructs an SCFG for a data-flow

fact on the fly if it not cached yet according to (2).

For the IFDS-based taint analysis, let us revisit its five-tuple:

IP = (G∗, D, F,M,�). In Figure 6, G∗ is the ICFG, i.e.,

supergraph provided to the analysis. Note that D is the set of

access paths and � is ∪. In Section II, we discussed informally

the flow functions in F that are mapped to the edges in G∗

by M . In this section, we will define what M is precisely.

Section IV-A introduces the intermediate representation (IR)

used. Section IV-B formalizes the flow functions used for taint

analysis. Section IV-C discusses SCFG construction.

A. Intermediate Representation

Table I gives eight kinds of statements used in our IR.

By convention, x =def x0, · · · , xn−1 is a possibly empty

list of elements. To handle both virtual and static calls

uniformly, a virtual call a0.foo(a1, · · · , an−1) is written as

foo(a0, · · · , an−1) and a static call T.foo(a0, · · · , an−1) is

written as foo(a0, . . . , an−1) by dropping the irrelevant T .

All local variables are assumed to be in SSA form [30],

resulting in the Phi instruction being used as is standard.
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a = source() {0}
{0, a.∗}

a = source() {v.f̄} v �= a

{v.f̄} [SOURCE]
a = ... {v.f̄} v = a

{} [KILL]

a = new T () {v.f̄} v �= a

{v.f̄} [NEW]
a = b {v.f̄} v = b

{v.f̄ , a.f̄}
a = b {v.f̄} v /∈ {a, b}

{v.f̄} [ASSIGN]

a2 = φ(a0, a1) {v.f̄} v ∈ {a0, a1}
{v.f̄ , a2.f̄}

a2 = φ(a0, a1) {v.f̄} v /∈ {a0, a1, a2}
{v.f̄} [PHI]

a = ξ.f ′ (ξ ∈ {b, T}) {v.f̄} v = ξ ∧ car(f̄) = f ′

{v.f̄ , a.cdr(f̄)}
a = ξ.f ′ (ξ ∈ {b, T}) {v.f̄} v �= a ∧ (v �= ξ ∨ car(f̄) �= f ′)

{v.f̄} [LOAD]

ξ.f ′ = b (ξ ∈ {a, T}) {v.f̄}
v = b

{v.f̄ , ξ.f ′.f̄}

ξ.f ′ = b (ξ ∈ {a, T}) {v.f̄}
v = ξ ∧ car(f̄) = f ′

{}
ξ.f ′ = b (ξ ∈ {a, T}) {v.f̄} v �= b ∧ (v �= ξ ∨ car(f̄) �= f ′)

{v.f̄} [STORE]

r = foo(ā) {v.f̄}
v = ai ai ∈ ā pi is ai

′s corresponding formal parameter in foo

{pi.f̄}
r = foo(ā) {v.f̄} v /∈ ā

{}
r = foo(ā) {T.f̄}

{T.f̄} [CALL]

r = foo(ā) {v.f̄} v ∈ ā ∨ v = T

{}
r = foo(ā) {v.f̄} v /∈ ā ∪ {r} ∧ v �= T

{v.f̄} [CALL-TO-RETURN]

retfoo r {v.f̄} v = pi
pi is foo’s formal parameter ai is pi

′s corresponding actual argument

{ai.f̄}

retfoo r0 {v.f̄} v = r0
r1 = foo(ā) ∈ callers(foo)

{r1.f̄}
retfoo r {T.f̄}

{T.f̄} [RETURN]

Fig. 7. The flow functions for taint analysis operating on the IR given in Table I (with the alias analysis performed orthogonally [19] as illustrated in Figure 1).

TABLE I
INTERMEDIATE REPRESENTATION FOR TAINT ANALYSIS.

Name Instruction Name Instruction

Source a = source() Phi a2 = φ(a0, a1)

New a = new T () Assign a = b

Load
a = b.f

Store
a.f = b

a = T.f T.f = b

Call r = foo(a) Return returnp r

B. Flow Functions

Figure 7 gives all the flow functions used for taint analysis

in our IR. In the IFDS framework, a flow function F ∈
2D �→ 2D, where D is the set of access paths, distributes

over the meet operator �: F(X) = �x∈XF({x}). Given a

flow function F associated with a control-flow edge from a

statement s at a source node to a statement s′ at a target node

in the CFG, a rule for s maps the singleton fact set {x} on

entry of s to F({x}) on entry of s′. (If x is tainted, then

F({x}) contains all the tainted facts by s.) For a non-source

statement, F(0) = 0 is omitted. For a list x, car(x) and cdr(x)
return the first and the rest of the list, respectively. To simplify

the presentation of our rules, v.f denotes an access path (i.e.,

a local variable) v or a field access v.f1. · · · .fn, where n � 1

and T.f denotes an access path T.f1. · · · .fn, where n � 1.

The rules for handling non-call statements are simple. At

a tainted source, a = source(), a.∗ signifies that a and all its

associated access paths are tainted. In [LOAD] and [STORE],

if v.f = v.∗, then car(∗) = f ′ is assumed to hold always and

a.cdr(∗) = a.∗. Now, consider the three rules for handling a

call statement, [CALL], [CALL-TO-RETURN] and [RETURN].

There are two cases in handling r = foo(a). A fact that is

a static variable, T.f, is propagated to its entry and then its

exit (if it remains tainted at the end). A fact that is an instance

variable, v.f, is handled in the same way if v is one of foo’s

arguments and propagated to the call’s return node otherwise.

C. SCFG Construction

As motivated in Section II, we will construct an SCFG Gp,d

on-demand for every new fact d generated when a function p
is analyzed. Our sparse IFDS algorithm given in Figure 4 will

then operate on G#
p,d, which is exploded from Gp,d according

to (2) during the sparse analysis (Section III-B).

For a given IFDS problem, many facts may have identical

SCFGs. For taint analysis, we rely on the following theorem.

Theorem 2. Let ξ.f1. · · · .fn be an access path, where ξ ∈
{a, T}. Then Gp,ξ.f1 = Gp,ξ.f1,··· ,fi , where p is any function.

Proof. Follows from Figure 7 (as all the field accesses in the

IR are limited to only a single field as shown in Table I).
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Therefore, we only need to build SCFGs for three types of

data-flow facts: (1) a local variable v, (2) a field access v.f ,

and (3) a global variable T.f . Let Gp = (Np, Ep) be the CFG

of a function p. To build these SCFGs (according to (2)), it

is just a simple matter of going through the flow functions

M(m,n) for all the edges (m,n) ∈ E and checking to see if

each is a fact-specific identity function or not (by (1)):

• Gp,v . M(m,n) �≡ M(m,n)v iff v appears in the statement

at node m. In this case, Gp,v consists of all the nodes in

Gp, where v is referred to (Figures 2(a) and (d)).

• Gp,v.f . M(m,n) �≡ M(m,n)v.f iff the statement at m
refers to v alone (without a field access) or v.f . Thus, Gp,v.f

consists of all such nodes in Gp (Figures 2(b), (e) and (f)).

• Gp,T.f . M(m,n) �≡ M(m,n)T.f iff the statement at m ac-

cesses T.f or is a callsite (as T.f may be killed indirectly).

Thus, Gp,T.f consists of all such nodes in Gp (Figure 2(c)).

Finally, there is one FLOWDROID-specific implementation

detail concerning when to “activate” aliases as being tainted.

Consider Figure 1 again. During a forward analysis, x.k.f is

found to be tainted by x.k = a in line 14. Then a backward

pass is started to search for its aliases. In line 13, c.k.f is

found as an alias. In a subsequent forward pass, c.k.f is

propagated forward and recognized as being tainted after it

has passed x.k = a, its so-called activation statement.
In SPARSEDROID, we propagate c.k.f in Gfoo,c.k shown

in Figure 2 rather than Gfoo. If its activation statement x.k
= a does not appear in Gfoo,c.k, which is true in this case, we

can simply activate c.k.f in the first nodes in Gfoo,c.k that

are reachable from this activation statement in Gfoo (along its

outgoing paths). The exit in Gfoo,c.k (and Gfoo) satisfies this

condition. Note that by construction, c.k.f will simply be

propagated through lines 15 and 16 before reaching the exit.

V. EVALUATION

We demonstrate the significant performance benefits

achieved by our sparse IFDS algorithm by comparing SPARSE-

DROID and FLOWDROID for solving taint analysis in Android

apps as a major application. Our sparse analysis is fairly gen-

eral. Other possible applications include pointer analysis [10],

typestate analysis [31], uninitialized variables [1], constant

propagation [32], and Android compatibility detection [33].

For the taint analysis problem as motivated in Figure 1,

FLOWDROID [19] relies on the traditional non-sparse IFDS

algorithm (Figure 3) while SPARSEDROID takes advantage of

our sparse IFDS algorithm (Figure 4). By Theorem 1, SPARSE-

DROID is equivalent to FLOWDROID in terms of their preci-

sion (i.e., leak-finding capability) except that SPARSEDROID

is sparse. We have validated the correctness of SPARSEDROID

by extensive benchmarking. In the case of DROIDBENCH [34]

(containing small unit tests with each consisting of dozens of

lines of code), for example, SPARSEDROID has successfully

passed all the test cases that FLOWDROID has passed (with

a caveat on implicit data flows discussed in Section VI). We

will therefore focus on evaluating the performance advantages

of SPARSEDROID over FLOWDROID, by using relatively large

Android benchmarks and real-world Android apps.

Our evaluation, as described below, will attempt to address

the following four research questions:

• RQ1. Is SPARSEDROID faster?

• RQ2. Is SPARSEDROID more memory-efficient?

• RQ3. Is the sparse IFDS algorithm effective?

• RQ4. Is the on-demand SCFG construction effective?

A. Experimental Setup

a) Implementation: For FLOWDROID, we use its latest

version (0967ca2) [35] implemented in Soot [36]. SPARSE-

DROID is a sparse version (Figure 6). Given an app, its Dalvik

bytecode is converted into Soot’s Shimple IR in SSA form,

operated on by both tools. In FLOWDROID, all access paths

are abstracted with k-limiting with k = 5 (by default). We

also use its source and sink definitions for taint analysis.

b) Benchmarks: We have selected 40 Android apps,

with 34 from Fossdroid [27], an alternate web interface for the

F-Droid repository [37], and 6 from Google Play. From Foss-

droid, we pick randomly 2 apps from the top 20 most popular

apps in each of its 17 categories. Note that Graphics has 17

Apps in total. From Google Play, we obtain pokemongo
(a game app), word (a Microsoft Word app), outlook (a

Microsoft Outlook app), reader (an Adobe Acrobat reader),

bk (a Burger King app), and oeffi (a journey planner).

c) Platform: Our experiments are done on an Intel

Xeon E5-1660 v4 CPUs (3.20GHz) server with 256GB RAM,

running Ubuntu 16.04.4 LTS (Xenial Xerus). For JVM, we

set the maximum heap size as 220GB (with -Xmx). For both

tools, we turn on --mergedexfiles to enable analyzing

multiple dex files for an app and use the -dt option to set 5

hours as the per-app time budget for their IFDS solvers. As

our platform has 8 cores, 8 threads are used to process all the

path edges in WorkList in Figures 3 and 4.

d) Results: Table II contains the results for FLOWDROID

(FD) and SPARSEDROID (SD). The analysis time of an app is

the average of 3 runs. As indicated in its caption, FLOWDROID

terminates prematurely in 9 apps (with 3 running out of time

and 6 running out of memory). However, SPARSEDROID has

successfully run every app to completion within the time

and memory budgets given. For each app (Columns 1 – 4),

we compare their analysis times (Columns 5 – 7) for RQ1,

memory usage (Columns 8 – 10) for RQ2, and #PathEdges

solved (Columns 11 – 13) for RQ3. Finally, we examine SCFG

construction (Columns 14 – 17) for RQ4.

B. RQ1: Speedups

As shown in Columns 5 – 7 of Table II, SPARSEDROID is

significantly faster than FLOWDROID, with the speedups rang-

ing from 1.1x to 357.3x averaged to 22.0x. So SPARSEDROID

outperforms FLOWDROID in every single app evaluated.

The largest speedup (357.3x) occurs on nya.miku.

wishmaster, for which FLOWDROID spends 15,561.2 sec-

onds to analyze it while SPARSEDROID spends only 43.6 sec-

onds. For org.gateshipone.odyssey exhibiting the second

largest speedup (94.0x), FLOWDROID terminates prematurely
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TABLE II
PERFORMANCE OF FLOWDROID (FD) AND SPARSEDROID (SD). FLOWDROID RUNS OUT OF TIME IN THREE APPS WITH THEIR ANALYSIS TIMES

INDICATED IN BLUE IN COLUMN 5 AND OUT OF MEMORY IN SIX APPS WITH THEIR MEMORY USAGE MARKED WITH OOM IN COLUMN 8.

Category App Version Apk(MB)
Analysis Time (s) Memory Usage (GB) #PathEdges SCFG Construction

FD SD FD/SD FD SD FD/SD FD SD FD/SD #SCFGs #Acc Paths Time/SD (%) Time/FD (%)

Connectivity
be.mygod.vpnhotspot 2.3.0 2.2 1,597.2 213.8 7.5 59.3 28.6 2.1 181,752,020 5,912,330 30.7 15,877 100,434 0.58 0.08

ca.cmetcalfe.locationshare 1.3.2 0.9 14,495.5 318.7 45.5 OOM 33.1 - 826,787,619 8,621,141 95.9 17,454 170,923 0.48 0.01

Development
org.csploit.android 1.6.5 3.5 8.4 5.5 1.5 9.6 8.4 1.1 422,510 75,183 5.6 2,140 3,686 6.43 4.18

de.k3b.android.contentproviderhelper 1.3.1.1 0.6 0.3 0.1 2.2 0.3 0.4 0.7 9,715 1,056 9.2 107 117 29.29 13.06

Games
com.ghstudios.android.mhgendatabase 2.3.1 8.8 0.2 0.1 1.3 0.5 0.4 1.2 2,148 492 4.4 154 176 38.26 28.95

net.ddns.mlsoftlaberge.trycorder 5.2.3 8.6 0.2 0.1 1.4 0.4 0.3 1.3 3,491 893 3.9 147 184 17.36 12.73

Graphics
rodrigodavy.com.github.pixelartist 3.1 1.8 2,066.6 97.9 21.1 71.7 29.7 2.4 190,149,877 3,105,457 61.2 13,678 101,537 1.27 0.06

uk.co.richyhbm.monochromatic 0.8.1 1.6 731.8 30.9 23.7 33.6 14.7 2.3 93,158,144 1,380,304 67.5 9,167 51,312 2.90 0.12

Internet
nya.miku.wishmaster 1.5.0 3.5 15,561.2 43.6 357.3 190.9 13.7 13.9 893,798,548 2,318,824 385.5 8,917 30,905 4.43 0.01

acr.browser.lightning 4.5.1 2.6 77.6 25.4 3.1 38.5 15.8 2.4 12,819,994 1,948,356 6.6 6,595 39,651 4.09 1.34

Money
org.totschnig.myexpenses 3.0.1.2 11.0 910.6 31.6 28.8 72.9 17.9 4.1 159,482,692 1,533,402 104.0 7,583 49,693 2.71 0.09

com.igisw.openmoneybox 3.2.2.10 2.1 581.6 24.3 24.0 56.8 12.1 4.7 154,478,524 2,246,178 68.8 4,139 33,830 25.70 1.07

Multimedia
com.poupa.vinylmusicplayer 0.20.1 4.4 32.3 6.4 5.0 8.6 2.8 3.1 4,029,184 143,505 28.1 2,192 7,036 6.13 1.22

org.gateshipone.odyssey 1.1.17 2.5 12,727.9 135.3 94.0 OOM 26.7 - 858,074,482 4,232,587 202.7 16,325 131,838 1.02 0.01

Navigation
com.ilm.sandwich 2.2.4f 3.1 6.9 2.5 2.7 1.0 1.4 0.7 690,044 45,712 15.1 1,485 3,189 8.99 3.30

com.vonglasow.michael.satstat 3.3 2.5 8.3 0.8 10.1 12.7 0.6 21.2 1,388,430 21,673 64.1 785 2,282 62.41 6.21

Phone&SMS
opencontacts.open.com.opencontacts 12 2.0 1.4 1.3 1.1 0.6 1.1 0.5 43,904 16,918 2.6 370 1,149 6.71 6.31

com.github.yeriomin.dumbphoneassistant 0.5 0.3 4.1 1.4 2.9 4.0 2.1 1.9 443,527 68,756 6.5 359 2,204 12.11 4.23

Reading
nightlock.peppercarrot 1.0.1 4.2 0.6 0.2 2.9 1.0 0.4 2.5 26,660 2,012 13.3 300 425 37.19 12.82

org.decsync.sparss.floss 1.13.4 2.1 7,943.5 698.5 11.4 OOM 42.2 - 515,547,655 26,471,883 19.5 9,542 66,115 0.19 0.02

Sci&Edu
com.ichi2.anki 2.8.4 8.3 19.0 8.8 2.2 3.4 6.2 0.5 2,724,681 221,191 12.3 7,420 14,741 15.77 7.27

com.luk.timetable2 6.0.4 2.8 0.2 0.1 1.3 1.0 0.9 1.1 1,753 298 5.9 71 73 20.00 15.51

Security
com.kunzisoft.keepass.libre 2.5.0.0beta18 7.3 6.9 0.7 9.3 14.8 1.0 14.8 1,002,449 20,218 49.6 622 1,863 13.88 1.49

eu.faircode.netguard 2.229 2.5 11,034.6 589.5 18.7 OOM 17.5 - 935,368,414 14,070,780 66.5 15,290 235,259 0.31 0.02

Sports&Health
org.openpetfoodfacts.scanner 2.9.8 6.0 18,001.5 492.1 36.6 113.1 70.7 1.6 210,096,647 13,678,491 15.4 11,036 111,064 0.21 0.01

org.secuso.privacyfriendlyactivitytracker 1.0.5 2.3 1.6 0.5 3.0 2.1 1.1 1.9 122,544 13,950 8.8 647 1,818 13.26 4.43

System
dk.jens.backup 0.3.4-universal 6.2 8.8 6.0 1.4 2.5 2.0 1.2 789,556 149,990 5.3 456 2,329 1.31 0.90

com.github.axet.callrecorder 1.6.44 5.0 720.9 41.6 17.3 37.8 64.2 0.6 87,534,226 1,708,053 51.2 5,309 12,226 2.53 0.15

Theming
org.materialos.icons 2.1 8.5 3.2 0.4 7.7 4.4 0.8 5.5 282,413 2,255 125.2 108 108 58.21 7.54

org.adw.launcher 1.3.6 1.2 4.5 1.5 3.0 6.1 0.8 7.6 504,404 34,408 14.7 1,204 1,353 17.39 5.74

Time
name.myigel.fahrplan.eh17 1.33.16 2.0 24.5 6.8 3.6 8.1 2.2 3.7 3,600,853 135,206 26.6 1,933 5,874 6.45 1.78

com.app.Zensuren 1.21 0.2 8.0 2.9 2.7 7.9 1.7 4.6 1,765,179 177,806 9.9 2,452 4,958 37.08 13.56

Writing
com.orgzly 1.7 4.7 9,482.5 1,700.6 5.6 OOM 49.7 - 733,494,539 31,728,506 23.1 38,715 545,207 0.16 0.03

org.secuso.privacyfriendlytodolist 2.1 2.4 8.4 1.5 5.4 1.6 1.3 1.2 928,849 62,544 14.9 956 5,884 11.54 2.13

GooglePlay

com.nianticlabs.pokemongo 0.139.3 97.0 18,002.5 380.9 47.3 123.2 47.4 2.6 321,729,505 11,194,524 28.7 9,134 107,311 0.14 0.00

com.microsoft.office.word 16.0.11425.20132 71.0 257.6 28.1 9.2 70.8 8.8 8.0 29,801,488 343,827 86.7 3,466 16,023 1.39 0.15

com.microsoft.office.outlook 3.0.46 70.0 18,001.9 1,069.6 16.8 122.3 79.2 1.5 498,296,938 21,980,834 22.7 52,165 413,532 0.96 0.06

com.adobe.reader 19.2.1.9183 61.0 603.3 78.2 7.7 46.9 26.9 1.7 72,006,192 1,715,234 42.0 21,671 41,509 2.13 0.28

com.emn8.mobilem8.nativeapp.bk 5.0.10 11.0 10,228.3 1,451.9 7.0 OOM 66.9 - 947,632,966 19,234,574 49.3 34,870 321,775 0.15 0.02

de.schildbach.oeffi 10.5.3-google 2.1 312.2 14.8 21.1 18.9 6.1 3.1 50,630,514 405,221 124.9 7,388 23,337 6.79 0.32

after 12,727.9 seconds after running out of memory, SPARSE-

DROID takes only 135.3 seconds to run it to completion.

For opencontacts.open.com.opencontacts (with

the smallest speedup, 1.1x), com.ghstudios.android.

mhgendatabase (1.3x), com.luk.timetable2 (1.3x),

and net.ddns.mlsoftlaberge.trycorder (1.4x), the

performance benefits from our sparse analysis are small.

These apps can be analyzed by both tools within 1.5 seconds.

For org.openpetfoodfacts.scanner, com.nianti-

clabs.pokemongo and com.microsoft.office.outlook,

FLOWDROID times out for a 5-hour time budget given, but

SPARSEDROID has finished analyzing these three apps in 8.2

mins, 6.3 mins, and 17.8 mins, respectively.

C. RQ2: Memory Requirements

As shown in Columns 8 – 10 of Table II (also plotted

in Figure 8), FLOWDROID consumes more memory than

SPARSEDROID for all the 40 apps except for the five marked

in bold font in Column 9 (discussed below), In particular,

FLOWDROID runs out of memory for the six apps marked

with OOM in Column 8. In contrast, SPARSEDROID can finish

analyzing all the 40 apps by consuming a maximum of 79.2GB

memory. For each app, we consider the maximum amount of

memory used. This is calculated by using Java Runtime APIs.

With the six OOM apps excluded, the memory us-

age ratios of FLOWDROID over SPARSEDROID range

from 0.5x (com.ichi2.anki) to 21.2x (com.vonglasow.

michael.satstat) with an average of 3.7x.

Let us examine the five apps for which SPARSEDROID uses

more memory than FLOWDROID. For de.k3b.android.

contentproviderhelper, com.ilm.sandwich and open-

contacts.open.com.opencontacts, the extra amount of

memory used is small. In each case, the total amount

of memory used by SPARSEDROID is below 1.5GB. For

com.ichi2.anki and com.github.axet.callrecorder,

SPARSEDROID uses about twice memory as FLOWDROID, due

to the extra space taken by the SCFG cache used.
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Fig. 8. Memory usage of FLOWDROID and SPARSEDROID for the 40 apps.

D. RQ3: Effectiveness of Sparse Analysis

As discussed in Sections V-B and V-C, SPARSEDROID is

significantly faster and more memory-efficient than FLOW-

DROID. The key reason is that FLOWDROID, which uses the

traditional IFDS algorithm in Figure 3, solves a significantly

larger number of path edges (#PathEdges) than SPARSE-

DROID, which uses a sparse version in Figure 4, for an app,

as shown in Columns 11 – 13 of Table II. The ratios of

FLOWDROID’s #PathEdges over SPARSEDROID’s #PathEdges

range from 2.6x to 385.5x with an average of 49.5x. As

motivated in Figure 1, solving an IFDS problem sparsely cuts

down substantially both the time and memory required.

In each IFDS algorithm, WorkList contains all the path

edges for an app to be solved by its IFDS solver. Figure 9

shows that FLOWDROID
′s Non−Sparse IFDS Solver Time

SPARSEDROID′s Sparse IFDS Solver Time correlates

well positively with FLOWDROID
′s #PathEdges

SPARSEDROID′s #PathEdges across the 40

apps with both axes drawn in the log2 scale. The three

blue ⊕’s represent the three apps for which FLOWDROID

runs out of time and the six red ⊗’s represent the six apps

for which FLOWDROID runs out of memory. The two blue

⊕’s (org.openpetfoodfacts.scanner and com.nianti-

clabs.pokemongo) deviate slightly from the projected trend,

yielding better than expected speedups (Table II), possibly due

to excessive system resources consumed by FLOWDROID.

Note that there is no correlation between the speedup of

SPARSEDROID over FLOWDROID achieved for an Android

app with its bytecode size. This is as expected since the

effectiveness of SPARSEDROID depends on the tainted sources

present in the app and their data dependent statements tracked

(Figure 7) with aliases considered, which are all accurately

reflected by the percentage of #PathEdges reduced (Figure 9).

When used as a vetting tool, SPARSEDROID can analyze all

the 40 apps in 7678 seconds (2.13 hours) by issuing 228 leak

warnings. By analyzing these apps (lexicographically) for the

same time period, FLOWDROID can only analyze 30 apps by

issuing only 147 leak warnings even if the nine apps for which

FLOWDROID runs out of either time or memory are ignored.

E. RQ4: On-Demand SCFG Construction

As a sparse version of FLOWDROID, SPARSEDROID per-

forms its taint analysis on-demand, by detecting the leaks from

a set of specified sources to a set of specified sinks in an app.

As such, our on-demand SCFG construction has turned out

to be effective, by building the SCFGs for only the access

paths encountered (Figure 1), as shown in Columns 14 – 17 of

Table II. For each app, “#SCFGs” gives the number of SCFGs

built and “#Acc Paths” gives the number of access paths seen

(i.e., the number of SCFGs that would have been built if

Theorem 2 were not applied). In addition, “Time/SD (%)” and

“Time/FD (%)” give the percentages of the SCFG contruction

time over the total analysis times spent by SPARSEDROID and

FLOWDROID, respectively (plotted in Figure 10 graphically).

Certainly, SCFG construction incurs overheads, ranging

from 0.14% to 62.4% with an average of 11.9% over SPARSE-

DROID’s analysis time but only from 0.0% to 29.0% with

an average of 3.3% over FLOWDROID’s analysis time. As

highlighted in bold font in the last Column of Table II, out of

the six apps with double-digit percentage overheads (relative

to FLOWDROID), com.app.Zensuren is the only one taking

over 1 second for FLOWDROID to analyze. In this case,

despite 1.08 seconds taken in building SCFGs, SPARSEDROID

has reduced FLOWDROID’s analysis time from 8 seconds to

2.9 seconds, achieving still a speedup of 2.7x. Overall, the

overheads incurred in SCFG construction are significantly

more than offset by the performance benefits reaped.

VI. LIMITATIONS

This work can be further improved in a number of di-

rections. First, just like the traditional IFDS algorithm [1],

our sparse IFDS algorithm (Figure 4) is applicable only to

the IFDS data-flow problems. Second, by making FLOW-

DROID [19] sparse, our tool SPARSEDROID (Figure 6) is

also limited to detecting only the information leaks caused

by explicit data flows (via data-dependent assignments). How

to track the sensitive information flowing implicitly through

control-dependent assignments (i.e. if (H) then L :=
true; else L := false) [38], [39] is beyond the scope

of this paper. Third, on-demand SCFG construction may

introduce performance penalties for small CFGs. However,

by applying this to all the CFGs in an app, the performance

benefit seems to significantly more than offset the overheads

incurred. Finally, the findings reported in this paper may be

dependent on the set of Android apps selected.

VII. RELATED WORK

IFDS data-flow analyses are widely used in software testing,

program verification, program understanding and maintenance,

and compiler optimization. Reps et al. [1] initially introduced

an efficient framework for solving the IFDS problems and

subsequently generalized it to the IDE framework [32] for

interprocedural distributed environment problems, where the

dataflow facts are maps (“environments”) from some finite

set of symbols to some (possibly infinite) set of values.

Later, Naeem et al. [22] give several extensions, making

it applicable to a wider class of interprocedural data-flow

problems, and also introduced a concurrent alternative im-

plemented based on Scala’s actor framework. WALA [40]

contains a memory-efficient bit-vector-based IFDS algorithm.

Recently, Bodden [23] has provided a generic (multi-threaded)
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Fig. 10. Percentage of the time spent by SPARSEDROID on building SCFGs
on-demand over the total analysis time by each tool for an app.

implementation of a generic IFDS/IDE solver in Soot [36].

While the prior work [22], [23] takes advantage of multi-

threading to accelerate IFDS analyses, this work exploits their

sparsity to improve their performance in an orthogonal way.

Sparse analysis has also been successfully applied in pointer

analysis. Hardekopf et al. speed up flow-sensitive pointer

analysis for C by employing a sparse data-flow graph rather

than a dense control flow graph, initially for top-level variables

[41] and then for also address-taken variables [42]. Sui et

al. detect memory leaks in C programs by using a sparse

value-flow graph that captures def-use chains and value flows

via assignments for all memory locations represented by both

top-level and address-taken variables [43] and also perform

demand-driven flow- and context-sensitive pointer analysis

for C programs sparsely [44]. Unlike these earlier efforts

(focussing on standard pointer analysis algorithms), this paper

represents the first work for sparsifying the IFDS algorithm,

by constructing sparse CFGs on-demand instead of during a

pre-analysis in order to boost its performance significantly.

Recently, synchronized pushdown systems are investigated

as an alternative to the traditional storeless k-limited access

path model for supporting pointer and data-flow analysis [45].

Their pushdown systems contain many redundant rules, which

can be sparsified similarly to achieve performance gains.

Taint analysis is a form of data-flow analysis aiming at

secure information flow. Given Android’s popularity, many

taint analysis tools exist, including Amandroid [46], DidFail

[47], DroidSafe [48], EvoTaint [49], FLOWDROID [19] and

IccTA [20], among which FLOWDROID remains to be a state-

of-the-art static taint analysis tool [50]. However, FLOW-

DROID, with its taint analysis performed in an IFDS/IDE

framework [23], is still compute- and memory-intensive [24],

[51]. By sparsifying the traditional IFDS algorithm used, the

performance of FLOWDROID has been significantly improved.

VIII. CONCLUSION

We have introduced a sparse analysis to scale the IFDS

algorithm significantly by reducing its time and memory

requirements. We have demonstrated that our sparse IFDS

algorithm can improve substantially the scalability of taint

analysis, one of the most important interprocedural data-flow

analyses, on a range of Android apps. By constructing sparse

CFGs on the fly for the data-flow facts propagated in both

the forward taint analysis and backward alias analysis phases

in the sparse IFDS framework, we have observed significant

performance improvements. In future work, we plan to further

reduce memory space consumed by taint analysis. We will also

apply our sparse IFDS algorithm to other data-flow analyses.
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S. Rasthofer, E. Bodden, D. Octeau, and P. McDaniel, “IccTA: Detecting
inter-component privacy leaks in Android apps,” in Proceedings of the
37th International Conference on Software Engineering-Volume 1, 2015,
pp. 280–291.

[21] S. Guarnieri, M. Pistoia, O. Tripp, J. Dolby, S. Teilhet, and R. Berg,
“Saving the world wide web from vulnerable JavaScript,” in Proceedings
of the 2011 International Symposium on Software Testing and Analysis,
2011, pp. 177–187.

[22] N. A. Naeem, O. Lhoták, and J. Rodriguez, “Practical extensions to the
IFDS algorithm,” in International Conference on Compiler Construction,
2010, pp. 124–144.

[23] E. Bodden, “Inter-procedural data-flow analysis with IFDS/IDE and
Soot,” in Proceedings of the ACM SIGPLAN International Workshop
on State of the Art in Java Program analysis, 2012, pp. 3–8.

[24] V. Avdiienko, K. Kuznetsov, A. Gorla, A. Zeller, S. Arzt, S. Rasthofer,
and E. Bodden, “Mining apps for abnormal usage of sensitive data,”
in Proceedings of the 37th International Conference on Software
Engineering-Volume 1, 2015, pp. 426–436.

[25] C. Sadowski, J. Van Gogh, C. Jaspan, E. Söderberg, and C. Winter,
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